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This paper presents the optimal control modification for linear uncertain plants. The Lyapunov analysis
shows that the modification parameter has a limiting value depending on the nature of the uncertainty. The
optimal control modification exhibits a linear asymptotic property that enables it to be analyzed in a linear
time invariant framework for linear uncertain plants. The linear asymptotic property shows that the closed-
loop plants in the limit possess a scaled input-output mapping. Using this property, we can derive an analytical
closed-loop transfer function in the limit as the adaptive gain tends to infinity. The paper revisits the Rohrs
counterexample problem that illustrates the nature of non-robustness of model-reference adaptive control in
the presence of unmodeled dynamics. An analytical approach is developed to compute exactly the modification
parameter for the optimal control modification that stabilizes the plant in the Rohrs counterexample. The
linear asymptotic property is also used to address output feedback adaptive control for non-minimum phase
plants with a relative degree 1.

I. Introduction

Research in robust adaptive control was motivated by instability phenomena of adaptive control. In fact, instability
of adaptive control in the early 1960’s which contributed to the crash of one of the NASA X-15 hypersonic vehicles
caused a great deal of concern about the viability of adaptive control. The standard model-reference adaptive control
is well-known to be non-robust in the presence of time delay, unmodeled dynamics, and disturbances. Rohrs et al.
investigated instability mechanisms of adaptive control due to unmodeled dynamics in the 1980’s.1 Thus, the field
of adaptive control has seen numerous robust modification techniques developed to improve robustness. As a result,
various robust modification schemes had since been developed to ensure boundedness of adaptive parameters. The
σ modification2 and e modification3 are two well-known robust modification methods. Other techniques such as the
deadband and projection methods are also used to improve robustness of adaptive control algorithms. In recent years,
there have been various new advanced robust adaptive control methods being developed such as the L1 method,4

optimal control modification,5, 6 adaptive loop recovery,7 composite model reference adaptive control,8 and many
others. The principle of robust modification is based on two central themes: 1) limiting adaptive parameters and 2)
adding damping mechanisms to model-reference adaptive control. The robustness issues with parameter drift, non-
minimum phase behaviors, time delay, unmodeled dynamics, and fast adaptation are largely ameliorated with these
robust modification schemes, but are not entirely eliminated if the nature of the uncertainty is not completely known.

Robust adaptive control achieves robustness by compromising the ideal property of asymptotic tracking of MRAC.
All robust modifications in adaptive control result in bounded tracking and adaptive parameters when they are properly
designed. Recognizing this important requirement of robust adaptive control, the optimal control modification is a
recent development of robust modification in adaptive control that addresses adaptive control in the framework of
optimal control. More specifically, the optimal control modification is designed to minimize the tracking error norm
bounded away from the origin by some lower bound.

In this paper, we revisit the Rohrs counterexample problem that illustrates the nature of non-robustness of MRAC
in the presence of unmodeled dynamics and develop an analytical approach that computes exactly the modification
parameter using the optimal control modification to stabilize the plant in the Rohrs counterexample. The optimal
control modification exhibits a linear asymptotic property that enables it to be analyzed in a linear time invariant
framework when the uncertain plant is also linear time invariant. Using this property, we can derive an analytical
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closed-loop transfer function in the limit as the adaptive gain tends to infinity. In contrast, both the σ modification and
e modification can stabilize the Rohrs plant as well, but the modification parameters are chosen ad-hoc.

II. Optimal Control Modification for Linear Time Invariant Uncertain Systems

Consider the following linear time invariant system with matched uncertainty

ẋ = Ax+B
(

u+Θ
∗>x
)
+w (1)

where x(t) ∈ Rn is a state vector, u(t) ∈ Rm is a control vector, A ∈ Rn×Rn is known, B ∈ Rn×m is also known such
that (A,B) is controllable, Θ∗ ∈ Rn×m is the unknown parameter constant matrix, where w is a unknown bounded
disturbance

The reference model is given by
ẋm = Amxm +Bmr (2)

where Am ∈ Rn×Rn is known and Hurwitz, Bm ∈ Rn×Rr is known, and r (t) ∈ Rr is a bounded reference command
signal.

Assuming that there exist matching model conditions

A+BKx = Am (3)

BKr = Bm (4)

Then adaptive controller is designed as
u = Kxx+Krr−Θ

>x (5)

Defining the tracking error as e = xm− x, then the error equation is obtained as

ė = Ame+BΘ̃
>

Φ(x)−w (6)

The adaptive parameter Θ can be estimated using the optimal control modification adaptive law as

Θ̇ =−Γx
(

e>P−νx>ΘB>PA−1
m

)
B (7)

where Γ = Γ> > 0 ∈ Rn×n is a positive-definite adaptive gain matrix, ν > 0 ∈ R is the optimal control modification
parameter, and P = P> > 0 ∈ Rn×n is a positive-definite matrix that solve the following Lyapunov equation

