NASA Logo, National Aeronautics and Space Administration

NASA Quantum Artificial Intelligence Laboratory (QuAIL)

QuAIL is the space agency's hub for assessing the potential of quantum computers to impact computational challenges faced by the agency in the decades to come.

NASA’s QuAIL team aims to demonstrate that quantum computing and quantum algorithms may someday dramatically improve the agency’s ability to address difficult optimization and machine learning problems arising in NASA's aeronautics, Earth and space sciences, and space exploration missions.

NASA's QuAIL team has extensive and experience utilizing near-term quantum computing hardware to evaluate the potential impact of quantum computing. The team has international recognized approaches to the programming and compilation of optimization problems to near-term quantum processors, both gate-model quantum processors and quantum annealers, enabling efficient utilization of the prototype quantum hardware available for experimenting with quantum and quantum-classical hybrid approaches for exact and approximate optimization and sampling.The has ongoing research developing quantum computational approaches to challenging combinatorial optimization and sampling problems with relevance to areas such as planning and scheduling, fault diagnosis, and machine learning.

A key component of this work is close collaboration with quantum hardware groups. The team's initial focus was on quantum annealing, since D-Wave quantum annealers were the first quantum computational devices available. As gate-model processors have matured, with gate-model processors with 10s of qubits now available, the group has extended its research to include substantial gate-model efforts in addition to deepening our quantum annealing research. For more information on our research, please see our Research Overview and Publication pages.

The NASA QuAIL team leads the T&E team for the IARPA QEO (quantum enhanced optimization) program, has formal collaborative agreements with quantum hardware groups at Google and Rigetti, and research collaborations with many other entities at the forefront of quantum computing, as well as a three-way agreement between Google-NASA-USRA related to the D-Wave machine hosted at NASA Ames.

The QuAIL group's expertise spans physics, computer science, mathematics, chemistry, and engineering.

What is Quantum Computing?

Quantum computing is based on quantum bits or qubits. Unlike traditional computers, in which bits must have a value of either zero or one, a qubit can represent a zero, a one, or both values simultaneously. Representing information in qubits allows the information to be processed in ways that have no equivalent in classical computing, taking advantage of phenomena such as quantum tunneling and quantum entanglement. As such, quantum computers may theoretically be able to solve certain problems in a few days that would take millions of years on a classical computer.

News and Events

NASA Ames hosts AQC-18

June 25-28, 2018

Adiabatic Quantum Computing (AQC) and Quantum Annealing are computational methods that have been proposed to solve combinatorial optimization and sampling problems. Several efforts are now underway to manufacture processors that implement these strategies. The Seventh International Conference on AQC brings together researchers from different communities to explore this computational paradigm. The goal of the conference is to initiate a dialogue on the challenges that must be overcome to realize useful adiabatic quantum computations in existing or near-term hardware. Read More

Quantum Annealer with more than 2000 qubits installed and operational

August 31, 2017

We upgraded the D-Wave quantum annealer hosted here at NASA Ames to a D-Wave 2000Q system. The newly upgraded system, which resides at the NASA Advanced Supercomputing Facility at NASA's Ames Research Center, has 2031 quantum bits (qubits) in its working graph—nearly double the number of qubits compared to the previous processor. It has several system enhancements that enable more control over the adiabatic quantum computing process allowing it to solve larger and more complex optimization problems than were previously possible. Read More

Members

Stuart Hadfield
Kostyantyn Kechedzhi
Salvatore Mandrà
Bryan O'Gorman
Eleanor Rieffel (Lead)
Davide Venturelli
Zhihui Wang
Max Wilson

Highlight

Adiabatic Quantum Computing (AQC-18) Conference

First Gov logo
NASA Logo - nasa.gov