NASA Logo, National Aeronautics and Space Administration

References

  • Amin, S., Byington, C., and Watson, M. 2005. Fuzzy Inference and Fusion for Health State Diagnosis of Hydraulic Pumps and Motors. Proceedings of the Annual Meeting of the North American Fuzzy Information Processing Society.
  • Beshears, R. and Butler, L. 2005. Designing For Health; A Methodology For Integrated Diagnostics/Prognostics. Proceedings of IEEE Autotestcon. New York: IEEE.
  • Bhangu, B. S. , Bentley, P., Stone, D. A., and Bingham, C. M., Nonlinear Observers for Predicting State-of-Charge and State-of-Health of Lead-Acid Batteries for Hybrid-Electric Vehicles, IEEE Transactions on Vehicular Technology, vol. 54, no. 3, pp. 783-794, 2005.
  • Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press, 1995.
  • Bock, J. R., Brotherton, T. W., and Gass, D. 2005. Ontogenetic Reasoning System for Autonomic Logistics. Proceedings of the IEEE Aerospace Conference. New York: IEEE.
  • Bock, J. R., Brotherton, T., Grabill, P., Gass, D., and Keller, J. A. 2006. On False Alarm Mitigation. Proceedings of the IEEE Aerospace Conference. New York: IEEE.
  • Bonissone, P., 2006. Knowledge and Time: A Framework for Soft Computing Applications in Predictive Health Management (PHM). Proceedings of IPMU '06.
  • Bonissone, P. and Goebel, K. 2002. When will it break? A Hybrid Soft Computing Model to Predict Time-to-break Margins in Paper Machines. Proceedings of SPIE 47th Annual Meeting, International Symposium on Optical Science and Technology, Vol. #4787, pp. 53-64.
  • Brotherton, T., Luppold, R., Padykula P, and Wade, R. 2005. Generic Integrated PHM / Controller System. Proceedings of the IEEE Aerospace Conference. New York: IEEE.
  • Brown, D. W., Kalgren, P. W., Byington, C. S., and Orsagh, R. F. 2005. Electronic Prognostics - A Case Study Using Global Positioning System (GPS). Proceedings of IEEE Autotestcon. New York: IEEE.
  • Brown, D., Kalgren, P., Roemer, M., and Dabney, T. 2006. Electronic Prognostics - A Case Study Using Switched-Mode Power Supplies (SMPS). Proceedings of the IEEE Systems Readiness Technology Conference. New York: IEEE.
  • Byington, C. S., Kalgren, P. W., Donovan, B. P., and Thompson, A. L. 2005. Streamlined Avionics PHM Utilizing Portable Information and Reasoning. Proceedings of the IEEE Aerospace Conference. New York: IEEE.
  • Byington, C. S., Roemer, M. J., Watson, M. J., Galie, T. R., McGroarty, J. J., and Savage, C. 2004a. Prognostic Enhancements To Diagnostic Systems (PEDS) Applied To Shipboard Power Generation Systems. Proceedings of ASME Turbo Expo. New York: ASME.
  • Byington, C. S., Watson, M. J., and Edwards, D. 2004b. Data-Driven Neural Network Methodology to Remaining Life Predictions for Aircraft Actuator Components. Proceedings of the IEEE Aerospace Conference. New York: IEEE.
  • Byington, C. S., Watson, M., and Edwards, D. 2004c. Dynamic Signal Analysis and Neural Network Modeling for Life Prediction of Flight Control Actuators. Proceedings of the American Helicopter Society 60th Annual Forum. Alexandria, VA: AHS.
  • Byington, C. S., Watson, M., Edwards, D., and Dunkin, B. 2003. In-Line Health Monitoring System for Hydraulic Pumps and Motors. Proceedings of the IEEE Aerospace Conference. New York: IEEE.
  • Chinnam, R. B. and Baruah, P. 2003. A Neuro-Fuzzy Approach For Estimating Mean Residual Life In Condition-Based Maintenance Systems. International Journal of Materials and Product Technology, vol. 20.
  • Chinnam, R. B. and Mohan, P. 2002. Online Reliability Estimation Of Physical Systems Using Neural Networks And Wavelets. International Journal of Smart Engineering System Design, vol. 4, no. 4.
  • Clifton, D. 2006. Condition Monitoring of Gas-Turbine Engines. Transfer Report, Department of Engineering Science, University of Oxford.
  • Frelicot, C.1996. A Fuzzy-Based Prognostic Adaptive System. RAIRO-APII-JESA, Journal Europeen des Systemes Automatises, vol.30, no.2-3, p.281-99.
