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Adaptive flight control systems hold tremendous promise for maintaining 
the safety of a damaged aircraft and its passengers.  However, most currently 
proposed adaptive control methodologies rely on online learning neural 
networks (OLNNs), which necessarily have the property that the controller is 
changing during the flight.  These changes tend to be highly nonlinear, and 
difficult or impossible to analyze using standard techniques.  In this paper, 
we approach the problem with a variant of compositional verification.  The 
overall system is broken into components.  Undesirable behavior is fed 
backwards through the system.  Components which can be solved using 
formal methods techniques explicitly for the ranges of safe and unsafe input 
bounds are treated as white box components.  The remaining black box 
components are analyzed with heuristic techniques that try to predict a 
range of component inputs that may lead to unsafe behavior.  The 
composition of these component inputs throughout the system leads to 
overall system test vectors that may elucidate the undesirable behavior.   

I. Introduction 
daptive flight control systems that utilize online learning neural networks (OLNNs) can 

theoretically allow an aircraft to maintain controllability after catastrophic failure. A 
prototype adaptive control system was successfully flown on the NASA F-15 ACTIVE aircraft 
using technology developed by the NASA Intelligent Flight Control (IFCS) project.  However, 
the usefulness of these control systems are limited by their impermeability to standard validation 
and verification (V&V) techniques.  In real systems, unmodeled dynamics are rife.  Online 
learning neural networks will necessarily adapt based on these unmodeled dynamics, and it is 
difficult to bound the worst-case performance of these changing and highly-nonlinear systems.  
Even in the cases where the performance of the ideal control system can be bounded, usually by 
making assumptions which limit the ability of the control system to adapt or by bounding the 
dynamics of the aircraft, verifying the actual performance of the control system as implemented 
in code remains a rarely-tackled problem. 
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The Robust Software Engineering (RSE) group within the Intelligent Systems Division at NASA 
Ames Research Center has developed a suite of techniques that, when used in combination, may 
speed the discovery of adaptive control system failures as implemented in flight software1-5.  
Compositional verification allows the breakdown of the overall system into multiple 
components.  Each component is tackled separately, and the behaviors of the components are 
composed to describe the behavior of the entire system.  Each component can be analyzed using 
any of a plethora of formal methods techniques, including model-checking, abstract 
interpretation, and symbolic execution, with the overall goal of finding component inputs that 
would produce some undesirable output.  This input is then used as the undesirable output for 
another component, until system level inputs are generated.  These system-level inputs are used 
as a test vector to reproduce the final undesired behavior.  The range of possible behaviors for 
some components in the overall system are not currently tractable to explicit techniques.  For 
these components we use a combination of unsupervised6 and supervised7,8 machine learning 
techniques in a global sensitivity analysis9  to model the behavioral structure of the component 
and to predict the component-level input test vectors.  This method is heuristic and cannot 
guarantee that the component is safe; however, the method is likely to uncover unsafe behaviors.  
The compositional verification technique allows us to bound uncertainty for the overall system 
by determining which components need further verification. Furthermore, each test iteration 
improves our behavioral models of the black-box components and allows us to increase our 
certainty about their behavior.  

 

II. Methodology 
As a prototype for this methodology we are using one of the implementations of the IFCS 

adaptive flight control system10-12.  A high-level flow graph is shown in Figure 1.  The output 
from the standard proportional-integral-derivative (PID) controller for the aircraft is sent to the 
OLNNs.  The OLNNs compare the PID controller output with the output from the linearized 
plane reference model.  The OLNNs attempt to drive the error to zero by augmenting the output 
from the PID controller before it is fed into the nonlinear dynamic inverse.  The actuator model 
allows the control surfaces of the plane to be individually failed at any configuration. 
The IFCS adaptive control system we are using was implemented as a Mathworks Simulink 
model. This kind of model-based design allows for ease of decomposing the overall system into 
modules, and then autocoding individually-modeled blocks into C/C++ code.  Decomposing the 
system into modules is highly desirable from the point of view of automated verification – many 
techniques tend toward execution time that is exponential in the size of the code under test, so 
the benefits are frequently substantially better than linear. Secondly, the techniques that can be 
applied to a particular subsystem are dependent upon the code itself, with linear algorithms being 
far more amenable to analysis than their nonlinear counterparts. In order to maximize fidelity, 
analysis is conducted on the actual C/C++ flight code rather than on the Simulink model from 
which it was generated. Decomposition was carried out at the level of the Simulink model, with 
subsystems rendered in C++ source code separately by Real Time Workshop. The following 
approaches were used to analyze these subsystems: 
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Figure 1. The IFCS adaptive control system. This is the working version of the IFCS adaptive control system as 
used in this paper.  The original version is modeled in Simulink.  Our verification techniques are performed on the 
autocoded C/C++ from Matlab’s Real Time Workshop. 

 
Partial evaluation/Symbolic Execution. This approach allows certain functions (with bounded 
loops, limited use of pointers and strictly linear arithmetic operations) to be transformed into 
satisfiability modulo theorem (SMT) problems, which allow solvers such as Yices16 to be used to 
generate test cases for arbitrarily chosen outputs. 

 
Abstract Interpretation. This approach13,14 allows some nonlinear functions to be safely 
approximated, making it possible to derive useful information about their behavior. Though this 
approach can generate false positives, when performed correctly it can never yield false 
negatives – consequentially, if code is shown to be correct by this method, this is a 
mathematically sound result. 

 
Explicit-state model checking. Though model checking can be used to generate test cases, the 
search space for the flight control system is too large for this to be a useful approach. However, 
given bounded inputs from other techniques, model checking is an effective way to efficiently 
generate explicit counterexamples that make it very clear why a particular piece of code has 
failed. The MCP model checker2 was used, and is capable of directly checking C and C++ code 
without prior translation or model extraction. 
 
Monte Carlo Filtering. Monte Carlo Filtering is a type of global sensitivity analysis in which we 
choose the inputs and ranges most likely to lead to some output9.  Most analyses of this type are 
computationally expensive, and tend to be limited to relatively small numbers of theoretically 
independent inputs, and also tend to assume that relationships between the inputs and outputs are 
smooth17,18.  The types of problems being solved here involve failures—hence they can be non-
smooth and of high dimensionality.  To overcome the complications involved in finding the 
correlation coefficients for this sort of problem, we choose in practice to ignore the correlation 
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coefficients altogether and use machine learning techniques that sample the space and solve the 
original question directly. 
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