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A State-Space Approach to Optimal Level-Crossing
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Rodney A. Martin, Member, IEEE

Abstract—In this paper, approximations of an optimal
level-crossing predictor for a zero-mean stationary linear dy-
namical system driven by Gaussian noise in state-space form are
investigated. The study of this problem is motivated by the prac-
tical implications for design of an optimal alarm system, which
will elicit the fewest false alarms for a fixed detection probability
in this context. This work introduces the use of Kalman filtering
in tandem with the optimal level-crossing prediction problem. It
is shown that there is a negligible loss in overall accuracy when
using approximations to the theoretically optimal predictor, at the
advantage of greatly reduced computational complexity.

Index Terms—Alarm systems, approximation methods, Kalman
filtering, level-crossing problems, prediction methods.

I. INTRODUCTION

T HIS paper introduces a novel approach of combining the
practical appeal of Kalman filtering with the design of an

optimal alarm system for the prediction of level-crossing events.
A comprehensive demonstration of practical application for the
design of optimal alarm systems has been covered in the litera-
ture [1]–[5]. The background theory for optimal alarm systems
preceded this work, and was introduced by a small subset of
these authors [6], [7]. However, the latter is by no means a com-
prehensive list, and illustrates only a cross section of the primary
authors responsible for introducing optimal alarm systems in a
classical and practical sense.

It was shown by Svensson [1] and Svensson et al. [2] that
an optimal alarm system can be constructed by finding relevant
alarm system metrics (as are used in ROC curve analysis) as a
function of a design parameter by way of an optimal alarm con-
dition. The optimal alarm condition is fundamentally an alarm
region or decision boundary based upon a likelihood ratio crite-
rion via the Neyman–Pearson lemma, as shown in [6], [7]. This
allows for the design of an optimal alarm system that will elicit
the fewest possible false alarms for a fixed detection probability.
This becomes important when considering the numerous appli-
cations that might benefit from an intelligent tradeoff between
false alarms and missed detections.
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In general, the design of optimal alarm systems demonstrates
practical potential to enhance reliability and support health
management for space propulsion, civil aerospace applications,
and other related fields. Due to the great costs, not to mention
potential dangers associated with a false alarm due to evasive
or extreme action taken as a result of false indications, there
are great opportunities for cost savings/cost avoidance, and
enhancement of overall safety. Nonetheless, the intent of this
paper is to demonstrate the utility of optimal level-crossing
prediction from a more theoretical perspective.

Due to the fact that optimal alarm regions cannot be expressed
in closed form, one of the aims of this study is to investigate
approximations for the design of an optimal alarm system. The
resulting metrics can easily be compared to competing methods
that may also provide some level of predictive capability, but
have no provision for minimizing false alarms for the prediction
of level-crossing events.

There are several examples of level-crossing events to be
studied, varying from a simple one-sided case to a more com-
plicated two-sided case. The former one-sided case involves
exceedances and/or upcrossings of a single level spanning
two adjacent time points for a discrete-time process. This is
the case that has traditionally been studied in previous work
and invokes ARMA(X) prediction methods [1], [2], [5]–[7].
The latter two-sided case involves a level crossing event that
may span many time points and exceed upper and lower levels
symmetric about the mean of the process many times during
this timeframe.

A variant of the latter more complicated two-sided case has
been investigated by Kerr [8] and uses a Kalman filter-based ap-
proach. The two-sided case is more practically relevant when
monitoring residuals that may be derived from the output of
other machine learning algorithms or transformed parameters
that relate to system performance. The two-sided case is inves-
tigated here, and a Kalman filter-based approach is used in an
optimal manner relevant for the prediction of level-crossings.

The prediction of such a level-crossing event is also very sim-
ilar to what has been established as the state of the art for newly
minted spacecraft engines, as studied in [9]; however, no guar-
antees of optimality exist. This provides additional practical mo-
tivation for investigating a level crossing event that spans many
time steps, moving beyond what has previously been studied in
this vein.

There is an extensive history of invoking Kalman-filter-based
approaches within the failure detection literature. A compre-
hensive survey of such techniques can be found in a book by
Basseville and Nikiforov [10], which cites groundbreaking ar-
ticles by Willsky and Jones [11], and Kerr [8]. More recently,
the Kalman filter has been used to address the level-crossing
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prediction problem in application to condition monitoring [12],
but without any theoretical guarantees of optimality. A com-
petitor to the optimal alarm system is described in [13], and
uses adaptive optimal on-line techniques in a Bayesian formu-
lation, providing more modeling flexibility. However, there are
still considerable computational issues with such an approach,
and a well-defined cost function is still required, even when the
posterior probability is adaptively updated.