  • Gebraeel, N. 2006. Sensory-Updated Residual Life Distributions for Components with Exponential Degradation Patterns. IEEE Transactions on Automation Science and Engineering.
  • Gebraeel, N., Lawley, M., Liu, R., and Parmeshwaran, V. 2004. Life Distributions From Component Degradation Signals: A Neural Net Approach. IEEE Transactions on Industrial Electronics, vol. 51, no. 3.
  • Gensym 2007. Gensym Web site. http://www.gensym.com
  • Ginart, A., Barlas, I., Dorrity, J. L., Kalgren, P. and Roemer, M. J. 2006. Self-Healing from a PHM Perspective. Proceedings of the IEEE Systems Readiness Technology Conference. New York: IEEE.
  • Goebel, K., and Eklund, N. 2007. Prognostic Fusion for Uncertainty Reduction. Proceedings of AIAA Infotech@ Aerospace Conference. Reston, VA: American Institute for Aeronautics and Astronautics, Inc.
  • Goebel, K., Eklund, N., and Bonanni, P. 2006. Fusing Competing Prediction Algorithms for Prognostics. Proceedings of 2006 IEEE Aerospace Conference. New York: IEEE.
  • Goebel, K., Qiu, H., Eklund, N., and Yan, W. 2007. Modeling Propagation of Gas Path Damage. Proceedings of 2007 IEEE Aerospace Conference. New York: IEEE.
  • Goh, K. M., Tjahjono, B., Baines, T., and Subramaniam, S. 2006. A Review of Research in Manufacturing Prognostics. Proceedings of the IEEE International Conference on Industrial Informatics. New York: IEEE.
  • Hand, D. J., Mannila, H., and Smyth, P. 2000. Principles of Data Mining. Cambridge, MA: MIT Press.
  • Hernandez, L., and Gebraeel, N. 2006. Electronics Prognostics--.Driving Just-In-Time Maintenance.. Proceedings of the IEEE Systems Readiness Technology Conference. New York: IEEE.
  • Hess, A., Calvello, G., and Frith, P. 2005. Challenges, Issues, and Lessons Learned Chasing the .Big P.: Real Predictive Prognostics Part 1. Proceedings of the IEEE Aerospace Conference. New York: IEEE.
  • Iyer, N., Goebel, K., Bonissone, P.,; 2006.Framework for Post-Prognostic Decision Support.Proceedings of 2006 IEEE Aerospace Conference 11.0903.
  • James, M. and Atkinson, D. 1990. Software for Development of Expert Systems. NASA Technology Briefs, vol. 14, no. 6.
  • JSF 2007. Joint Strike Fighter Web site. http://www.jsf.mil
  • Kalgren, P, Almeida, P., Donovan, B., and Rus, T. 2006. A Framework for Improved Automated Test and Costwise Life-Cycle Support. Proceedings of the IEEE Systems Readiness Technology Conference. New York: IEEE.
  • Kalgren, P. W., and Byington, C. S. 2005. Self-Evolving, Advanced Test Stand Reasoning For Closed Loop Diagnostics. Proceedings of IEEE Autotestcon. New York: IEEE.
  • Kalgren, P. W., Baybutt, M., Ginart, A., Minnella, C., Roemer, M. J., and Dabney, T. 2007. Application of Prognostic Health Management in Digital Electronic Systems. Proceedings of the IEEE Aerospace Conference. New York: IEEE.
  • Kallappa, P. and Hailu, H. 2005. Automated Contingency And Life Management For Integrated Power And Propulsion Systems. Proceedings of ASME Turbo Expo. New York: ASME.
  • Katipamula, S., and Brambley, M. R. 2005a. Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems.A Review, Part I. International Journal of HVAC&R Research, Vol 11., No. 1.
  • Katipamula, S., and Brambley, M. R. 2005b. Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems.A Review, Part II. International Journal of HVAC&R Research, Vol 11., No. 2.
  • Khawaja, T., Vachtsevanos, G., and Wu, B. 2005. Reasoning about Uncertainty in Prognosis: A Confidence Prediction Neural Network Approach. Proceedings of the Annual Meeting of the North American Fuzzy Information Processing Society.
  • Kozlowski, J. D., Watson, M. J., Byington, C. S., Garga, A. K., and Hay, T. A. 2001. Electrochemical Cell Diagnostics Using Online Impedance Measurement, State Estimation And Data Fusion Techniques. Proceedings of IECEC Energy Technologies Beyond Traditional Boundaries.
  • Kurien, J. and Nayak, P. P. 2000. Back to the Future for Consistency-based Trajectory Tracking. Proceedings of the National Conference on Artificial Intelligence. Menlo Park, CA: AAAI.
