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Abstract—Time-domain reflectometry (TDR) is one of the
standard methods for diagnosing faults in electrical wiring
and interconnect systems, with a long-standing history focused
mainly on hardware development of both high-fidelity systems
for laboratory use and portable hand-held devices for field
deployment. While these devices can easily assess distance to
hard faults such as sustained opens or shorts, their ability to
assess subtle but important degradation such as chafing remains
an open question. This paper presents a unified framework for
TDR-based chafing fault detection in lossy co-axial cables by
combining an S-parameter based forward modeling approach
with a probabilistic (Bayesian) inference algorithm. Results
are presented for the estimation of nominal and faulty cable
parameters from laboratory data.

I. INTRODUCTION

The FAA (Federal Aviation Administration), NAVAIR
(Naval Systems Air Command) and NASA (National Aeronau-
tics and Space Administration) have all identified wire chafing
as the largest factor in electrical wiring and interconnect
system failures in aging aircraft [1]. Wire chafing is considered
to be significantly more difficult to detect than hard failures
such as opens and shorts [2]. Over the last decade, many time-
domain reflectometry (TDR), frequency-domain reflectometry
(FDR) and time- and frequency-based investigations [3] have
been published. We are, however, unaware of any wire fault
detection effort based upon reflectometry that incorporates a
physics-based model of how the fault affects signal propa-
gation (the ”forward model”) within a probabilistic inference
method for inverting the forward model to go from measured
signals to fault parameters.

In this paper, we develop a framework based upon scattering
(or S) parameters that uses a computationally simple yet
effective forward model of how a hole in shielding affects
signal propagation. This forward model is then combined
with a probabilistic model inversion algorithm based upon
nested sampling [4]. This probabilistic approach enables the
estimation of confidence associated with the retrieved fault
parameters. In our case, the fault parameters of interest are
the possible locations of holes in the shielding as well as the
sizes of these holes. The focus of this first paper is the co-axial
cable, which is arguably the simplest shielded cable geometry
of practical interest. We are currently in the preliminary stages
of investigating the application of our approach to twisted-
shielded-pair wiring, which is used extensively in modern
aircraft for serial communications. The ultimate objective of
our efforts is to detect a chafing fault in progress prior to the
occurrence of a short or open condition.

II. FORWARD MODEL FOR TDR

This section describes our systematic approach to building a
computationally efficient forward model for the interrogation
of a chafed co-axial cable via TDR. The modeling method
of choice is the S-parameter formalism; the reader is referred
to [5], [6] for a refresher. Specifically, each cable segment
is treated as a two-port device with a 2 × 2 matrix of S
parameters. These S parameters are then combined in cascade
to obtain the overall response of the system. In this process,
one is aided by the formula

Γ1 = S11 +
S12S21Γ2

1 − S22Γ2
, (1)

which relates the reflection coefficients seen looking into
port 1 (Γ1) and out of port 2 (Γ2) of a two-port device within
a network (see Figure 1).

A. Co-axial cable

For nominal (i.e., unfaulted) segments of the cable, one has

S11 = S22 = 0,

S12 = S21 ≡ S0(l),

where the dependence of the relevant S parameters on the
cable length l has been indicated explicitly for later conve-
nience. Adopting the standard textbook model for a co-axial
transmission line (see, for instance, [7], p. 551) one obtains

S0(l) = e−jk(ω)l, (2)

where

k(ω) � ω
√

μ0εd +
1

2 ln(b/a)

√
ωεd

jσc

(
1
a

+
1
b

)
. (3)

In (3), a and b respectively denote the radius of the core and
the (inner) radius of the shield, both of which are assumed to
have a (finite) conductivity σc, while εd denotes the permittiv-
ity of the insulator separating the two conductors, and μ 0 is
the vacuum permeability. We will also need the characteristic
impedance of the cable, which is given by

Z0 =
ln(b/a)

2π

k(ω)
ωεd

. (4)

The above formulation relates the key cable parameters (S 0

and Z0) directly to the ”constitutive” parameters (σc and εd),
and is therefore preferable to the distributed RLCG parameter
model that is more commonly found in textbook treatments.
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Fig. 1. A constant-impedance model for a chafed cable segment.

B. Chafing fault

A simple yet accurate model for the S parameters of a
chafed co-axial cable is now presented using an approach
that is generalizable to other types of wiring. The situation
of interest is depicted in Figure 1, where a segment of length
d is chafed on a co-axial cable with characteristic impedance
Z0. The chafed segment is modeled as having a constant (i.e.,
z- and ω-independent) characteristic impedance ZF . The S
parameters for this segment are readily found to be

S11 = S22 =
Γ2(e−jω2(d/vp) − 1)
1 − Γ2

2e
−jω2(d/vp)

, (5)

S21 = S12 =
(1 − Γ2

2)e−jω(d/vp)

1 − Γ2
2e

−jω2(d/vp)
, (6)

where Γ2 = (Z0 − ZF )/(Z0 + ZF ), and vp is the velocity of
propagation through the chafed segment. 1

We must next relate the hitherto unknown parameters ZF

and vp to the geometry of the chafe. This can be accomplished
by modeling the chafe as a rectangular section of removed
shielding having a width w, and building a look-up table
that maps w to ZF and vp. We have found that this simple
rectangular geometry is remarkably accurate for modeling
practical chafes, which are typically elliptical in shape. For the
theoretical underpinnings and the numerical implementation of
this approach, the reader is referred to [8].