Relevant alarm system metrics such as ones used in ROC
curve analysis can be expressed as a function of a design pa-
rameter via an optimal alarm condition. These same metrics
will act as the basis for comparison to competing methods to
be presented in Section II-C. These competing methods may
provide some level of predictive capability, but have no pro-
vision for minimizing false alarms. The optimal level-crossing
predictor uses an optimal alarm condition in order to provide
an upper bound on false alarm probability. All of these tech-
niques are leveraged to predict another distinctly more critical
level-crossing event (based upon an extreme value given by the
critical level, ), and may provide a viable alternative to the use
of a single level based solely upon a decision rule as is used with
methods such as CUSUM, SPRT, GLR, etc.

However, CUSUM, SPRT, GLR, etc., as well as the optimal
level-crossing predictor are all fundamentally based upon
the application of the Neyman–Pearson lemma and resulting
decision rule. As such, they are all optimally guaranteed an
upper bound on false alarm probability for a maximal detection
probability under certain technical conditions related to the
hypotheses being tested. The primary difference between these
methods is in the characterization of the null hypotheses and
application of the resulting optimal decision rule. For the
optimal level-crossing predictor, the null hypothesis integrates
the definition of a critical event, which can be constructed such
that multiple level-crossings of an extreme value span multiple
time steps into the future, implicitly enabling a predictive
capability for alarm system design. For the other methods such
as CUSUM, SPRT, GLR, etc., null or alternate hypotheses are
constructed to target the detection of abrupt changes in model
parameters. These methods are also the one most commonly
found in the literature, e.g., [14], [8], [11], [15], and [10].

Operating under the alternate paradigm, a critical event can be
constructed to emulate the adverse conditions requiring predic-
tion in the context of an extreme value level-crossing rather than
an abrupt change in model parameters. The distinction between
these two paradigms is one of the most discernable differences
in the theoretical techniques used here and in other literature
derived from extreme value theory, [1]–[3], [5]–[7]. The use of
an optimal level-crossing predictor is naturally parameterized
to allow for prediction of an event occurring in the future. Thus,
this technique should perform well in practice for early predic-
tion, conditioned on the use of alarm system parameters that
are well characterized by the modeling assumptions. Overall,
this paper aims to more precisely close the gap between the use
of Kalman filtering and optimal alarm systems. Although mo-
tivated by fault detection and prediction, recognizing that the
literature in this area is quite expansive, this paper aims to shed
light on a segment of the literature that has been largely over-
looked.

TABLE I
SUMMARY OF MATHEMATICAL NOTATION

II. METHODOLOGY

A level-crossing event is defined with a critical level, , that
is assumed to have a fixed, static value. The level is exceeded by
some critical parameter than can be represented by a dynamic
process, and is often modeled as a zero-mean stationary linear
dynamical system driven by Gaussian noise. Most of the theory
that follows is based upon this standard representation of the
optimal level-crossing problem. As such, it is an underlying as-
sumption that measured or transformed data can be fitted well
to a model represented by a linear dynamical system driven by
Gaussian noise. The state-space formulation is shown in (1)–(3),
demonstrating propagation of both the state, which is
corrupted by process noise , and the state covariance
matrix, , which evolve with the time-invariant system matrix

. The output, is univariate, and is corrupted by mea-
surement noise

(1)

(2)

(3)

where

A summary of the basic mathematical notation not defined
elsewhere is provided in Table I. There is great flexibility in con-
structing a mathematical representation for the level-crossing
event, . Ostensibly, the target application will drive the def-
inition of this event. As such, in this paper the event of interest
is shown in (4), cf. Kerr [8] in consideration of the motivating
factors described in the introduction. This level-crossing event
represents at least one exceedance outside of the threshold enve-
lope specified by of the process within the specified
look-ahead prediction window,

(4)
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Fig. 1. Level-crossing event realization.