PAm +A>mP =−Q (8)

where Q = Q> > 0 ∈ Rn×n is a positive-definite weighting matrix.
Theorem 1: The optimal control modification adaptive law is stable for any modification parameter 0 < ν < νmax

where

νmax =
λmin (Q)λmin

(
B>A−>m QA−1

m B
)∥∥B>PA−1

m B
∥∥2

Θ2
0

(9)

with Θ0 = max‖Θ∗‖ as the upper bound on the parametric uncertainty.
Moreover, if Θ is a non-destabilizing parametric uncertainty, then

νmax =
4λmin

(
B>A−>m QA−1

m B
)
‖PB‖2

λmin (Q)
∥∥B>PA−1

m B
∥∥2 (10)

independent of the upper bound on the parametric uncertainty Θ0.
Proof: Choose a Lyapunov candidate function

V
(
e,Θ̃
)
= e>Pe+ trace

(
Θ̃
>

Γ
−1

Θ̃

)
(11)

Differentiating V
(
e,Θ̃
)

yields

V̇
(
e,Θ̃
)
=−e>Qe+2e>PBΘ̃

>x−2e>Pw−2trace
[
Θ̃
>x
(

e>P−νx>ΘB>PA−1
m

)
B
]

=−e>Qe−2e>Pw+2νx>Θ̃B>PA−1
m BΘ̃

>x+2νx>Θ
∗B>PA−1

m BΘ̃
>x (12)

2 of 17

American Institute of Aeronautics and Astronautics



PA−1
m can be decomposed into a symmetric part M and anti-symmetric part N as

PA−1
m = M+N (13)

where
M =

1
2

(
A−>m P+PA−1

m

)
=−1

2
A−>m QA−1

m < 0 (14)

N =
1
2

(
PA−1

m −A−>m P
)
. (15)

Since the symmetric part M < 0, therefore PA−1
m < 0. Thus, V̇

(
e,Θ̃
)

becomes

V̇
(
e,Θ̃
)
=−e>Qe−2e>Pw−νx>Θ̃B>A−>m QA−1

m BΘ̃
>x+2νx>Θ

∗B>PA−1
m BΘ̃

>x (16)

and is bounded by

V̇
(
e,Θ̃
)
≤−λmin (Q)‖e‖2 +2λmax (P)‖e‖w0−νλmin

(
B>A−>m QA−1

m B
)
‖x‖2∥∥Θ̃

∥∥2
+2ν

∥∥∥B>PA−1
m B

∥∥∥‖x‖2∥∥Θ̃
∥∥Θ0

(17)

Let c1 = λmin (Q)> 0, c2 =
λmax(P)w0

c1
> 0, c3 = λmin

(
B>A−>m QA−1

m B
)
> 0, and c4 =

‖B>PA−1
m B‖Θ0
c3

> 0. Then, upon
completing the squares, one gets

V̇
(
e,Θ̃
)
≤−c1 (‖e‖− c2)

2 + c1c2
2−νc3 ‖x‖2 (∥∥Θ̃

∥∥− c4
)2

+νc3c2
4 ‖x‖

2 (18)

V̇
(
e,Θ̃
)
≤ 0 implies

‖e‖ ≥ c2 +

√
c2

2 +
νc3c2

4 ‖x‖
2

c1
= r (19)

∥∥Θ̃
∥∥≥ c4 +

√
c2

4 +
c1c2

2

νc3 ‖x‖2 = α (20)

Note that the lower bounds r and α are dependent on ‖x‖. Therefore, to prove boundedness, we also need to show
that ‖x‖ is bounded. To this end, we see that Eq. (19)

−c1 ‖e‖2 +2c1c2 ‖e‖+νc3c2
4 ‖x‖

2 ≤ 0 (21)

is equivalent to
−e>Qe−2e>Pw+νc3c2

4 ‖x‖
2 ≤ 0 (22)

There are two cases to consider:

1. The closed-loop plant with the nominal controller and no disturbance is stable. This is the same as stating that
the uncertainty is a non-destabilizing uncertainty. Then, the error equation of the open-loop system is

ė = Ame−BΘ
∗>x (23)

Choose a Lyapunov candidate function
V (e) = e>Pe (24)

Then
V̇ (e) =−e>Qe−2e>PBΘ

∗>x≤−c1 ‖e‖2 +2‖e‖‖PB‖Θ0x (25)

Since the plant is stable, V̇ (e)≤ 0 which implies ‖x‖ is bounded by

‖x‖ ≤ c1 ‖e‖
2‖PB‖Θ0

(26)

Substituting into Eq. (22) yields

−c1 ‖e‖2 +2c1c2 ‖e‖+
νc3c2

4c2
1 ‖e‖

2

4‖PB‖2
Θ2

0

≤ 0 (27)
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For stability, the coefficient of ‖e‖2 must be negative. Therefore, there exists a maximum value νmax for which
0 < ν < νmax where

νmax =
4‖PB‖2

Θ2
0

c1c3c2
4

=
4λmin

(
B>A−>m QA−1

m B
)
‖PB‖2

λmin (Q)
∥∥B>PA−1

m B
∥∥2 (28)

Note that νmax is independent of the bound of the parametric uncertainty Θ0 if the uncertainty is non-destabilizing.

