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Many challenges exist for the operation of wind turbines in an efficient manner that is 
reliable and avoids component fatigue and failure. Turbines operate in highly turbulent 
environments resulting in aerodynamic loads that can easily excite turbine structural modes, 
possibly causing component fatigue and failure. Wind turbine manufacturers are highly 
motivated to reduce component fatigue and failure that can lead to loss of revenue due to 
turbine down time and maintenance costs. The trend in wind turbine design is toward 
larger, more flexible turbines that are ideally suited to adaptive control methods due to the 
complexity and expense required to create accurate models of their dynamic characteristics. 
In this paper, we design an adaptive collective pitch controller for a high-fidelity simulation 
of a utility-scale, variable-speed horizontal axis wind turbine operating in Region 3. The 
objective of the adaptive pitch controller is to regulate generator speed, accommodate wind 
gusts, and reduce the excitation of structural modes in the wind turbine. The control 
objective is accomplished by collectively pitching the turbine blades. The adaptive collective 
pitch controller for Region 3 was compared in simulations with a baseline classical 
Proportional Integrator (PI) collective pitch controller. The adaptive controller will 
demonstrate the ability to regulate generator speed in Region 3, while accommodating gusts, 
and reducing the excitation of certain structural modes in the wind turbine. 

I. Introduction 
ATED wind speed is the velocity at which maximum power output, or rated power, of a wind turbine is 
achieved. If a turbine is allowed to operate in an uncontrolled manner, in conditions where the wind speed is 

above the rated wind speed, the power output would increase in proportion to the cube of the wind speed, resulting 
in overheating of the generator and the power electronics system. Additionally, high wind speeds result in larger 
aerodynamic forces on the machine, possibly leading to system fatigue and failure. Hence, power output of a turbine 
must be held constant for wind speeds at, and above, the turbine’s rated wind speed. This operation region is 
referred to as Region 31. 

Turbine power output should be maintained at rated power when operating in Region 3. For variable-speed 
turbines, a constant torque is applied at the generator, and the turbine rotational speed is maintained at the desired 
value through the use of blade pitch. In some machines, the pitch angle of each blade is adjusted identically 
(collective blade pitch); in others the blade pitch is adjusted independently of the other blades (independent blade 
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pitch). Collective blade pitch control is a well-accepted approach to regulating turbine speed and responding to 
changes in wind speed2. 

Wind turbine control problems can benefit from adaptive control techniques3,4, which are well suited to nonlinear 
applications that have unknown modeling parameters and poorly known operating conditions. The main 
nonlinearities in a wind turbine model come from the nonlinear aerodynamic loads on the turbine. Creating an 
accurate model of the dynamic characteristics of a wind turbine is expensive and extremely difficult, if not 
impossible. Additionally, wind turbines operate in highly turbulent and unpredictable conditions. These complex 
aspects of wind turbines make them attractive candidates for the application of adaptive control methods. In this 
paper, we focus on the direct adaptive control (DAC) approach developed in refs. 5-6. This approach has been 
extended to handle adaptive rejection of persistent disturbances7,8. 

The literature suggests that direct adaptive control methods have rarely been used on utility-scale horizontal axis 
wind turbines (HAWTs). It was shown in Ref. 9 that a pitch controller designed with Direct Model Reference 
Adaptive Control (DMRAC) was comparable to a PID pitch controller when regulating turbine speed in a simulation 
of a rigid, nonlinear model of a HAWT. Adaptive pitch control to optimize power in Region 2 of the Controls 
Advanced Research Turbine (CART) was demonstrated to be effective in simulations and field tests10. The CART is 
a utility-scale, variable-speed HAWT. 

In this paper, a direct adaptive control approach is used to design an adaptive collective pitch controller to 
operate in Region 3 in conjunction with the Fatigue, Aerodynamics, Structures, and Turbulence Codes (FAST), a 
high-fidelity simulation of the CART1. The objective of the adaptive pitch controller is to regulate generator speed 
and to reject step disturbances in the presence of turbine structural modes. This objective is accomplished by 
collectively pitching the turbine blades. It has been demonstrated that the uniform wind disturbance, without shear, 
across the rotor disk of a turbine can be accurately accounted for when modeled as a step disturbance of unknown 
amplitude11,12. We designed the adaptive collective pitch controller to reject step disturbances to improve controller 
performance.  