where

Fig. 1 illustrates the relationship between subevents and
, when . The event can be represented as the

union of disjoint subevents, , or as the union of overlap-
ping subevents, . However, due to DeMorgan’s theorem,
the latter can be expressed in a more compact fashion via a single
term when computing the probability of the overall event. This
obviates the need for using the inclusion/exclusion rule to com-
pute the event probability based upon the union of overlapping
subevents, , where the number of terms would be exponen-
tial in . It also obviates the need for computing the probability
based upon the former union of disjoint subevents, , where
there is no need for use of the inclusion/exclusion rule. However,
the number of terms would still be linear in , as the probability
computation of the union of disjoint subevents is represented by
the sum of terms involving . Equation (5) represents the
unconditional probability of the level-crossing event in its most
compact representational form

(5)

where

...
...

and

can be approximated as shown in (6) by substituting the
steady-state version of the Lyapunov equation given previously
as (3), , in place of , which agrees with the assumption
of stationarity

(6)

This approximation, while it introduces error with regards to
the probability of a level-crossing event, at a specific
point in time, , is ostensibly negligible and will provide for a
great computational advantage in the design of an alarm system.
Instead of designing an alarm system for each time step, a single
alarm system is designed for all time steps. The approximation is
based upon the limiting statistics that are reached at steady-state,
which greatly reduces the computational burden. The steady-
state assumption has not been used in work by Antunes et al.
[13], but doing so also incurs much greater computational effort.

Theorem 1, which can be found in Section VII, provides the
mathematical underpinnings for the optimal alarm condition
corresponding to the level-crossing event, shown here as (7).
Alternatively, the optimal alarm condition derived in Theorem
1 can be expressed in terms of the subevents , as shown
in (8)

(7)

(8)

The optimal alarm condition has, therefore, been derived
from the use of the likelihood ratio resulting in the conditional
inequality as given in (7). This basically says “give alarm when
the conditional probability of the event, , exceeds the level

.” Here, represents some optimally chosen border or
threshold probability with respect to a relevant alarm system
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metric. It is necessary to find the alarm regions in order to
design the alarm system. This alarm region is parameterized by
future process output predictions and covariances, which can
be derived from the standard Kalman filter (9)–(14)

(9)

(10)

(11)

(12)

(13)

(14)

where

Relevant predictions, covariances and cross covariances are
given below as (15)–(19), respectively

(15)

(16)

(17)

(18)

(19)

(20)

(21)

is the combined steady-state version of (13) and (14)
given previously, or the discrete algebraic Riccati equation, and

is the steady-state a posteriori covariance matrix given in
(20). Equation (21) is also used in (20), which is the steady-state
version of the Kalman gain from (12).

The approximations shown in (17) and (19) will provide a
computational advantage in designing the optimal alarm system
and its corresponding approximations for reasons stated previ-
ously. Due to the approximation of with shown in
these equations, the Kalman filter will be suboptimal, as cited
by Lewis [16]. However, the assumption of stationarity is re-
quired for the design of an optimal alarm system as defined by
Theorem 1, and holds here as well.

A more formal representation of the optimal alarm region
is shown in (22), which essentially defines a sublevel set of

as a function of

(22)

Equations (23)–(24) give the multivariate normal probability
computation to be performed via numerical integration, required
for enabling the optimal alarm condition

(23)

(24)

where

...

The feasible region for values of can easily be determined
by applying an intermediate value theorem from calculus which
provides sufficient conditions for finding a level set solution.
The sufficient conditions are shown as (25)–(26), and the re-
sulting level set is shown as (27)

(25)

(26)

(27)

The notation that represents the limiting condition shown in
(26) is , and is meant to indicate that all
elements of other than approach . Application
of this condition yields which is true by definition,
and application of the sufficient condition shown in (25) yields

. Thus, the feasible region for is
.

It is not possible to obtain a closed-form representation of the
parametrization for the optimal alarm region shown in (22). As
such, a Monte Carlo approach must be used. This allows the
ROC curve statistics to be estimated empirically with observa-
tional and truth data generated from the existing model and cor-
responding simulations of level-crossing events.

However, with the aid of two distinct approximations, ROC
curve statistics can be generated by numerically integrating ex-
pressions for the computation of relevant multivariate normal
probabilities. These multivariate probability computations are
performed by using an adaptation of Genz’s algorithm [17],
which is based upon a robust and computationally efficient tech-
nique designed to be used for integrations in multiple dimen-
sions for multivariate normal distributions. This provides a tool
necessary for the design of approximations to an optimal alarm
system, and also other failure detection algorithms such as the
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Fig. 2. Root-finding approximations for optimal alarm region.

one most often used by Kerr [18], who specifically cites issues
with the computation of these types of integrals. As such, com-
putationally intensive simulation runs using Monte-Carlo em-
pirical estimation can be avoided.