V̇
(
e,Θ̃
)

for the closed-loop system then becomes

V̇
(
e,Θ̃
)
≤−c1

(
1− ν

νmax

)(
‖e‖− c2

1− ν

νmax

)2

+
c1c2

2
1− ν

νmax

−νc3 ‖x‖2 (∥∥Θ̃
∥∥− c4

)2 (29)

Therefore, V̇
(
e,Θ̃
)
≤ 0 for the adaptive system implies either

‖e‖ ≥ 2c2

1− ν

νmax

= r (30)

or ∥∥Θ̃
∥∥≥ c4 +

√√√√ c1c2
2

νc3 ‖x‖2
(

1− ν

νmax

) = c4 +

√√√√4‖PB‖2
Θ2

0

(
1− ν

νmax

)
νc1c3

= α (31)

The closed-loop system is uniformly ultimately bounded with

r ≤ ‖e‖ ≤ ρ =

√
λmax (P)r2 +λmax (Γ−1)α2

λmin (P)
(32)

α ≤
∥∥Θ̃
∥∥≤ β =

√
λmax (P)r2 +λmax (Γ−1)α2

λmin (Γ−1)
(33)

2. The closed-loop plant with the nominal controller has no stability guarantee. The uncertainty can be destabiliz-
ing. Since e = xm− x, Eq. (22) can be expressed as

−(xm− x)>Q(xm− x)−2(xm− x)>Pw+νc3c2
4 ‖x‖

2 ≤ 0 (34)

Therefore
−c1 ‖xm‖2 +2c5 ‖xm‖‖x‖− c1 ‖x‖2 +2c1c2 ‖xm‖+2c1c2 ‖x‖+νc3c2

4 ‖x‖
2 ≤ 0 (35)

where c5 = λmax (Q)> c1 > 0.

The adaptive system is stable if c1−νc3c2
4 > 0 which yields

νmax =
c1

c3c2
4
=

λmin (Q)λmin
(
B>A−>m QA−1

m B
)∥∥B>PA−1

m B
∥∥2

Θ2
0

(36)

Note that νmax is now dependent on the upper bound of the parametric uncertainty Θ0. As the bound of the
uncertainty increases, νmax must be reduced to ensure stability of the closed-loop system. Thus, stability of the
optimal control modification depends on the characteristics of the uncertainty. The adaptive law is guaranteed
to be stable if a priori knowledge of the bound of the uncertainty exists.

‖x‖ is then bounded from below by

‖x‖ ≥
c2 + c5 ‖xm‖∞

+

√
(c1c2 + c5 ‖xm‖∞

)2 +4
(
c1 +νc3c2

4

)(
2c1c2 ‖xm‖∞

− c1 ‖xm‖2
∞

)
c1−νc3c2

4
(37)

�
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The modification parameter ν for stability guarantee is dependent on the a priori knowledge of the bounds on the
uncertainty as well as the disturbance to guarantee stability. Moreover, in the presence of a disturbance, i.e., c2 6= 0,
then for the standard MRAC which corresponds to ν = 0, the lower bound of Θ̃(t) is unbounded, as seen from Eq.
(20). This implies an unbounded parameter variation for MRAC in the presence of a disturbance. This observation is
consistent with the parameter drift phenomenon that the standard MRAC exhibits when a persistent excitation is not
present in an adaptive regulator design.

Example 1: Consider a first-order SISO system

ẋ = ax+bu+w (38)

where a is unknown, b is known, and w(t) is a bounded disturbance where

w = p(1+ t)p−1−a(1+ t)p + γb2 (1+ t)2p+1−1
2p+1

(1+ t)p (39)

An adaptive regulator is designed with the standard MRAC as

u = k̄xx (40)

˙̄kx =−γx2b (41)

with k̄x (0) = 0.
The behaviors of the closed-loop system with the standard MRAC are shown in the following table.

p x(t) u(t) w(t) kx (t)

p > 0 /∈L∞ /∈L∞ /∈L∞ /∈L∞

− 1
3 < p≤ 0 ∈L∞ /∈L∞ /∈L∞ /∈L∞

− 1
2 < p≤− 1

3 ∈L∞ ∈L∞ ∈L∞ /∈L∞

p =− 1
2 ∈L∞ /∈L∞ /∈L∞ /∈L∞

p <− 1
2 ∈L∞ ∈L∞ ∈L∞ ∈L∞

Table 1 - Boundedness of Example Adaptive System

For − 1
2 < p ≤ − 1

3 , k̄x (t) becomes unbounded as t → ∞, whereas x(t), u(t), and w(t) remain bounded. This
demonstrates the parameter drift phenomenon of the standard MRAC. If p <− 1

2 , then all signals are bounded.
The adaptive regulator is redesigned with the optimal control modification adaptive law

k̇x =−γ
(
x2b−νx2b2a−1

m kx
)

(42)

where am < 0 is chosen such that am = a+bk∗x .

Let w0 = max |w| and k0 = |k∗x |. Choose Q = 1, P = − a−1
m
2 . Then c1 = 1, c2 = − a−1

m w0
2 , c3 = b2a−2

m , and c4 =
k0
2 .