As wind turbines become larger and more flexible, the turbine structural modes can be more easily excited by 
wind gusts and the actions of the controller. For this reason, the adaptive Region 3 collective pitch controller was 
augmented to compensate for structural modes of the turbine that might be excited by aerodynamic loads or the 
control input. The adaptive pitch controller was implemented in the FAST simulation of the CART and tested with 
step wind inflow and turbulent wind inflow. Simulations were run with various wind turbine flexibility modes 
enabled. Comparisons of the generator speed errors were made between the simulation results of the adaptive pitch 
controller and a baseline Proportional Integrator (PI) pitch controller. 

II. CART Configuration and FAST Simulator Specifications  
The CART is a two-bladed, upwind, active-yaw, variable-speed HAWT located at the National Wind 

Technology Center (NWTC) in Golden, Colorado. This machine is used as a test bed to study aspects of wind 
turbine control technology for medium-scale machines1. The rated generator speed for the CART is 1800 rpm. 

The CART has been modeled with the FAST Codes as a combination of rigid and flexible bodies connected by 
several degrees of freedom (DOFs). The FAST Code is a comprehensive aeroelastic simulator capable of predicting 
both the extreme loads and the fatigue loads of two- and three-bladed horizontal axis wind turbines13. Results from 
FAST simulations of the CART compared favorably with field tests of similar controllers on the actual CART11. 

 

III. Direct Adaptive Control with Rejection of Persistent Disturbances  
In this section, we describe the formulation of a direct adaptive control approach with adaptive rejection of 

persistent disturbances8. The plant is assumed to be well modeled by the linear, time-invariant, finite-dimensional 
system given by: 

 

€ 

˙ x p = Ap xp + Bpup +ΓpuD

yp = Cp xp; xp (0) = x0

 
 
 

  
 (1) 

where the plant state, xp is an Np-dimensional vector, the control input vector, up, is M-dimensional, and the sensor 
output vector, yp, is P-dimensional.  The disturbance input vector, uD, is MD-dimensional and will be thought to 
come from the Disturbance Generator: 
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€ 

uD =ΘzD

˙ z D = F zD; zD (0) = z0

 
 
 

 (2) 

where the disturbance state, zD, is ND-dimensional. All matrices in Eqs. (1)-(2) have the appropriate compatible 
dimensions. Such descriptions of persistent disturbances were first used in Ref. 14 to describe signals of known form 
but unknown amplitude. Equation (2) can be rewritten in a form that is not a dynamical system, which is sometimes 
easier to use: 

 

€ 

uD =ΘzD
zD = LφD

 
 
 

 (3) 

where 

€ 

φD  is a vector composed of the known basis functions for the solution of 

€ 

uD =ΘzD , i.e., 

€ 

φD  are the basis 
functions which make up the known form of the disturbance, and L is a matrix of dimension ND by dim

€ 

(φD ) . The 
method for rejecting persistent disturbances used in this paper requires only the knowledge of the form of the 
disturbance. The amplitude of the disturbance does not need to be known, i.e. 

€ 

(L,Θ)  can be unknown. In this paper, 
we will be interested in rejecting step disturbances of unknown amplitude which can be represented in the form of 
Eq. (3) as 

€ 

φD ≡1, with 

€ 

(L,Θ)  unknown. 
 In Ref. 7, as with much of the control literature, it is assumed that the plant and disturbance generator parameter 
matrices 

€ 

(A, B, C, Γ, Θ,F)
 
are known. This knowledge of the plant and its disturbance generator allows the 

Separation Principle of Linear Control Theory to be invoked to arrive at a State-Estimator based, linear controller 
that can suppress the persistent disturbances via feedback. In this paper, we will not assume that the plant and 
disturbance generator parameter matrices 

€ 

(A, B, C, Γ, Θ)  are known. But, we will assume that we know the 
disturbance generator parameter, F, from Eq. (2), i.e., the form of the disturbance functions is known.  In many 
cases, knowledge of F is not a severe restriction, since the disturbance function is often of known form but unknown 
amplitude. 
 The control objective will be to cause the output of the plant, yp, to asymptotically track zero while 
accommodating disturbances of the form given by the disturbance generator. We define the output error vector as: 

 

€ 

ey ≡ yp −0  (4) 

To achieve the desired control objective, we want: 

  

€ 

ey t→∞
 →   0 . (5) 

Consider the plant given by Eq. (1) with the disturbance generator given by Eq. (3). The control objective for 
this system will be accomplished by an adaptive control law of the form: 

 