A. Root-Finding Approximation

The optimal alarm region, , can be approximated by the
alarm region specified by . Fundamentally, the ap-
proximation is constructed by solving for asymptotic bounds on
the exact alarm region. By using asymptotes, a geometrical ap-
proximation is implicitly formed with a hyperbox around the
alarm region. Simple 2-D examples of such hyperboxes for var-
ious values of , and are shown in Fig. 2. There is visual evi-
dence that limiting effects for this approximation exist, as both
and approach the extremities of their feasible domains. The
limiting effects of will be given thorough theoretical treat-
ment in this paper, but the limiting effects of will be investi-
gated in earnest in a sequel paper, and only touched on briefly
in Section IV.

Mathematically, the approximation is formed by solving a
root-finding problem which yield bounding asymptotes. The
root-finding problem is posed by first taking the limit as each
dimension of (22) approaches the respective dimension of ,
other than the one for which the asymptote is being derived.
Equation (28) expresses this limiting condition as a function of
the dimension of interest

(28)

Having defined , it is now possible to express
in (29)–(30)

(29)

(30)

where the root-finding problem is given by numerically solving
(31)

(31)

Thus, the root-finding approximation to the optimal alarm re-
gion is given by . Note that the function in-
corporates all elements of the covariance matrix when com-
puting the asymptotes, just as when constructing the sublevel set
for the the exact optimal alarm region. Furthermore, the feasible
region for is identical to the sublevel set of the exact optimal
alarm region,
by using a similar argument and set of sufficient conditions, as
shown in (32)–(33) below

(32)

(33)

However, there is one primary difference between this ap-
proximation and the exact alarm region. The conditional mean,

, associated with the asymptotic approximation is parame-
terized only by the corresponding dimension of the conditional
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mean, , whereas the exact optimal alarm region uses all
dimensions of the distribution simultaneously.

It is possible to generate formulae for the true and false posi-
tive rates as a function of by appealing to (34)–(35), where
in place of its approximation may be used.

• True positive rate:

(34)

• False positive rate:

(35)

The formula for has already been introduced
in (5), and holds regardless of the alarm system approxi-
mation being used. Thus, only the additional expressions
for and given in (36)–(37) are nec-
essary for computing and . These equations use

, and are also
implicitly expressed as a function of the design parameter,

, as a consequence of (31). Note also that the off-diagonal
blocks of the covariance matrix are equivalent to as a
consequence of the projection theorem

(36)

(37)

where

and

...

Furthermore

where

B. Closed-Form Approximation

The optimal alarm region, , can also be approximated by
an alarm region specified by , with a successive ap-
proximation on ; is defined in (38). Fundamentally, the
approximation can be constructed in the same fashion as the
root-finding method, by solving for asymptotic bounds on the
exact alarm region

(38)

A containment relationship between the exact optimal alarm
region and the union of approximate subregions
can easily be shown with a linear transformation of the condi-
tionally defined Gaussian vector to a vector of independent
variables. The integrand of (24) is a multivariate Gaussian den-
sity whose conditional covariance matrix is given by . The
orthonormal decomposition of this covariance matrix and den-
sity of the corresponding transformed vector are shown in
(39)–(41)

(39)

(40)

(41)

Here, the elements of are independent, and thus, is diag-
onal. As such, geometric containment easily follows when con-
sidering a revised expression for and . Thus, the
latter approximation to the exact alarm region can be rewritten
in the transformed probability space as shown in (42). Note that
this expression does not change significantly from what was
given in (38)

(42)
The exact alarm region can be rewritten in the transformed

probability space as shown in (43); however, the expression
changes significantly, and in such a manner to allow for direct
comparison to (42)

(43)
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Fig. 3. Containment of the approximation by exact alarm region in transformed
probability space.