The ultimate bound of |x| is expressed as

|x|2 ≤ 2c2
2 +2c2

√
c2

2 +
νc3c2

4 |x|
2

c1
+

νc3c2
4 |x|

2

c1
+

γ−1

P

(
2c2

4 +2c4

√
c2

4 +
c1c2

2

νc3 |x|2
+

c1c2

νc3 |x|2

)
(43)

νmax is determined from the inequality in the limit as |x| → ∞. This yields νmax =
4

b2a−2
m k2

0
. The ultimate bound of

|x| is the largest solution of the inequality for any 0 < ν < νmax.
The adaptive parameter kx (t) with the optimal control modification can be expressed in terms of the adaptive

parameter k̄x (t) with the standard MRAC as
k̇x

1−νa−1
m bkx

= ˙̄kx (44)

The solution of kx (t) has a closed form which is given by

kx =
1

νa−1
m b
− 1−νa−1

m bkx (0)
νa−1

m b
exp
{
−νa−1

m b
[
k̄x− k̄x (0)

]}
(45)

5 of 17

American Institute of Aeronautics and Astronautics



The standard MRAC exhibits a parameter drift as k̄x (t)→ −∞. With the optimal control modification, kx (t)
is bounded as k̄x (t)→ −∞. Therefore, the solution is guaranteed to be stable in the presence of a disturbance for
0 < ν < 4

b2a−2
m k2

0
.

The responses of the closed-loop system with a = 1, b = 1, p = − 5
12 , γx = 10, and x(0) = 1 with the standard

MRAC and the optimal control modification with ν = 0.1 are shown in Figs. 1 and 2, respectively.
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Fig. 1 - Parameter Drift of MRAC for p =− 5
12 and γx = 10
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Fig. 2 - Optimal Control Modification with ν = 0.1 for p =− 5
12 and γx = 10

III. Linear Asymptotic Property

It has been shown that MRAC is non-robust with fast adaptation. The time delay margin of MRAC tends to zero as
the adaptive gain tends to infinity. The optimal control modification adaptive law exhibits a linear asymptotic property
as Γ→ ∞ or t→ ∞. If the closed-loop system is stable, then Θ̇→ 0 which implies

Θ
>x→ 1

ν

(
B>A−>m PB

)−1
B>Pe (46)
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The closed-loop system then tends to an asymptotic linear system

ẋ =
(

Am +
1
ν

P−1A>mP+BΘ
∗>
)

x− 1
ν

P−1A>mPxm +Bmr (47)

This system is stable for all ν > 0 if Am +BΘ∗
>

is Hurwitz, but stable for 0 < ν < νmax if Am +BΘ∗
>

is not
Hurwitz.

Consider a special case when ν = 1 corresponding to the optimal solution of the adaptive law, then

Am +P−1A>mP = P−1
(

PAm +A>mP
)
=−P−1Q (48)

Since P > 0 and Q > 0, −P−1Q < 0. The closed-loop poles of the ideal system with Θ∗ = 0 are all negative real.
The ideal system is exponentially stable with no high-frequency oscillations.

The linear asymptotic property of the optimal control modification is quite useful since it can be analyzed using
many existing linear analysis tools. Moreover, because of its linear asymptotic property, the closed-loop system has a
scaled input-out behavior as Γ→∞. That is, if r (t) is scaled by a multiplier c, then x(t) is scaled by the same amount.

Theorem 2: Let x(t) = x0 (t) be the response due to r (t) = r0 (t), then if r (t) = cr0 (t) where c is a constant, then
it follows that x(t) = cx0 (t) as Γ→ ∞.

Proof: Since the the asymptotic closed-loop system is linear time invariant, then

x =
(

sI−Am−
1
ν

P−1A>mP−BΘ
∗>
)−1(

− 1
ν

P−1A>mPxm +Bmr
)

(49)

The transfer function of the reference model is
xm

r
= (sI−Am)

−1 Bm (50)

Then the closed-loop transfer function is obtained as

x
r
=

(
sI−Am−

1
ν

P−1A>mP−BΘ
∗>
)−1 [

− 1
ν

P−1A>mP(sI−Am)
−1 + I

]
Bm (51)

Thus, if r (t) = cr0 (t), then x(t) = cx0 (t). The scale input-output behavior makes the optimal control modification
more predictable than the σ modification and e modification, both of which do not exhibit linear asymptotic properties
for linear uncertain plants.

�

The equilibrium value of x(t) as t→ ∞ can be found by setting s = 0

x̄ =−
(

Am +
1
ν

P−1A>mP+BΘ
∗>
)−1( 1

ν
P−1A>mPA−1

m + I
)

Bmr (52)

If ν = 0, then the ideal property of asymptotic tracking of MRAC is recovered since

x̄ =− lim
ν→0

(
Am +

1
ν

P−1A>mP+BΘ
∗>
)−1( 1

ν
P−1A>mPA−1

m + I
)

Bmr

=− lim
ν→0

(
1
ν

P−1A>mP
)−1 1

ν
P−1A>mPA−1

m Bmr =−A−1
m Bmr = x̄m (53)

The equilibrium value of the tracking error is given by

ē = x̄m− x̄ =

[
−A−1

m +

(
Am +

1
ν

P−1A>mP+BΘ
∗>
)−1( 1

ν
P−1A>mPA−1

m + I
)]

Bmr (54)

The largest norm of ē(t) which can be interpreted as a steady state error when Γ→ ∞ is given by

‖ē‖=

∥∥∥∥∥−A−1
m Bm +

(
Am +

1
ν

P−1A>mP+BΘ
∗>
)−1( 1

ν
P−1A>mPA−1

m + I
)

Bm

∥∥∥∥∥‖r‖∞
(55)
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The linear asymptotic property also affords another advantage in that the stability margins of the system can be
computed.