€ 

up =Geey +GDφD  (6) 

where Ge and GD are matrices of the appropriate compatible dimensions, whose definitions will be given later. In 
Ref. 8, we developed the gain adaptation laws to make asymptotic output regulation possible. The adaptive gain 
laws that produce asymptotic tracking are: 

 

€ 

˙ G e = −eyey
T he

˙ G D = −eyφD
T hD

 
 
 

  
 (7) 

where h11 and h22 are arbitrary, positive definite matrices. In ref. 8, we analyzed the stability of this controller and 
showed that the adaptive gains, Ge and GD, remain bounded and asymptotic tracking occurs, i.e., 

€ 

ey t→∞
 →   0  
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when the system 

€ 

(A,B,C)  is almost strict positive real (ASPR). Recall that ASPR means 

€ 

CB> 0  and 

€ 

P(s) =C(sI − A)−1B  is minimum phase. 

IV. Adaptive Collective Pitch Controller 
In this section, we describe the adaptive collective pitch controller that was designed to regulate generator speed 

and reject step disturbances. More details on the design of this controller and its simulation results can be found in 
Ref. 15. The plant used in the FAST simulation of the CART is a two bladed wind turbine model with turbine 
aerodynamics and generator degree of freedom enabled. The plant neglected all other dynamics and degrees of 
freedom. The FAST Codes were used to model the nonlinear aerodynamic loads on the turbine in our plant. A state 
space model of the plant was generated by the FAST Codes. See Refs. 13 and 16 to obtain the model. The output of 
the plant was the generator speed. The control input was the collective blade pitch angle command. 

A classical PI collective pitch controller (the baseline PI pitch controller) has been implemented and tested in the 
FAST simulation of the CART2. A similar version of the baseline PI pitch controller has been tested on the actual 
CART11. The baseline PI pitch controller in the FAST simulator provides a basis for comparison with the adaptive 
pitch controller. The control goal of a collective pitch controller for a wind turbine operating in Region 3 is to 
regulate generator speed while accommodating wind gusts. This goal is accomplished by collectively pitching the 
turbine blades. The FAST simulator model of the CART measures generator speed and feeds it back to the baseline 
PI pitch controller which regulates it to the rated generator speed for the wind turbine. 

The adaptive collective pitch controller designed for this paper replaces the baseline PI pitch controller in the 
FAST simulator with the same input and output. The adaptive pitch controller is designed with the direct adaptive 
control approach described in Section III. The control objective is generator speed regulation and rejection of 
persistent step disturbances. The step disturbances account for wind speed fluctuations and wind gusts that the 
turbine may experience during operation. The control objective is accomplished by an adaptive control law of the 
form given in Eq. (6) with gains specified in Eq. (7). 

For a step function, the disturbance generator function in the form of Eq. (3) is specified by 

€ 

φD =1 . Recall that 
we are not required to know the amplitude of the disturbance function, i.e., 

€ 

(L,Θ)  from Eq. (3) need not be known. 
The adaptive control law that accomplishes the control goals described above is: 

 

€ 

up = Geey + GD

˙ G e = −eyey
T he

˙ G D = −eyhD

 

 
 

 
 
 

 (8) 

where 

€ 

he , hD > 0 . 
 The adaptive controller specified by Eq. (8) was implemented in Simulink in the FAST simulation of the CART. 

The adaptive controller gains, 

€ 

he  and 

€ 

hD , were tuned to minimize the generator speed error, since we had the goal 
of regulating generator speed, while keeping the blade pitch rate in a range similar to that of the baseline PI 
controller. The values of the gains used in the adaptive controller were: 

€ 

he = 4.0 and 

€ 

hD = 0.3. 
The adaptive controller was tested using the FAST simulator of the CART. The simulations were run from time 

0 seconds to 100 seconds with an integration step size of 0.006 seconds. The generator DOF switch was turned on. 
During the initial tests, the other DOF switches were turned off. The wind turbine had fixed-yaw with no yaw 
control. Aerodynamic forces were calculated during the runs. The parametric information for the FAST simulator as 
we configured it is available from Refs. 13 and 16.  

Step wind inflow, resulting in Region 3 operation, was used for the FAST simulations, see Fig. 1. Generator 
speed errors for the baseline PI pitch controller and the adaptive pitch controller are shown in Fig. 2. All controller 
performance figures start at time equals 20 seconds, allowing transients due to system startup to die off. The 
adaptive controller demonstrated robust performance with smaller tracking errors than the baseline controller15. 