C. TDR hardware

A general model for the TDR hardware is shown in Figure 2.
In this figure, the ”down-stream network” represents any
wiring system that is defined by a characteristic impedance
Z0 and a reflection coefficient Γi at the system input. The
goal is to determine the experimentally measured voltage Vm

in terms of the TDR source voltage VS .

1Note that vp is not equal to the nominal velocity of propagation on the
cable, which is � 1/

√
μ0εd.
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Fig. 2. TDR hardware model.

Good models for TDR hardware should incorporate two
practical effects: (1) the frequency-dependent impedance mis-
match between the source and the cable, and (2) a measure-
ment delay time needed to account for signal propagation
within the TDR unit. The equation below for the net transfer
function captures both of these effects:

H(ω) =
Vm

VS
=

1
2

(
1 +

ΓS + Γi

1 + ΓSΓi
e−jωtm

)
, (7)

where ΓS = (Z0 − ZS)/(Z0 + ZS) accounts for the port
impedance mismatch, and tm represents the internal delay.
One can also account for some calibration issues by incor-
porating an amplitude gain factor into the measured response,
but this is not done here. The key parameters for the TDR unit
are thus seen to be the source impedance ZS and the internal
delay tm.

D. Model synthesis

The pieces discussed separately above are now put together
to obtain the system model shown in Figure 3. The model is
analyzed from right to left, starting with the load reflection co-
efficient ΓL = (ZL−Z0)/(ZL +Z0). By repeated application
of equation (1), we obtain

Γ2 = S2
0(l2)ΓL, (8)

Γ1 = S11 +
S12S21Γ2

1 − S22Γ2
, (9)

Γi = S2
0(l1)Γ1, (10)

where S0(l) is given in (2), and Sij are given in (5) and (6).
Inserting these equations into (7), we obtain an analytical

relationship between the TDR input and output signals, which
explicitly contains the various physical system and fault pa-
rameters discussed above. (The derivation is straightforward,
but the result is too unwieldy to include here.) Rewriting (7)
in the time domain,2 we have

vm(t) =
∫ t

0

h(t − t′; θ) vS(t′) dt′, (11)

2In taking the inverse Fourier transform of H(ω) to obtain h(t), one must
respect the frequency dependence of the various S parameters and impedances
in the model, which has been suppressed throughout for notational simplicity.
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Fig. 3. S-parameter representation of a chafed co-axial cable.



where the dependence of the impulse response h on the set θ
of key model parameters has been indicated to motivate the
discussion in §III.

We note in passing that this modeling approach can be
generalized readily to a cable with chafes (or other kinds of
faults) at multiple locations, and in fact to arbitrary wiring
networks. Most importantly, as the number of wiring and in-
terconnect components grows, the computational effort needed
to evaluate the model grows only linearly, and the memory
resources needed stays roughly fixed.

III. PROBABILISTIC INVERSION

A. Bayesian framework

In this section, a probabilistic framework is presented for
inferring the fault parameters from measured TDR data. Start-
ing with a sampled version of (11), the measurement process
is modeled in the usual way as

y = F (x; θ) + ν, (12)

where x ∈ Rn is the interrogation signal injected by the
TDR unit into the cable under test, θ ∈ Rm is the set
of unknown model (i.e., system and fault) parameters, the
function F (x; θ) : Rn × Rm → Rn represents the forward
model, ν ∈ Rn is a vector of additive random measurement
noise, and y ∈ Rn is a time series of voltage samples forming
the measured TDR signal.

Two probability distributions are now introduced for the
construction of a Bayesian inversion framework: (1) the prior
distribution Prob(θ), which describes our state of knowl-
edge regarding the unknown model parameters before any
measurements are made, and (2) the likelihood distribution
Prob(y|θ), which specifies the probability of observing a
particular measurement for a given set of model parameters.
Bayes’ theorem then gives the posterior distribution for θ in
the form [4]

Prob(θ|y) =
Prob(y|θ)Prob(θ)∫

Prob(y|θ′)Prob(θ′) dθ′
. (13)

The maximum a posteriori estimate θ∗ is found by solving
the optimization problem

maximize Prob(θ|y). (14)

Furthermore, the shape and the spread of the posterior distribu-
tion around θ∗ indicate how confident we are in this estimate.

