

American Institute of Aeronautics and Astronautics

1

Compositional Verification for Discovering Failures in
Adaptive Flight Control Systems

Sarah Thompson*
SGT, Inc., Moffett Field, CA, 94035

Misty D. Davies† and Karen Gundy-Burlet‡
NASA Ames Research Center, Moffett Field, CA, 94035

Adaptive flight control systems hold tremendous promise for maintaining
the safety of a damaged aircraft and its passengers. However, most currently
proposed adaptive control methodologies rely on online learning neural
networks (OLNNs), which necessarily have the property that the controller is
changing during the flight. These changes tend to be highly nonlinear, and
difficult or impossible to analyze using standard techniques. In this paper,
we approach the problem with a variant of compositional verification. The
overall system is broken into components. Undesirable behavior is fed
backwards through the system. Components which can be solved using
formal methods techniques explicitly for the ranges of safe and unsafe input
bounds are treated as white box components. The remaining black box
components are analyzed with heuristic techniques that try to predict a
range of component inputs that may lead to unsafe behavior. The
composition of these component inputs throughout the system leads to
overall system test vectors that may elucidate the undesirable behavior.

I. Introduction
daptive flight control systems that utilize online learning neural networks (OLNNs) can

theoretically allow an aircraft to maintain controllability after catastrophic failure. A
prototype adaptive control system was successfully flown on the NASA F-15 ACTIVE aircraft
using technology developed by the NASA Intelligent Flight Control (IFCS) project. However,
the usefulness of these control systems are limited by their impermeability to standard validation
and verification (V&V) techniques. In real systems, unmodeled dynamics are rife. Online
learning neural networks will necessarily adapt based on these unmodeled dynamics, and it is
difficult to bound the worst-case performance of these changing and highly-nonlinear systems.
Even in the cases where the performance of the ideal control system can be bounded, usually by
making assumptions which limit the ability of the control system to adapt or by bounding the
dynamics of the aircraft, verifying the actual performance of the control system as implemented
in code remains a rarely-tackled problem.

* Staff Scientist, Intelligent Systems Division, Mail Stop 269-3.
† Research Computer Engineer, Intelligent Systems Division, Mail Stop 269-3, AIAA Member.
‡ Research Scientist, Intelligent Systems Division, Mail Stop 269-3, AIAA Associate Fellow.

A

American Institute of Aeronautics and Astronautics

2

The Robust Software Engineering (RSE) group within the Intelligent Systems Division at NASA
Ames Research Center has developed a suite of techniques that, when used in combination, may
speed the discovery of adaptive control system failures as implemented in flight software1-5.
Compositional verification allows the breakdown of the overall system into multiple
components. Each component is tackled separately, and the behaviors of the components are
composed to describe the behavior of the entire system. Each component can be analyzed using
any of a plethora of formal methods techniques, including model-checking, abstract
interpretation, and symbolic execution, with the overall goal of finding component inputs that
would produce some undesirable output. This input is then used as the undesirable output for
another component, until system level inputs are generated. These system-level inputs are used
as a test vector to reproduce the final undesired behavior. The range of possible behaviors for
some components in the overall system are not currently tractable to explicit techniques. For
these components we use a combination of unsupervised6 and supervised7,8 machine learning
techniques in a global sensitivity analysis9 to model the behavioral structure of the component
and to predict the component-level input test vectors. This method is heuristic and cannot
guarantee that the component is safe; however, the method is likely to uncover unsafe behaviors.
The compositional verification technique allows us to bound uncertainty for the overall system
by determining which components need further verification. Furthermore, each test iteration
improves our behavioral models of the black-box components and allows us to increase our
certainty about their behavior.

II. Methodology
As a prototype for this methodology we are using one of the implementations of the IFCS

adaptive flight control system10-12. A high-level flow graph is shown in Figure 1. The output
from the standard proportional-integral-derivative (PID) controller for the aircraft is sent to the
OLNNs. The OLNNs compare the PID controller output with the output from the linearized
plane reference model. The OLNNs attempt to drive the error to zero by augmenting the output
from the PID controller before it is fed into the nonlinear dynamic inverse. The actuator model
allows the control surfaces of the plane to be individually failed at any configuration.
The IFCS adaptive control system we are using was implemented as a Mathworks Simulink
model. This kind of model-based design allows for ease of decomposing the overall system into
modules, and then autocoding individually-modeled blocks into C/C++ code. Decomposing the
system into modules is highly desirable from the point of view of automated verification – many
techniques tend toward execution time that is exponential in the size of the code under test, so
the benefits are frequently substantially better than linear. Secondly, the techniques that can be
applied to a particular subsystem are dependent upon the code itself, with linear algorithms being
far more amenable to analysis than their nonlinear counterparts. In order to maximize fidelity,
analysis is conducted on the actual C/C++ flight code rather than on the Simulink model from
which it was generated. Decomposition was carried out at the level of the Simulink model, with
subsystems rendered in C++ source code separately by Real Time Workshop. The following
approaches were used to analyze these subsystems:

American Institute of Aeronautics and Astronautics

3

Figure 1. The IFCS adaptive control system. This is the working version of the IFCS adaptive control system as
used in this paper. The original version is modeled in Simulink. Our verification techniques are performed on the
autocoded C/C++ from Matlab’s Real Time Workshop.

Partial evaluation/Symbolic Execution. This approach allows certain functions (with bounded
loops, limited use of pointers and strictly linear arithmetic operations) to be transformed into
satisfiability modulo theorem (SMT) problems, which allow solvers such as Yices16 to be used to
generate test cases for arbitrarily chosen outputs.