We subsequently observed that when the drive train rotational DOF and the first blade flap DOF were enabled in 
the FAST simulation, both the baseline PI controller and the adaptive controller had difficulties regulating generator 
speed with collective blade pitch, see Fig. 3. This observation led us to investigate the excitation of certain structural 
modes of the turbine during operation. In particular, we focused on the excitation of the first drive train torsional 
mode, which is generally one of the lower frequency modes in a wind turbine. 
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The FAST simulation of the CART allows for the measurement of many system parameters. We measured the 
low-speed shaft torque and observed that there was a 3.47 Hz disturbance in the measurements. This is consistent 
with the first drive train torsional mode that is estimated at 3.5 Hz. A low-pass filter was designed to filter out this 
mode in the generator speed that is fed back to the controller. The transfer function for the low-pass filter is given by 

€ 

F(s) =
10
s+10

. The results of incorporating the low-pass filter with the baseline PI controller are shown in Fig. 4. 

The low-pass filter improves the regulation of the generator speed for the PI controller, but the controller still has 
difficulties, especially for higher wind speeds. In the next section, we introduce more rigorous techniques to reduce 
the effects of structural mode through the use of a residual mode filter. 

V. Residual Mode Filter Augmentation of Adaptive Controller 
In some cases the plant in Eq. (1) does not satisfy the requirements of ASPR. Instead, there maybe be a modal 

subsystem that inhibits this property. This section will present new results for our adaptive control theory developed 
in Ref. 7-8. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the 
troublesome modal subsystem, as was done in Ref. 18 for fixed gain non-adaptive controllers. Here we present new 
theory for adaptive controllers modified by Residual Mode Filters. 

Let us assume that Eq. (1) can be partitioned into the following form: 

   

€ 

˙ x 
˙ x Q

 

 
 

 

 
 =

A 0
0 AQ

 

 
 

 

 
 

x
xQ

 

 
 

 

 
 +

B
BQ

 

 
 

 

 
 up +

Γ

0
 

 
 
 

 
 uD

yp = C CQ[ ]
x

xQ

 

 
 

 

 
 

 

 

 
 

 

 
 

 (9) 

with 

€ 

xp ≡
x
xQ

 

 
 

 

 
 , 

€ 

Ap =
A 0
0 AQ

 

 
 

 

 
 , 

€ 

Bp =
B
BQ

 

 
 

 

 
 ,  

€ 

Γp =
Γ

0
 

 
 
 

 
 ,, 

€ 

Cp = C CQ[ ] , and Disturbance Generator 

€ 

˙ z D = FzD

uD =θzD

 
 
  

or 

€ 

zD = LφD  as given in Eqs. (2)-(3).  
The Output Tracking Error remains as in Eq. (4) and our control objective is as in Eq. (5), i.e. 

€ 

ey ≡ yp t→∞
 →   0 . However, now we will only assume that the subsystem 

€ 

(A,B,C)  is Almost Strictly Positive 

Real (ASPR), rather than the full un-partitioned plant 

€ 

Ap =
A 0
0 AQ

 

 
 

 

 
 ,Bp =

B
BQ

 

 
 

 

 
 ,Cp = C CQ[ ]

 

 
  

 

 
  , and the modal 

subsystem 

€ 

(AQ ,BQ ,CQ ) will be known and open-loop stable, i.e.
 
is stable. Also note that this subsystem is 

considered to be unaffected by the disturbance input. This latter assumption may not be perfectly true, but will be a 
reasonable approximation of the plant behavior. So, in summary, the actual plant has an ASPR subsystem and a 
known modal subsystem that is stable but inhibits the property of ASPR for the full plant. Hence, this modal 
subsystem must be compensated or filtered away. 

We define the Residual Mode Filter (RMF): 

 

€ 

ˆ ˙ x Q = AQ ˆ x Q + BQup

ˆ y Q = CQ ˆ x Q

 
 
 

  
 (10) 

And the compensated tracking error:  
 

€ 

˜ e Q ≡ yp − ˆ y Q  (11) 

 Now we let 

€ 

eQ ≡ ˆ x Q − xQ  and obtain: 
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€ 

˙ e Q = AQeQ   (12) 

Consequently, we have:  

 

€ 

˜ e y ≡ yp − ˆ y Q = Cx + CQ xQ −[CQ xQ + CQeQ ]
= Cx −CQeQ

 (13) 

As in Ref. 7-8, we define the Ideal Trajectories, but only for the ASPR Subsystem:  

 

€ 

˙ x * = Ax* + Bu* +ΓuD

y* = Cx* = 0
 
 
 

 (14) 

with  

€ 

x* = S1
*zD

u* = S2
*zD

 
 
 

  
. This is equivalent to the Matching Conditions:  

 

€ 

S1
*F = AS1

* +BS2
* +Γθ

CS1
* = 0

 
 
 

  
 (15) 

which are known to be uniquely solvable when 

€ 

CB is nonsingular. However, we do not need to know the actual 
solutions for this adaptive control approach to be applied. 