Consider a first-order time-delay SISO system with an optimal control modification adaptive controller

ẋ = ax+b [u(t− td)+θ
∗x] (56)

u = kxx+ krr−θ (t)x (57)

θ̇ =−γ
(
xeb−νx2a−1

m b2
θ
)

(58)

with a and b known and am = a+bkx<0.
As γ → ∞, the equilibrium value of θx is

θ̄x =
xm− x
νa−1

m b
(59)

Then the closed-loop plant is given by

ẋ = (a+bθ
∗)x+

(
bkx +

am

ν

)
x(t− td)−

am

ν
xm (t− td)+bkrr (t− td) (60)

To simplify the analysis, let r (t) = 1 and xm (t) = 1. Then the characteristic equation with s = jω is

jω− (a+bθ
∗)−

(
bkx +

am

ν

)
(cosωtd− j sinωtd) = 0 (61)

which results in the following equations

−(a+bθ
∗)−

(
bkx +

am

ν

)
cosωtd = 0 (62)

ω +
(

bkx +
am

ν

)
sinωtd = 0 (63)

The crossover frequency and time delay margin are computed as

ω =

√(
bkx +

am

ν

)2
− (a+bθ ∗)2 (64)

td =
1
ω

cos−1
(
− a+bθ ∗

bkx +
am
ν

)
(65)

If ν = 0, then the optimal control modification reverts to the standard MRAC whereupon

ω = lim
ν→0

√(
bkx +

am

ν

)2
− (a+bθ ∗)2→ ∞ (66)

td = lim
ν→0

1
ω

cos−1
(
− a+bθ ∗

bkx +
am
ν

)
= 0 (67)

Thus the time delay margin for the standard MRAC goes to zero as the adaptive gain goes to infinity. On the other
hand, for any 0 < ν < νmax, the optimal control modification adaptive law yields a non-zero time delay margin as
the adaptive gain goes to infinity. This robustness property is required to maintain a sufficient stability margin of the
closed-loop system. For a given time delay margin td and specification of θ ∗, the modification parameter ν thus can
be computed to guarantee stability of the closed-loop system.

Example 2: Let a = am =−1, b = bm = 1, θ ∗ = 2, and r (t) = 1. The open-loop system is unstable. So the limiting
value of ν can be computed from Theorem 1 and from the linear asymptotic property as

νmax = min

[(
2am

bθ ∗

)2

,− am

am +bθ ∗

]
= min(1,1) = 1 (68)

Choose ν = 0.2 < 1. The time delay margin for the closed-loop system with the optimal control modification is
calculated as

ω =

√
1

ν2 −1 = 4.8990rad/sec (69)
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td =
1√

1
ν2 −1

cos−1
ν = 0.2795sec (70)

Since td decreases with γ , the time delay margin estimated with γ → ∞ is the minimum value of the time delay
margin for any finite γ < ∞. We see that for a small value of ν , a significant increase in the time delay margin can be
achieved.

The steady state error is estimated to be

ē =
[
−a−1

m +
(

am +
am

ν
+bθ

∗
)−1

(
1
ν
+1
)]

bmr =−0.5 (71)

The equilibrium value of θ is computed to be

θ̄ =
ē

νa−1
m bx̄

=
ē

νa−1
m b(x̄m− ē)

= 1.6667 (72)

A small time delay of 0.0020 sec in injected at the input in the simulation. This time delay causes the closed-loop
system with the standard MRAC to go unstable. On the other hand, The closed-loop system with the optimal control
modification is completely stable. The response of the closed-loop system with the optimal control modification is
shown in Fig. 3. The simulation results agree very well with the equilibrium values of ē and θ̄ .
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Fig. 3 - Optimal Control Modification with Fast Adaptation

When a time delay equal to the time delay margin of 0.2795 sec is injected at the input, the closed-loop system
begins to diverge, as shown in Fig. 4. Thus, the numerical evidence of the time delay margin is also in agreement
with the analytical result. It should be noted that the time delay margin cannot be computed analytically with the σ

modification and e modification because they do not possess linear asymptotic properties.
To illustrate the scaled input-output linear behavior of the optimal control modification adaptive law, the reference

command signal is doubled so that r (t) = 2. The simulation results are shown in Fig. 5. Both the reference model and
the closed-loop system with the optimal control modification exhibit the scaled input-output property. For the optimal
control modification, x̄ = 3 for r (t) = 2 which is twice x̄ = 1.5 for r (t) = 1.