Because containment in this probability space is invariant
under orthonormal rotations, it follows from (42) and (43), that

, so that the approximate alarm region is a proper
subset of the exact alarm region. Fig. 3 provides illustrative ev-
idence of this containment in the transformed probability space
when . Here, the union of the light and dark colored sec-
tions represents (formula shown below) and the dark colored
section represents the approximation

A successive approximation is required in order to obtain a
closed-form representation and parametrization of the alarm
region without having to resort to root-finding required for
solving , which is equivalent to

. This second approximation
is given by (44), which breaks this condition containing an
absolute value into constitutive inequalities

(44)

where

Thus,
is approximated by two distinct inequalities given by the union
of and

. This subsequent approximation can easily be visualized in
Fig. 4. The union of the light and dark colored sections shown
in Fig. 4, represents . Thus, the dark colored section alone
from Fig. 4 is a subset of this area, such that

. If Fig. 4 is replicated for , then it becomes
clear that more generally (45) holds, which summarizes all of

Fig. 4. Closed-form approximation in probability space.

the containment relationships for the approximations covered
in this subsection

(45)

By using this successive approximation, the alarm region can
now be represented in “closed-form,” as shown in (46) below

(46)

represents the inverse cumulative normal standard
distribution function, and represents the limits of integra-
tion, . The values can now been re-defined
to replace the integration limits used for the root-finding
method in (34)–(37). As such, these same equations are valid
for computing and in order to construct an ROC curve
using this “closed-form” approximation as well. However, in
place of when using these equations, the approximation

is used.
The domain of feasibility for this approximation now

changes, and takes on a new value, which dif-
fers from identical values of and

corresponding to the feasibility
regions for the optimal alarm region and the root-finding ap-
proximation, respectively. A derivation for the new value of

is provided in (47)–(51) below. The derivation is based
upon the premise that , where the last step from (50)
to (51) uses Lemmas 2-5 which can be found in Section VII,
and the fact that

(47)

(48)

(49)

(50)

(51)
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Fig. 5. Closed-form approximations for optimal alarm region.

Again, by using asymptotes a geometrical approximation is
implicitly formed with a hyperbox around the alarm region. As
before, simple 2-D examples of such hyperboxes for various
values of and are shown in Fig. 5. Furthermore, just as
for the root-finding approximation, visual evidence that limiting
effects for this approximation also exist, as both and ap-
proach the extremities of their feasible domains. Note that both
the approximation represented by Fig. 3 and the successive ap-
proximation represented by Fig. 4 have been applied to yield
the vector space result shown in Fig. 5. Both Figs. 3 and 5 have
been illustrated for the case when .

Due to the containment relationship labeled (45), qualitative
arguments for the under-reporting of and can be made
for this approximation. A less aggressive, more optimistic
strategy will result in comparison to the exact optimal method.
It is unclear if this approximation will be more or less accurate
than the previous root-finding approximation. However, the
off-diagonal elements of the covariance matrix are not
used for computing the asymptotes of this “closed-form” ap-
proximation. Recall that the root-finding method incorporates
all elements of the covariance matrix when computing the
asymptotes. Yet both methods use asymptotic approximations
which are parameterized only by the corresponding dimension
of the conditional mean, .

As is apparent intuitively from Figs. 2 and 5, ,
thus . It is clear from visual compar-
ison of these figures that this containment relationship exists be-
tween the root-finding and “closed-form” approximations. For

a mathematical proof of this containment, recall (29)–(30) for
, shown again below, and compare them to (38) for , also

shown again below

Examining the regions of integration for and
, as shown in (52)–(56) below, it is evident

that a clear containment relationship exists

(52)

(53)

(54)

(55)

(56)
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where

It is clear that due to the fact that .
As such, easily follows due
to the fact that both expressions share a common integrand. It is,
therefore, evident that the original claim , and thus

is mathematically sound.
According to this newly derived containment relationship,

and by again using qualitative arguments, it is clear that the
root-finding approximation will be more aggressive, and less
optimistic than the closed form approximation. However, there
is no containment relationship that can be established between
the root-finding method and the exact optimal alarm region as
could be performed for the closed form approximation. As such,
even though the root-finding method incorporates all elements
of the covariance matrix when computing its asymptotes, this
approximation strategy may be overly aggressive and overshoot
the performance of the exact optimal method under certain cir-
cumstances. This mathematical intuition will be supported by
demonstrating this effect with examples in Section IV.