Let  

€ 

Δx ≡ x − x*

Δu ≡ up − u*

Δ ˜ y ≡ ˜ e y = Cx −CQeQ

 

 
 

 
 

. Then we can write: 

 

€ 

Δ ˙ x = AΔx + BΔu
Δ ˜ y = Cx −CQeQ = Cx − y* −CQeQ = CΔx −CQeQ

 
 
 

 (16) 

because, from Eq. (14), 

€ 

y* = 0 . This system can be rewritten as: 

 

€ 

Δ ˙ x 
˙ e Q

 

 
 

 

 
 =

A 0
0 AQ

 

 
 

 

 
 
Δx
eQ

 

 
 

 

 
 +

B
0
 

 
 
 

 
 Δu = A 

Δx
eQ

 

 
 

 

 
 + B Δu

Δ ˜ y = C −CQ[ ]
Δx
eQ

 

 
 

 

 
 = C 

Δx
eQ

 

 
 

 

 
 

 

 

 
 

 

 
 

 (17) 

Now we have the following: 

 
Lemma: 

€ 

A =
A 0
0 AQ

 

 
 

 

 
 , B =

B
0
 

 
 
 

 
 , C = C −CQ[ ]

 

 
  

 

 
  
 
ASPR if and only if 

€ 

(A,B,C)  ASPR. 

Proof: 

€ 

C B = C −CQ[ ]
B
0
 

 
 
 

 
 = CB > 0

 
and  
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€ 

P (s) ≡C (sI − A )−1B = C −CQ[ ]
(sI − A)−1 0

0 (sI − AQ )
−1

 

 
 
 

 

 
 
 

B
0
 

 
 
 

 
 = C(sI − A)−1B = P(s)  is minimum phase. #  

So there exists 

€ 

Ge
* such that 

€ 

(A C ≡ A + B Ge
*C , B ,C )  is Strictly Positive Real (SPR) when 

€ 

(A,B,C)  is 
ASPR. Consequently, as is well known from the Kalman-Yacubovic Theorem: 

 
  

€ 

∃ P ,Q > 0 ∍
A C

T P + P A C = −Q 

P B = C T
 
 
 

  
 (18) 

We modify the adaptive control law with the RMF: 

 

€ 

up ≡Ge ˜ e y + GDφD

˜ e y ≡ yp − ˆ y Q
ˆ ˙ x Q = AQ ˆ x Q + BQup

ˆ y Q = CQ ˆ x Q

 

 

 
 

 

 
 

  (19) 

with modified adaptive gains given by: 

 

€ 

˙ G e = − ˜ e y ˜ e y
T he;he > 0

˙ G D = − ˜ e yφD
T hD;hD > 0

 
 
 

  
 (20) 

Finally, we have the following stability result: 
Theorem: In Eq. (9), let 

€ 

(A,B,C)  ASPR, 

€ 

AQ  stable, 

€ 

φD  bounded. Then the Modified Adaptive Controller with 
RMF given in Eqs. (19)-(20) produces 

€ 

ey = yp t→∞
 →   0  and 

€ 

eQ t→∞
 →   0  with bounded adaptive gains 

€ 

(Ge ,GD ) . 
Proof: From Eq. (19), we use 

€ 

up ≡Ge ˜ e y + GDφD  to obtain: 

 

€ 

Δu ≡ up − u*

= [Ge ˜ e y + GDφD ]−[S2
*L]φD

= Ge
* ˜ e y +ΔGη

  (21) 

where  

€ 

ΔGe ≡Ge −Ge
*

ΔGD ≡GD − (S2
*L)

ΔG ≡G −G* = ΔGe ΔGD[ ]

η ≡
˜ e y
φD

 

 
 

 

 
 

 

 

 
 
 

 

 
 
 

.  

Then we obtain: 

  

€ 

˙ ζ = A ζ + B Δu = A Cζ + B w
˜ e y = C ζ

 
 
 

  
 (22) 
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with 

€ 

ζ ≡
Δx
eQ

 

 
 

 

 
 , 

€ 

w ≡ ΔGη , and 

€ 

A C ≡ A + B Ge
*C . 