Working with commercial TDR hardware, the input vector x
is fixed by the source voltage profile, vS(t), which is typically
of a step-like nature (see Figure 6). If one has access instead
to an arbitrary waveform generator that can synthesize, within
physical constraints, a tailor-made interrogation signal, then
the above framework can be generalized to jointly optimize
over both θ and x. While the optimal estimate θ∗ should
remain unchanged, the optimal input vector x∗ thus found can
potentially reduce the estimation uncertainty below that which
is achievable with a step-like interrogation signal.

B. Markov-Chain Monte Carlo estimation

Unfortunately, finding the optimal estimate and quantifying
the uncertainty associated with it are computationally chal-
lenging tasks when the forward model F is nonlinear in θ, as
in the present case. Furthermore, in cases where the forward
model is an algorithm (rather than a closed-form expression),
it can be prohibitively expensive to compute the gradient and
the Hessian of the cost function, which are needed to solve the
optimization problem (14) using traditional methods. Thus, a
natural approach for this type of problem is the application of
Markov-Chain Monte Carlo (MCMC) methods, which allow
one to compute the desired quantities using random samples
drawn directly from the posterior distribution. The underlying
premise of MCMC is that, for sufficiently large N , a set of
samples

θi ∼ Prob(θ|y), i = 1, 2, . . . , N, (15)

adequately captures the essential features of the posterior
distribution. Specifically, the sample θk that maximizes the
posterior distribution provides us with a globally optimal
estimate, while the spread of the N samples around θk may
be taken as a measure of our uncertainty about this estimate.

There are many different MCMC-based algorithms one
might implement to achieve the above sampling. The results
presented in §IV were obtained using a relatively new method
called nested sampling. This algorithm is a natural fit for
solving the estimation problem posed by equations (13) and
(14), while also estimating other relevant quantities such as
the integral in the denominator of (13), which can be used
for model selection (i.e., choosing the best among competing
forward-modeling schemes). Like many other MCMC meth-
ods, this one also tends to be slow: it took around 8 hours
to solve the estimation examples discussed in §IV on a 32-bit
1.8-GHz Linux PC. The interested reader is referred to [4] for
details on the nested-sampling algorithm.

IV. RESULTS

This section presents our results on system parameter es-
timation and chafing fault detection for a 7-m long RG58
co-axial cable. Laboratory measurements were obtained using
an Agilent 54754A digital TDR unit. The elements of the
measurement noise vector ν were assumed to be independent
and identically distributed Gaussian random variables with
zero mean and a standard deviation of 1 mV, a value roughly
equal to the worst-case residual error between the measured
data and the optimal model fit.

A. Estimating the system parameters

Recalling the development of §II, the key system parameters
that should be inferred from data are the metallic conductivity
and the dielectric permittivity of the co-axial cable, as well as
the port impedance and the internal delay of the TDR unit.
Although nominal values of σc and εd are typically supplied
by the cable manufacturer, the parameters of a particular cable
may deviate appreciably from the ”batch” values, and therefore
it is advisable to infer them instead from measured data.
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Fig. 4. The optimal estimate and the confidence ellipse for the co-axial cable
model parameters. The blue star marks the most probable estimate, while the
ellipse encloses 95% of the samples drawn from the posterior distribution.

The same argument holds for the TDR hardware parameters
as well. Thus, for the first inversion problem to be solved,
one has θ = (σc, εd, ZS , tm). Figure 4 shows the optimal
estimates for σc and εd, along with the estimation uncertainty
obtained with our inversion procedure. It is observed that the
posterior distribution peaks at a permittivity of 2.223 F/m and
a conductivity of 1.43 107 S/m, with the 95% confidence in-
tervals being (2.202, 2.255) and (1.27, 1.61) 107, respectively.
Accurate knowledge of both of these parameters is crucial for
the reliable estimation of the fault size and location.

B. Estimating the fault parameters

The system parameters estimated above are now treated as
fixed, and the fault parameters are estimated from measured
TDR data with a single chafe at a distance of 6 m from the
source. Thus, for this second inversion problem to be solved,
one has θ = (w, d, l1) (i.e., the width, the length, and the
location of the chafe). The results of the MCMC estimation
scheme are presented in Figure 5. This figure shows that the
distance to fault was estimated to be 6.007 ± 0.012 m, while
the length and the width of the chafe are estimated to be 12±
1 mm and 3.0±1 mm, respectively. The true fault parameters
as measured in the lab with a tape measure for distance and
calipers for length and width were in perfect agreement with
these estimates.

With all the key model parameters inferred from data, we
now use the optimal parameter estimates and the known source
voltage profile vS(t) to compute the model-predicted TDR
signal, vm(t). The result is presented in Figure 6, and agrees
extremely well with the laboratory measurement.
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