  • Lavretsky E. and Chidambaram, B. 2002. Health Monitoring of an Electro-Hydraulic System Using Ordered Neural Networks. Proceedings of the 2002 International Joint Conference on Neural Networks.
  • Lee, J. 1996. Measurement of Machine Performance Degradation Using A Neural Network Model. Computers in Industry.
  • Tang, L, Kacprzynski, G., Goebel, K., Reimann, J., Orchard, M., Saxena, A., Saha, B., 2007. Prognostics in the Control Loop. Working Notes of 2007 Fall AAAI Symposium: AI for Prognostics.
  • Luo, M., Wang, D., Pham, M., Low, C. B., Zhang, J. B., Zhang, D. H., and Zhao, Y. Z. 2005. Model-Based Fault Diagnosis/Prognosis for Wheeled Mobile Robots: A Review. Proceedings of the 31st Annual Conference of IEEE Industrial Electronics Society. New York: IEEE.
  • Mackey, R., James, M., Park, H., and Zak, M. 2000. BEAM: Technology for Autonomous Aelf-Analysis. Proceedings of the IEEE Aerospace Conference. New York: IEEE.
  • Muscettola, N., Nayak, P. P., Pell, B., and Williams, B. C. 1998. Remote Agent: To Boldly go Where No AI System Has Gone Before. Artificial Intelligence 103(1-2), pp. 5-47.
  • Naipei, Haas, and Morales. 2003. Neural Network Estimation of Low Airspeed for the V-22 Aircraft in Steady Flight. Proceedings of the American Helicopter Society 59th Annual Forum. Alexandria, VA: AHS.
  • Nanduri, S., Almeida, P., Kalgren P. W., and Roemer, M. J. 2007. Circuit as a Sensor, A Practical Concept for Electronic Prognostics. Proceedings of the 61st Meeting Of The Society For Machinery Failure Prevention Technology.
  • NASA Ames Research Center, 2007. Prognostics Center of Excellence Data Repository web site. http://ti.arc.nasa.gov/tech/groups/index.php?gid=53&ta=4.
  • Orchard, M., Wu, B., and Vachtsevanos, G. 2005. A Particle Filtering Framework For Failure Prognosis. Proceedings of the World Tribology Congress.
  • Park, H., Mackey, R., James, M., Zak, M., Kynard, M., Sebghati, J., and Greene, W. 2002. Analysis of Space Shuttle Main Engine Data Using Beacon-based Exception Analysis for Multi-Missions. Proceedings of the IEEE Aerospace Conference. New York: IEEE.
  • Patterson-Hine, A., Aaseng, G., Biswas, G., Narasimhan, S., and Pattipati, K. 2005. A Review of Diagnostic Techniques for ISHM Applications. Proceedings of the First International Forum on Integrated System Health Engineering and Management in Aerospace.
  • Pecheur, C., and Simmons, R. 2000. From Livingstone to SMV: Formal Verification for Autonomous Spacecrafts. In Proceedings of the First Goddard Workshop on Formal Approaches to Agent-Based Systems.
  • Przytula, K. W., Choi, A. 2007. Reasoning Framework for Diagnosis and Prognosis. Proceedings of 2007 IEEE Aerospace Conference, 10.1109. New York: IEEE.
  • Reichard, K., Banks, J., Conlon, S., Swanson, D., and Kozlowski, J. 2005a. Comparison of Prognostic Health Monitoring System Architectures and Implementations. Proceedings of the 5th International Workshop on Structural Health Monitoring.
  • Reichard, K., Crow, E., and Weiss, L. 2005b. Applications of Data Mining in Automated ISHM and Control for Complex Engineering Systems. Proceedings of the First International Forum on Integrated System Health Engineering and Management in Aerospace.
  • Roemer, M. J, Ge, J., Liberson, A., Tandon, G. P., and Kim, R. Y. 2005a. Autonomous Impact Damage Detection and Isolation Prediction for Aerospace Structures. Proceedings of the IEEE Aerospace Conference. New York: IEEE.
  • Roemer, M. J. and Byington, C. S. 2007. Prognostics and Health Management Software For Gas Turbine Engine Bearings. Proceedings of the ASME Turbo Expo. New York: ASME.
  • Roemer, M., Byington, C., Kacprzynski, G., and Vachtsevanos, G. 2005b. An Overview of Selected Prognostic Technologies with Reference to an Integrated PHM Architecture. Proceedings of the First International Forum on Integrated System Health Engineering and Management in Aerospace.
  • Roemer, M., Byington, C., Kacprzynski, G., and Vachtsevanos, G. 2006. An Overview of Selected Prognostic Technologies with Application to Engine Health Management. GT2006-90677, Proceedings of ASME Turbo Expo. New York: ASME.