From Eq. (20) we can see that: 

 

€ 

˙ G = Δ ˙ G = − ˜ e yη
T h; h ≡

he 0
0 hD

 

 
 

 

 
 > 0  (23) 

Since 

€ 

(A,B,C)  is ASPR, and by the lemma, so is

€ 

(A ,B ,C ) , we can define 

€ 

V (ζ ) ≡ 1
2
ζ T P ζ  with 

€ 

P ,Q > 0
 
as 

in Eq. (18). Then  
  

€ 

˙ V (ζ ) ≡ − 1
2
ζ TQ ζ + ˜ e y ,w  . Define 

€ 

V (ΔG) ≡ 1
2

tr(ΔGh−1ΔGT )⇒ ˙ V (ΔG) = − ˜ e y ,w  using 

Eq. (23). Then 

€ 

V ≡V (ζ ) +V (ΔG)⇒ ˙ V = − 1
2
ζ TQ ζ = −W (ζ ) ≤ 0 . So, we have 

€ 

(ζ ,ΔG)  bounded and, from 

Barbalat’s Lemma used on 

€ 

W (ζ ) , 

€ 

ζ ≡
Δx
eQ

 

 
 

 

 
 t→∞
 →   0  which leads to 

€ 

ey ≡ yp = yp − y* =CΔx t→∞
 →   0   

and 

€ 

eQ t→∞
 →   0  with 

€ 

G =G* +ΔG   bounded, as desired. # 

VI. Simulation 
In this section, we investigate the apparent coupling between the drive train torsional mode and the blade flap 

mode in the FAST simulation and take appropriate corrective action in the controllers. We start with the baseline PI 
and the adaptive collective pitch controllers described in Section IV. These controllers are augmented with a 
Residual Mode Filter designed for the drive train torsional mode. We obtained linear models of the FAST states at 
trim with a constant wind inflow speed of 16 m/s and a blade pitch angle of 0.133 radians. The disturbance from the 
drive train torsional mode was observed at these operating conditions. The linearized state space matrices were then 
averaged around the rotor disk.  The resulting matrices were put into real diagonal form to identify the components 
corresponding to the drive train torsional mode. The modal representation of the drive train torsional mode 
represents the Q-modes, or troublesome modes, of the plant. The transfer function of the RMF for the drive train 
torsional mode is given by: 

 

€ 

T (s) =
791.1534s− 38.3545
s2 +0.0121s+ 430.2993

 (24) 

The gains for the adaptive controller with the augmented RMF were 

€ 

he = 4.0  and 

€ 

hD = 0.3. The results of 
adding this filter to the baseline PI and the adaptive controllers can be seen in Fig. 5. In both cases, the RMF 
improved the generator speed tracking of the controller.  

VII. Conclusion 
A new control approach has been proposed to reduce the interactions between structural modes of a wind turbine 

during Region 3 operation. We developed the theory for disturbance accommodating adaptive control with a 
residual mode filter. The RMF is used to filter out troublesome modes from the plant that might inhibit the adaptive 
controller. This approach has the advantage over a low-pass filter or notch filter of exactly cancelling only the 
known troublesome modes. We used this approach to design a controller to regulate generator speed, reject step 
disturbances of unknown amplitude, and accommodate structural modes for the FAST simulator. This new adaptive 
control method shows promise for improved generator speed regulation in Region 3 for flexible turbines.  

The trend in wind turbine design is toward larger, more flexible turbines with structural modes that can be easily 
excited by the turbulent operating environment. Wind turbine manufacturers are highly motivated to reduce 
component fatigue and failure. The new control approach described in this paper could help mitigate the fatigue and 
failure caused by excitation of structural modes. 
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Fig. 1. Step wind inflow used in simulations. 

 
Fig. 2. Generator speed errors for simulation with drivetrain torsional mode and first flapwise blade 
mode DOFs disabled for baseline PI controller and adaptive controller. 
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Fig. 4. Generator speed for simulation with drivetrain torsional and first flapwise blade DOFs enabled 
for baseline PI controller with low-pass filter of generator speed. 

 
Fig. 3. Generator speed for simulation with drivetrain torsional and first flapwise blade mode DOFs 
enabled for (a) baseline PI controller and (b) adaptive controller.  
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Fig. 5. Generator speed for simulation with drivetrain torsional and first flapwise blade mode DOFs 
enabled for (a) baseline PI controller with RMF and (b) adaptive controller with RMF. RMF was 
designed for drivetrain torsional mode. 