C. Redline and Predictive Alarm Systems

Two baseline “redline” and “predictive” alarm systems will
be compared to the optimal alarm system and its approxima-
tions. All methods will attempt to predict the level-crossing
event defined by (4). The redline alarm system attempts to de-
fine an envelope, , outside of which an alarm will
be triggered to forewarn of the impending level-crossing event.
The probabilities necessary to compute and based upon
(34)–(35) for this alarm system are provided in (57)–(60), where
a redefinition of now holds, such that the
alarm is based only on the current process value

(57)

(58)

(59)

(60)

where

The “redline” alarm system is a simple alarm level crossing
used to predict a second more critical level-crossing. In this case
two levels are used, as the critical threshold, and as the
alarm design threshold. The “predictive” alarm system incor-

porates the use of predicted future process values, and defines
the same envelope, , outside of which an alarm will
be triggered to forewarn of the impending level-crossing event.
However, the alarm definition differs from the redline method,
such that . The predicted future process
value is derived from the standard Kalman filter (15).
The probabilities necessary to compute and based upon
(34)–(35) for this alarm system are provided in (61)–(64)

(61)

(62)

(63)

(64)

where

Note that and have been derived with the aid of the pro-
jection theorem. All of the alarm systems described thus far will
be compared using the area under the ROC curve (AUC). This
provides a performance metric that characterizes the ability of
each alarm system to accurately predict the level-crossing event.
More precisely, it quantifies the Mann–Whitney–Wilcoxon U
test statistic, which is equivalent to the probability of correctly
ranking two randomly selected data points, one belonging to
the level-crossing event class, the other not. The AUC has been
deemed as a theoretically valid metric for model selection and
algorithmic comparison [19]. The design parameters of interest
are for the redline and predictive methods, and for the op-
timal alarm system and its approximations. Results will follow
in the subsequent section.

III. EXAMPLE

The example to be used for presentation of the results has
no specific application, but is generic and based upon the same
example used by Svensson et al. [2]. The model parameters are
provided in (65)–(68)

(65)

(66)

(67)

(68)

Unless otherwise stated, all cases to be compared will use a
threshold of while varying , or a prediction window of

while varying .
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Fig. 6. AUC for all alarm systems a function of critical threshold, �.

TABLE II
EMPIRICAL ANALYSIS OF COMPUTATIONAL COMPLEXITY

IV. RESULTS AND DISCUSSION

A comparison of the AUC for all alarm systems using a pre-
diction window of while varying is
shown in Fig. 6.

It is very clear that the optimal alarm system and its approx-
imations outperform the redline and predictive methods, over
the entire domain of values shown for , as expected. Another
important point to note is that the closed form and root-finding
methods approximate the exact optimal performance quite well
over most of the domain of values shown for . However, as

, the approximation breaks down as evidenced by the
notable divergence of AUC values. More careful analysis of the
reasons for this divergence, including its relation to the design
parameter will be presented subsequently. Table II provides
a summary of the empirically generated timing tests which il-
lustrate both off-line design-time and on-line run-time compu-
tational complexity.

The second column of Table II includes the mean design time
of both the redline and predictive alarm systems as well as the
optimal system or its approximations across all values of .
Results presented in the row labeled ‘‘Optimal’’ were gener-
ated by Monte Carlo simulation. Clearly, there is an order of
magnitude greater computational burden by using the simula-
tion-based method of designing alarm systems to achieve a sim-
ilar level of resolution in the results. Also, as expected the mean
design-time for the root-finding approximation exceeds that of
the closed-form approximation. As is clear by Fig. 6, there is no
great loss in accuracy by using these approximations except for

Fig. 7. AUC for all alarm systems as a function of prediction window, �.

Fig. 8. Empirical run-time complexity as a function of prediction window.

small values of , where there is a perceptible, but perhaps still
negligible loss.

The third column of Table II provides the mean run-time
across all values of , where it is evident again that the com-
putational requirements of the optimal alarm condition exceed
those of its approximations. In this case, the approximations
involve only the time for limit checking of the type governed
by (46). Thus, the actual time for root-finding is not included in
the reported time for that approximation as shown in Table II,
which might account for the fact that it is on par with the
time for the closed form approximation. The mean run-time
for checking the exact optimal alarm condition is based upon
computing (23)–(24), which naturally requires more time than
a simple limit check.