For comparison, the closed-loop responses with both the σ modification and e modification are computed. For the
σ modification with σ = 0.2, x̄ = 2.1763 for r (t) = 2 versus x̄ = 1.2787 for r (t) = 1. For the e modification with
µ = 0.2, x̄ = 1.9725 for r (t) = 2 versus x̄ = 1.0015 for r (t) = 1. Moreover, the e modification also exhibits oscillations
with different frequencies and amplitudes as the reference command signal is doubled. This example illustrates that
even if the open-loop uncertain system is linear, the closed-loop behaviors with the σ modification and e modification
are completely nonlinear. The closed-loop system with the optimal control modification adaptive law, on the other
hand, tends to a linear system as the adaptive gain tends to infinity.
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Fig. 4 - Optimal Control Modification with td = 0.2795 sec
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IV. Linear Systems with Unmodeled Dynamics and Rohrs Counterexample

Consider the system
ẋ = Ax+Bu+∆(x,z,u) (73)

ż = f (x,z,u) (74)

y = x (75)

where z is the unmeasurable and unobservable state vector, ∆ is the plant model error that is unknown and not accounted
for, ż is the unmodeled dynamics, and y is the plant output vector which is just the measurable state vector x.

If model-reference adaptive control is used in a control design by assuming ∆= 0, then it is clear that such a control
design can be non-robust as demonstrated by instability phenomena of MRAC for non-minimum phase systems.

Research in robust adaptive control was motivated by instability phenomena of adaptive control. In fact, instability
of adaptive control in the early 1960’s which contributed to the crash of one of the NASA X-15 hypersonic vehicles
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caused a great deal of concern about the viability of adaptive control. Rohrs et al. investigated various instability
mechanisms of adaptive control due to unmodeled dynamics in a paper entitled “Robustness of Adaptive Control in
the Presence of Unmodeled Dynamics” published in 1982.1 The Rohrs counterexample demonstrates the weakness of
MRAC in its lack of robustness.

The Rohrs counterexample is described by a first-order system with a pair of complex unmodeled poles

y =
2

s+1
229

s2 +30s+229
u (76)

The system has a relative degree 3 and is minimum phase.
The reference model is specified as

ym =
3

s+3
r (77)

The reference model is strictly positive real (SPR) with relative degree 1. Since the relative degree of the reference
model is less than the relative degree of the plant, perfect tracking is not possible. Adaptive control of systems with
relative degrees greater than 1 is generally more difficult since the model reference cannot be chosen to be SPR.9

The controller is given by
u = ky (t)y+ kr (t)r (78)

k̇y = γxye (79)

k̇r = γrre (80)

where e = ym− y.
ky and kr are initialized with ky (0) =−0.65 and kr (0) = 1.14.
The reference command signal is given by

r = 0.3+1.85sin16.1t (81)

where the frequency 16.1 rad/sec is the frequency at which the closed-loop transfer function with ky = ky (0) has a
-180o phase shift which implies a 0o phase margin. The closed-loop system is unstable, as shown in Fig. 6.
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Fig. 6 - Instability of MRAC by Rohrs Counterexample

The Rohrs counterexample shows that the instability mechanisms can be due to the initialization of the adaptive
parameters as well as the reference command signal. The underlying cause of instability is the lack of robustness of
the closed-loop system. Changing either the initial condition of ky and or the frequency in the reference command
signal can result in stabilization of the closed-loop system if it has a sufficient phase margin.

The optimal control modification adaptive law can be designed to handle linear systems with unmodeled dynamics
by utilizing the linear asymptotic property.
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Suppose a plant with unmodeled dynamics is given by the following transfer function:

y
u
=Wp (s) = kp

Zp (s)
Rp (s)

(82)

where kp is a high-frequency gain, and Zp (s) and Rp (s) are monic Hurwitz polynomials of degrees mp and np,
respectively, and np−mp > 1 is the relative degree of the plant.

The reference model is given by a transfer function

ym

r
=Wm (s) = km

Zm (s)
Rm (s)

(83)

where km is a high-frequency gain, and Zm (s) and Rm (s) are monic Hurwitz polynomials of degrees mm and nm,
respectively, and nm−mm ≥ 1 is the relative degree of the reference model.

Suppose the adaptive controller is designed with the optimal control modification as

u = kyy+ krr (84)

where
k̇y = γy

(
ye−νy2ky

)
(85)

k̇r = γr
(
re−νr2kr

)
(86)

Let np−mp > nm−mm. So the SPR condition is no longer possible to ensure tracking of the reference model.
Stability of the closed-loop system cannot also be guaranteed with the standard MRAC.

Using the linear asymptotic property of the optimal control modification, the asymptotic value of the adaptive
controller u can be computed as γy→ ∞ and γr→ ∞.

ū =
2ym−2y

ν
(87)

The asymptotic closed-loop transfer function can now be computed as

ȳ
r
=

2Wp (s)Wm (s)
ν +2Wp (s)

=
2kmkpZp (s)Zm (s)

Rm (s)(νRp (s)+2kpZp (s))
(88)

By a suitable selection of the modification parameter ν , the asymptotic closed-loop transfer function can be de-
signed to have closed-loop stability. Once the modification parameter ν is chosen, the adaptive gains γy and γr can be
selected to be any reasonable values without compromising closed-loop stability of the adaptive laws.