  • Saha, B., Goebel, K., Poll, S., and Christopherson, J. 2007. An Integrated Approach to Battery Health Monitoring using Bayesian Regression, Classification and State Estimation. Proceedings of IEEE Autotestcon. New York: IEEE.
  • Sandborn, P., Mauro, F., and Knox, R. 2005. A Data Mining Based Approach to Electronic Part Obsolescence Forcasting. Proceedings of the DMSMS Conference.
  • Saxena, A., Wu, B., Vachtsevanos, G. Integrated diagnosis and prognosis architecture for fleet vehicles using dynamic case-based reasoning Proceedings of Autotestcon, 2005. 26-29 Sept. 2005, 10.1109
  • Schwabacher, M. 2005. A Survey of Data-Driven Prognostics. Proceedings of the AIAA Infotech@Aerospace Conference. Reston, VA: American Institute for Aeronautics and Astronautics, Inc.
  • Shao, Y. and Nezu, K. 2000. Prognosis Of Remaining Bearing Life Using Neural Networks. Proceedings of the Institute of Mechanical Engineer, Part I, Journal of Systems and Control Engineering, vol. 214, no. 3.
  • Sharda, R. 1994. Neural network for the MS/OR analyst: An application bibliography.Interfaces, vol. 24, no. 2, pp. 116-130,
  • Sheldon, J., Lee, H., Watson, M., Byington, C., and Carney, E. 2007. Detection of Incipient Bearing Faults in a Gas Turbine Engine Using Integrated Signal Processing Techniques. Proceedings of the American Helicopter Societey Annual Forum. Alexandria, VA: AHS.
  • Stone, V. M. and Jamshidi, M. 2005. Neural Net Based Prognostics for an Industrial Semiconductor Fabrication System. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. New York: IEEE.
  • Studer, L. and Masulli, F. 1996. On The Structure Of A Neuro-Fuzzy System To Forecast Chaotic Time Series. Proceedings of the International Symposium on Neuro-Fuzzy Systems, pp. 103 . 110.
  • Tang, L., Kacprzynski, G., Goebel, K., Reiman, J., Orchard, M., Saxena, A., and Saha, B. 2007. Prognostics in the Control Loop. Working Notes of 2007 AAAI Fall Symposium: AI for Prognostics.
  • Veaux, D. S. J., Schweinsberg, J., and Ungar, J. 1998. Prediction Intervals For Neural Networks Via Nonlinear Regression. Technometrics, vol. 40, no. 4, pp. 273-82.
  • Vichare, N. M. and Pecht, M. G. 2006. Prognostics and Health Management of Electronics. IEEE Transactions On Components And Packaging Technologies, Vol. 29, No. 1.
  • Volponi, A. 2005. Data Fusion for Enhanced Aircraft Engine Prognostics and Health Management. NASA Contractor Report CR.2005-214055.
  • Watson, M. and Byington, C. S. 2005. Improving the Maintenance Process and Enabling Prognostics for Control Actuators using CAHM Software. Proceedings of the IEEE Aerospace Conference. New York: IEEE.
  • Watson, M., Byington, C., Edwards, D., and Amin, S. 2004. Dynamic Modeling and Wear-Based Remaining Useful Life Prediction of High Power Clutch Systems. Proceedings of the ASME/STLE Intl Joint Tribology Conference. New York: ASME.
  • Weigend, A. S. and Gershenfeld, N. A. eds. 1993. Time Series Prediction: Forecasting the Future and Understanding the Past. Reading, MA: Addison-Wesley.
  • Weld, D. S., and de Kleer, J. 1989. Readings in Qualitative Reasoning About Physical Systems. San Francisco: Morgan Kaufmann.
  • Werbos, P. J. 1988. Generalization Of Back Propagation With Application To Recurrent Gas Market Model. Neural Networks, vol. 1, pp. 339-356.
  • Williams, B. C. and Nayak, P. P. 1996. A Model-based Approach to Reactive Self-Configuring Systems. Proceedings of the National Conference on Artificial Intelligence. Menlo Park, CA: AAAI.
  • Xue, F., Goebel, K., Bonissone, P., and Yan, W. 2007. An Instance-Based Method for Remaining Useful Life Estimation for Aircraft Engines. Proceedings of MFPT.
  • Zhang, G. 2005. Optimum Sensor Localization/Selection in A Diagnostic/Prognostic Architecture. Ph.D. diss., Georgia Institute of Technology, Atlanta, GA.
  • *This is not a complete list by any means

First Gov logo
NASA Logo - nasa.gov