It is also of interest to investigate the case when using a fixed
threshold of while varying . A com-
parison of the AUC for all alarm systems for this case is shown
in Fig. 7. As is clear from Fig. 7 and corroborated by Fig. 6,
the optimal alarm system and its approximations outperform the
redline and predictive methods as before, again over the entire
domain of values shown for . Furthermore, as the prediction
window increases, the predictive performance as characterized
by the AUC decreases for all alarm systems, as is to be expected.
A more detailed study on the limiting effects of AUC as
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Fig. 9. ROC Curves and supporting statistics for all alarm systems, demonstrating negligible loss in accuracy for both approximations, and superiority of root-
finding approximation over closed-form approximation.

will be conducted in a sequel paper. Due to the use of a modestly
large fixed threshold of , however, there are no delete-
rious effects as a result of using approximations to the optimal
alarm system as were found when investigating the case when
varying to small values.

Characterization of complexity as increases is also of in-
terest. For the most part, the results are very similar to what was
presented in Table II for the case in which a prediction window
of was used while varying . Specifically, the mean de-
sign time for the exact optimal alarm system (along with redline
and predictive alarm systems) was on par with what was shown
in Table II (74 min in lieu of 81 min). However, the run-time in
this case increases linearly as shown in Fig. 8.

As the prediction window increases, the runtime for checking
the exact optimal alarm condition based upon computing (23)
and (24) naturally requires more time for larger prediction hori-
zons. A key advantage in using approximations can therefore
be realized. For both the closed form and root finding approxi-
mations, the mean runtime is exactly on par with what was pre-
sented in Table II for the case in which a prediction window of

was used while varying (averaging 0.11 ms). This is
primarily due to the fact that, again, runtime for the approxima-
tions involve only limit checking of the type governed by (46).

As for the design time of the approximations, they too exhibit
similar characteristics to what was presented and discussed in
conjunction with Table II. Specifically, there is a general upward
trend of the design time (which again include design times for
both the redline and predictive alarm systems) as increases.
The mean design times are moderately higher than what was
presented in Table II (111 s in lieu of 44.2 s for the closed-form
approximation and 129 s in lieu of 55.2 s for the root-finding
approximation).

Recall the notable divergence in AUC values between the
exact and optimal alarm approximations, which break down as

, shown in Fig. 6. Insight for the origins of this diver-
gence may be derived from examination of a candidate ROC
curve corresponding to a small value of . In Fig. 9, it can be
visually discerned how both approximations break down as re-
lated to the design parameter for a small value of
compared to a larger value of .

The topmost panels of the figure illustrate ROC curves cor-
responding to the different values of . For the optimal alarm
system shown in the top left panel, the two approximations yield
ROC curves that are close but not identical to the exact optimal
result when . On the top right panel when , the
ROC curve approximations appear to be much closer than on
the top left panel where . This substantiates a previous
observation made from Fig. 6, that as decreases, the approx-
imation loses its accuracy. Furthermore, from the previous sec-
tion, Figs. 2 and 5 showed the optimal alarm regions and their
approximations to provide further evidence of this loss of accu-
racy as decreases. Those figures were based upon the same
example used to generate the results presented in this section.

Further insight can be gained by inspecting the bottom two
panels of Fig. 9 as well. Note that the bottom panels show the
missed detection and false positive rates as a function of .
The complement of the former is the true positive rate, which
along with the false positive rate, is used to construct the ROC
curves shown on the top panels. It is evident that the closed
form approximations to the optimal alarm system yield true
and false positive rates that are systematically underreported
for both values of shown. This corroborates the mathemat-
ical observation made from the previous section based upon the
containment relationship of the closed form approximation to
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the exact optimal alarm region,
. For the smaller value of , this underreporting of the

true and false positive rates is even more striking than for the
larger value of .

Furthermore, the root finding approximations to the optimal
alarm system yield true and false positive rates that are over-
reported for both values of shown. This is much more clear
for the smaller value of than for the larger value of

. Hence, again this corroborates an inference made from
mathematical observations made in the previous section. Re-
call the containment relationship between the root finding and
closed form approximation to the exact optimal alarm region

. It was suggested that the root finding
approximation strategy may be overly aggressive and overshoot
the performance of the exact optimal method under certain cir-
cumstances. This is clear for the smaller value of .

There is one last important note about the root finding approx-
imations that is evident in the bottom two panels of Fig. 9. The
feasible domain of values for is identical to the exact optimal
alarm region of feasibility, which was also proven mathemati-
cally in the previous section. The same is not true for the closed
form approximation, where the region of feasibility is clearly
different, and drastically so for the smaller value of .