Abstract Interpretation. This approach13,14 allows some nonlinear functions to be safely
approximated, making it possible to derive useful information about their behavior. Though this
approach can generate false positives, when performed correctly it can never yield false
negatives – consequentially, if code is shown to be correct by this method, this is a
mathematically sound result.

Explicit-state model checking. Though model checking can be used to generate test cases, the
search space for the flight control system is too large for this to be a useful approach. However,
given bounded inputs from other techniques, model checking is an effective way to efficiently
generate explicit counterexamples that make it very clear why a particular piece of code has
failed. The MCP model checker2 was used, and is capable of directly checking C and C++ code
without prior translation or model extraction.

Monte Carlo Filtering. Monte Carlo Filtering is a type of global sensitivity analysis in which we
choose the inputs and ranges most likely to lead to some output9. Most analyses of this type are
computationally expensive, and tend to be limited to relatively small numbers of theoretically
independent inputs, and also tend to assume that relationships between the inputs and outputs are
smooth17,18. The types of problems being solved here involve failures—hence they can be non-
smooth and of high dimensionality. To overcome the complications involved in finding the
correlation coefficients for this sort of problem, we choose in practice to ignore the correlation

American Institute of Aeronautics and Astronautics

4

coefficients altogether and use machine learning techniques that sample the space and solve the
original question directly.

Acknowledgments
This research was conducted at NASA Ames Research Center. Reference herein to any

specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not constitute or imply its endorsement by the United States Government.

References
1Giannakopoulou, D., Kramer, J. and Cheung, S.C. “Analysing the Behaviour of Distributed Systems Using Tracta,” Journal

of Automated Software Engineering, special issue on Automated Analysis of Software, Vol. 6(1), Kluwer Academic Publishers,
January 1999, pp. 7-35.

2Brat, G. and Thompson, S. “Verification of C++ Flight Software with the MCP Model Checker,” IEEE Aerospace
Conference, Big Sky, March 2008.

3Schumann, J., Gundy-Burlet, K., Pasareanu, C., Menzies, T., and Barrett, T. “Tool Support for Parametric Analysis of Large
Software Systems”, Proceedings of Automated Software Engineering, 23rd IEEE/ACM International Conference, 2008.

4Gundy-Burlet, K., Schumann, J., Barrett, T., and Menzies, T., “Parametric Analysis of a Hover Test Vehicle Using
Advanced Test Generation and Data Analysis,” AIAA Aerospace, 2009.

5Gundy-Burlet, K., Schumann, J., Barrett, T., and Menzies, T., “Parametric Analysis of ANTARES Re-entry Guidance
Algorithms Using Advanced Test Generation and Data Analysis,” 9th International Symposium on Artificial Intelligence,
Robotics and Automation in Space, 2007.

6Fischer, B., and Schumann, J. “Autobayes: A System for Generating Data Analysis Programs From Statistical Models,”
Journal of Functional Programming, Vol. 13, 2003, pp. 483-508.

7Hu, Y., “Treatment Learning: Implementation and Application,” Masters Thesis, Department of Electrical Engineering,
University of British Columbia, 2003.

8Hu, Y., and Menzies, T. “Data Mining for Very Busy People,” IEEE Computer, Vol. 36, No. 11, 2003, pp. 22-29.
9Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S., Global

Sensitivity Analysis: The Primer, Wiley, Chichester, 2008, Chaps. 1, 5.
10Rysdyk, R. and Calise, A. “Fault-tolerant Flight Control via Adaptive Neural Network Augmentation,” AIAA American

Institute of Aeronautics and Astronautics, Vol. AIAA-98-4483, 1998, pp. 1722-1728.
11Calise, A. and Rysdyk, R. “Nonlinear Adaptive Flight Control Using Neural Networks,” IEEE Control Systems Magazine,

Vol. 21, No. 6, pp. 14-26.
12Schumann, J. and Gupta, P. “Monitoring the Performance of a Neuro-Adaptive Controller,” Proceedings of the 24th

International Workshop on Bayesian Inference and Maximum Entropy Methods in Sciences and Engineering, MAXENT 2004,
2004.

13Futamara, Y. “Partial evaluation of computation process—an approach to a compiler-compiler,” Systems, Computers
Control, Vol. 2, Issue 5, 1971, pp. 45-50.

14Jones, N., Gomard, C. and Sestoft, P. Partial evaluation and Automatic Program Generation. Prentice Hall, Englewood
Cliffs, NJ, 1993.

15Cousot, P. and Cousot, R. “Abstract Intepretation: a Unified Lattice Model for Static Analysis of Programs by Construction
or Approximation of Fixpoints,” Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 1977, pp. 238-252.

16Dutertre, B. and de Moura, L. “The Yices SMT Solver,” Tool paper found at URL: http://yices.csl.sri.com/tool-paper.pdf
[cited 4 November 2009].

17Rose, K., Smith, E., Gardner, R., Brenkert, A. and Bartell, S. “Parameter Sensitivities, Monte Carlo Filtering, and Model
Forecasting Under Uncertainty,” Journal of Forecasting, Vol. 10, 1991: pp. 117-133.

18Oakley, J. and O’Hagan, A. “Probabilistic Sensitivity Analysis of Complex Models: A Bayesian Approach.” Journal of the
Royal Statistical Society B, Vol. 66, 2004, pp. 751-769.