Referring back to the Rohrs counterexample, the adaptive controller asymptotically tends to

ū =
2ym−2y

ν
=

6r
ν (s+3)

− 2y
ν

(89)

as γy→ ∞ and γr→ ∞.
Then the asymptotic closed-loop transfer function is obtained as

ȳ
r
=

2748
ν (s+3)

(
s3 +31s2 +259s+229+ 916

ν

) (90)

Note that the closed-loop transfer function has a relative degree 4 while the transfer function of the reference model
has a relative degree 1. This prevents the output y from tracking ym.

The characteristic equation of ȳ with input time delay is

s3 +31s2 +259s+229+
916
ν

e−tds = 0 (91)

Substituting s = jω yields

− jω3−31ω
2 +259 jω +229+

916
ν

(cosωtd− j sinωtd) = 0 (92)
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This results in two frequency equations

−31ω
2 +229+

916
ν

cosωtd = 0 (93)

−ω
3 +259ω− 916

ν
sinωtd = 0 (94)

We then obtain the cross-over frequency and phase margin as functions of the modification parameter ν

ω
6 +443ω

4 +52883ω
2 +2292− 9162

ν2 = 0 (95)

φ = ωtd = tan−1
(
−ω3 +259ω

31ω2−229

)
(96)

The plot of ν versus φ and ω is shown in Fig. 7. Notice that at ν = 0.117, ω = 16.1 rad/sec and φ = 0. Note that
the zero phase margin at the reference frequency of 16.1 rad/sec is consistent with the instability of the plant in the
Rohrs counterexample. So the minimum value of ν is νmin = 0.117. At ν = 1, the phase margin is about 78o.
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Fig. 7 - Phase Margin and Cross-Over Frequency of Rohrs Counterexample as Functions of ν

Suppose a 45o phase margin is select. Then, φ = 45o occurs at ν = 0.426 and ω = 7.5099 rad/sec. The asymptotic
closed-loop transfer function with ν = 0.426 is

ȳ
r
=

2748
0.426s4 +14.484s3 +149.952s2 +1344.556s+3040.662

(97)

The closed-loop plant is robustly stable with a phase margin of 45o. The asymptotic response ȳ(t) and control
signal ū(t) evaluated analytically agree very well with the simulation results of y(t) and r (t), as shown in Fig. 8.
Thus, the linear asymptotic property of the optimal control modification is demonstrated to be able to facilitate stability
analysis of linear uncertain systems with unmodeled dynamics, time delay, or non-minimum phase behaviors.

All the three robust modification schemes; namely, σ modification, e modification , and optimal control modifica-
tion exhibit minimum values of the modification parameters at which the plant in the Rohrs counterexample begins to
stabilize. The σ and e modification parameters can be found by trial and error. In contrast, the modification parameter
ν is found analytically by taking the advantage of the linear asymptotic property of the optimal control modification
adaptive law.
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Fig. 8 - Closed-Loop Response of Rohrs Counterexample with Optimal Control Modification

V. Adaptive Control of Non-Minimum Phase Plants with Relative Degree 1

Non-minimum phase plants are well-known to be very difficult to control by adaptive control. Output feedback
adaptive control generally relies on the SPR property to ensure stability. For non-minimum phase plants, the SPR
property does not exist, thereby destroying the ability to analyze stability of adaptive control using the SPR property.
The linear asymptotic property of the optimal control modification can be used to analyze non-minimum phase plants
in some instances. We will demonstrate such an analysis with the following example as a motivation. In future work,
we will further explore this property to address in general adaptive control of non-minimum phase plants.

Consider the following SISO plant
ẋ = ax+bu+gz (98)

ż = hz+ lx+mu (99)

y = x (100)

where z is the unmeasurable state with internal dynamics, and the parameters a, g, h, l, and m are unknown, but b is
known.

The objective is to design an output feedback adaptive controller to enable tracking the following reference model

ym =Wm (s)r = km
Zm (s)
Rm (s)

r =
bmr

s−am
(101)

where am < 0 and km = bm.
The transfer functions of the plant is expressed as

y
u
=Wp (s) = kp

Zp (s)
Rp (s)

=
b(s−h)+gm

(s−a)(s−h)−gl
(102)

where kp = b.
Note that Wm is SPR with a relative degree 1. The plant is also with a relative degree 1 and is assumed to be stable,

so Rp (s) = (s−a)(s−h)−gl is Hurwitz.
The output feedback adaptive controller is desgined to be of the form

u =
b−1 (am−θ1)sy−b−1θ2y+b−1bmsr

s−b−1θ3
(103)

where θ1, θ2, and θ3 are adaptive parameters.
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Then the closed-loop plant is written as

y =
(gm−bh−θ3)u+bmsr

s2− (am +a+h−θ1)s− (gl−ah−θ2)
(104)

Let θ ∗1 = a+h, θ ∗2 = gl−ah, and θ ∗3 = gm−bh. Then, the tracking error equation is obtained as