V. CONCLUSIONS AND FUTURE WORK

In this paper, a novel state-space approach to the optimal
alarm systems literature has been introduced, which also con-
tributes to the Kalman filter-based fault detection literature from
a different theoretical angle. In doing so, it has been demon-
strated that there is a negligible loss in overall accuracy when
using approximations to the theoretically optimal level-crossing
predictor for a stationary linear Gaussian process, at the ad-
vantage of greatly reduced computational complexity. The neg-
ligibility of the loss in accuracy was demonstrated by com-
paring two approximations of the optimal level-crossing pre-
dictor to two competing methods. Both approximations clearly
outperformed the two competing methods over various domains
for both and . However, care should be taken when de-
signing alarm systems for which level-crossing events are de-
fined with small values of . Specifically, when using approxi-
mations, alarm system design should be governed both by ROC
curve analysis as well as supporting false positive or missed de-
tection rate statistics parameterized by the design parameter .

In future work, the limiting effects of AUC for the closed-
form approximation introduced in this paper will be investi-
gated. Specifically, limiting values for relevant statistics as ,

, and approach the extremities of their feasible domains will
be examined. Doing so will help to facilitate a new and broader
context for the design of an optimal alarm system related to
important engineering design parameters. Furthermore, control
theoretic implications and ramifications of using the Kalman
filter in tandem with optimal alarm theory that naturally follow
will be investigated. Here, it will also be possible to gain fur-
ther insight into important engineering design considerations for
both the analysis and synthesis of algorithms used for mitigation
of potential adverse events from a practical standpoint. Relaxing

some of the inherent assumptions made in this paper to the point
where nonparametric methods such as Gaussian process regres-
sion and particle filtering are accessible may also provide a nat-
ural vehicle for the extension of optimal alarm theory to other
machine learning research domains. Finally, extension of this
work to systems containing both multivariate inputs and outputs
is important, and has practical appeal to the field of data mining.
As such, scalability and complexity will remain important con-
siderations.
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VII. THEOREMS AND LEMMAS

Theorem 1: From (1)–(3), it is clear that successive output
values of the stationary stochastic process, admit a well-de-
fined jointly Gaussian probability density function. Also, the
level-crossing event, , defined through (4), represents at least
one exceedance outside of the threshold envelope specified
by of the process . Then the optimal level-crossing
predictor can be written as , where
the condition for optimality is as specified and defined by the
use of the likelihood ratio criterion in (69) as a result of the
Neyman–Pearson Lemma, shown by DeMaré [6], and more
explicitly by Lindgren [7], [20]

(69)

Proof: Using Lemma 1,1 we can rewrite (69) as follows:

However, due to the assumption of stationarity of the process,
the size of the alarm region, , associated with the uni-
formly most powerful test of the hypothesis is by definition
a constant value. The hypothesis being tested in this case is of

1Which curiously appears very much like Bayes’ rule, but can be distin-
guished from it due to the use of both probabilities and density functions.
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the level-crossing event, . Due to the size of alarm region
being fixed, we can define new constants as shown below

Lemma 1:

(70)

Proof:

where by definition

and

Lemma 2:

Proof: The posited claim is true iff

More compactly

The following chain of inequalities is true

Lemma 3:

Proof:

By using the steady-state version of (13) and the discrete alge-
braic Lyapunov equation we now have the following, :

Let , , and add
to both sides of the inequality above. It then follows that the
following relations hold true,

Lemma 4:
Proof: It is true that

Under the condition that , where , with no rank
condition on , Lemma 5 can be used to support the following
implication:
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Also, given the matrix inversion lemma applied to (20) shown
below, the subsequent series of equations proves that

Lemma 5: Given , for which and there exists
no rank condition on : .

Proof:
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Corrections

Errata for “A State-Space Approach to Optimal
Level-Crossing Prediction for Linear Gaussian Processes”

Rodney A. Martin, Member, IEEE

1) In [1], on p. 5086, Column 1, under Eq. 14, the definition for����

should include a � for the transpose operator, not � , as such

���� ����� � ��������� � ������
����� � � � � ����

2) On p. 5088, Column 1, Eq. 34, should be revised as follows:

True positive rate:

�� � � ������� �
� ���� ���

� ����
�

3) On p. 5088, Column 1, under Eq. 37, the integral defined for
� ���� should be with respect to ���� in lieu of ���, as such

� ���� � � �

�

���
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4) On p. 5090, Column 2, Eqs. 53–56, the mean of the normal distri-
bution associated with each of the corresponding integrals should
be ��, not ���, as follows:
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