ė = ame+ θ̃1y+ θ̃2

ˆ t

0
ydτ + θ̃3

ˆ t

0
udτ (105)

where e = ym− y, θ̃1 = θ1−θ ∗1 , θ̃2 = θ2−θ ∗2 , and θ̃3 = θ3−θ ∗3 .
The standard MRAC adaptive laws are

θ̇1 =−γ1ye (106)

θ̇2 =−γ2

(ˆ t

0
ydτ

)
e (107)

θ̇3 =−γ3

(ˆ t

0
udτ

)
e (108)

If Zp (s) is minimum phase, then θ1→ θ ∗1 , θ2→ θ ∗2 , and θ3→ θ ∗3 . The adaptive controller is stable and tends to
the ideal controller

u∗ =
b−1 [(am−θ ∗1 )s−θ ∗2 ]y+b−1bmsr

s+b−1θ ∗3
(109)

since b−1θ ∗3 > 0 if Zp (s) is minimum phase.
The stable zero of Zp (s) is cancelled by the stable pole of the adaptive controller to achieve perfect tracking of the

reference model.
On the other hand, if Zp (s) is non-minimum phase, b−1θ ∗3 < 0. Then, the adaptive controller has an unstable pole.

The standard MRAC adaptive law is therefore unstable.
Suppose the following optimal control modification adaptive laws are used:

θ̇1 =−γ1
(
ye+ν1y2

θ1
)

(110)

θ̇2 =−γ2

[(ˆ t

0
ydτ

)
e+ν2

(ˆ t

0
ydτ

)2

θ2

]
(111)

θ̇3 =−γ3

[(ˆ t

0
udτ

)
e+ν3

(ˆ t

0
udτ

)2

θ3

]
(112)

where ν1, ν2, and ν3 are the modification parameter.
Then the linear asymptotic property yields the equilibrium values of θ1, θ2, and θ3

θ1y =−ym− y
ν1

(113)

θ2
y
s
=

ym− y
ν2

(114)

θ3
u
s
=

ym− y
ν3

(115)

Then the adaptive controller tends to

u = b−1amy+b−1 ym− y
ν1

+b−1 ym− y
ν2

+b−1 ym− y
ν3

+b−1bmr (116)

Note that stability of the adaptive controller is no longer affected by the non-minimum phase of Zp (s). Stability of
the closed-loop plant is then determined by a proper selection of the modification ν .

Example 3: Consider the system
ẋ = ax+u−2z+w (117)
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ż =−z+u (118)

y = x (119)

where a < 0 is unknown, but a =−1 for simulation purposes.
The system is non-minimum phase with a transfer function

y =
(s−1)u+(s+1)w

(s−a)(s+1)
(120)

y =
(s−1)u

(s−a)(s+1)
(121)

An adaptive regulator is designed as
u = kyy (122)

k̇y =−γy
(
y2 +νy2ky

)
(123)

Since the system is non-minimum phase, the standard MRAC corresponding to ν = 0 will result in instability.
Therefore, there exists a minimum value of ν that stabilizes the closed-loop system. Using the linear asymptotic
property, we can identify this minimum value analytically.

Using the linear asymptotic property, we see that k̄y → − 1
ν

as γy → ∞. Therefore, the asymptotic closed-loop
transfer function is

ȳ
w

=
s+1

(s−a)(s+1)+ 1
ν
(s−1)

(124)

The characteristic roots of the closed-loop transfer function are given by

s =−1−a
2
− 1

2ν
±

√(
1−a

2
+

1
2ν

)2

+a+
1
ν

(125)

Note that if ν < − 1
a , the closed-loop plant is unstable. So, ν ≥ − 1

a for closed-loop stability. The steady state
closed-loop transfer function is equal to

ȳ
w

=− 1
a+ 1

ν

(126)

Figure 9 shows the response of the closed-loop system with ν = 2 for a unit step disturbance w(t) = 1. The
numerical results are in agreement with the steady state value k̄y (t) =− 1

2 and the steady state response ȳ(t) = 2.
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Fig. 9 - Closed-Loop Response of Non-Minimum Phase Plant
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VI. Conclusion

This paper revisits the issue of adaptive control of linear uncertain systems with unmodeled dynamics by exploiting
a feature of the optimal control modification adaptive law whereby the closed-loop system in the limit tends to a linear
system asymptotically as the adaptive gain tends to infinity. For linear uncertain plants under certain conditions, the
modification parameter ν has a limiting value. Taking the advantage of the asymptotic closed-loop system, a stability
analysis can be performed to compute the modification parameter required to stabilize the closed-loop plant. This
approach can be applied to linear uncertain systems with unmodeled dynamics, time delay, and non-minimum phase
behaviors. The Rohrs counterexample is revisited using the optimal control modification adaptive laws. Utilizing the
linear asymptotic property, the cross-over frequency and phase margin of the asymptotic closed-loop plant are derived
analytically. By determining a suitable value of the modification parameter for a desired phase margin, the plant
in the Rohrs counterexample is shown to be stabilized by the optimal control modification adaptive law. The linear
asymptotic property is also used to design adaptive control for non-minimum phase plants with relative degree 1.
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