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ABSTRACT 
 
A probabilistic matching of lines, which form a homography 
in two images, is formulated in the framework of the 
forward stepwise regression. A membership matrix 
represents the likelihood of line correspondences to the 
homography. The correspondence measure is borrowed 
from the forward stepwise regression so that the squared 
error of the homography and the number of correspondences 
are balanced simultaneously. An alternating scheme for 
optimizing the membership and homography is provided. 
The experimental results on synthetic and real images 
validate the proposed method. 
 

Index Terms—Line correspondences, Membership and 
homography, Forward stepwise regression 
 

1. INTRODUCTION  
 

In many computer vision applications, image registration 
is crucial for image analysis in which the information is 
obtained from the combination of various image sources. 
Image registration is to overlays two or more images of the 
same scene taken by different configurations such as times, 
viewpoints, and sensors. Typically, the registration methods 
consist of two main steps: feature matching and transform 
model estimation [1]. Estimating the transformation requires 
a set of reliable matches of features between the images 
while exact transformation helps to find the matches. 
Finding correspondence and transformation between two 
images brings us a chicken and egg problem. 

Many invariant feature descriptors are developed to 
summarize their appearance and compared to find the 
correspondences. Appearance information includes color, 
intensity and edge orientation histogram at image features 
such as edges, corners and blobs [2][3]. The geometric 
invariance should be considered for robust feature matching. 
[5]. In the case that two images have largely different 
camera viewpoint and pose, appearance of features does not 
match well. For example of satellite and aerial images in 
Figure 1, only roofs of buildings are observed in the satellite 
image while façade parts dominate the appearance of 
buildings in the aerial image. 

The graph matching problem has been approached in 
many different ways in the computer vision. A relaxation 
method for pair-wise attribute relations was proposed [7][8]. 
A dual-step expectation maximization algorithm was 
introduced to match geometric structure in 2D point-sets [9]. 
Spectral graph theory was applied to characterize the global 
structural properties [11][12][13]. Exact graph matching is 
proposed for rich structures such as road networks [6]. A 
probabilistic matching of line segments is founded in our 
previous paper [14]. However, it needs to describe some 
theoretical refinements. In addition, detection of line 
segments is vulnerable to noise more than lines. 

A probabilistic matching of lines, which form a 
homography in two images, is formulated in the framework 
of the forward stepwise regression. The common features of 
satellite and aerial images (Figure 1) are line segments in the 
ground plane. The homography of two images induced by 
the ground plane is considered. A membership matrix 
represents the likelihood of line correspondences to the 
homography. The correspondence measure is borrowed 
from the forward stepwise regression so that the squared 
error of the homography and the number of correspondences 
are balanced simultaneously. An alternating scheme for 
optimizing the membership and homography is provided. 
The experimental results on synthetic and real images 
validate the proposed method. 
 

2. PROBABILISTIC MATCHING OF LINES 
 
Suppose a homography H  between two images 1π  and 2π  

 
(a) Satellite image                     (b) Aerial image 

Figure 1. Satellite and aerial images.



induced by a ground plane π (Figure 2). A line ′l  on 1π  is 

covariantly transformed to l  2π  [5]: 

 T′ =l H l . (1) 
Four line correspondences determine the homography H . 

The correspondence of two sets of lines is represented 
by a Boolean matrix which embeds a bijective one-to-one 
correspondence. Let L and L ′  be the line sets on 1π  and 2π , 
respectively: 
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For all lines in L  and L ′ , at most one correspondence is 
allowed to be embeded in M . Let 
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respective individual membership of i L∈l  and j L′ ′∈l : 
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Then they are restricted to be Boolean: 
 , {0,1}.

i j
m m ′ ∈  (5) 

The correspondence measure supporting the 
homography H  is defined to minimize its square error and 
to maximize the number of correspondences. The squared 
error is written by 
 

,
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i j

SSE m SSE i j= ∑M H H , (6) 

where 2( , ; ) T
i jSSE i j ′= −H H l l . The number of 

correspondence is written by 
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where dof  denotes the degree of freedom. An objective 

function which minimizes ( , )SSE M H  and maximizes m   
simultaneously is hard to define. Even if it is defined, 
computing the optimum M is NP-hard. 

The correspondence matrix is relaxed to be real value in 
[0,1] to make the combinatorial optimization problem into a 
tractable nonlinear optimization problem. The membership 
matrix, the relaxed version of correspondence matrix, 
reflects the likelihood of the correspondences. Let us 
redefine : [ ] [0,1] ,n n

ijm
′×= ∈M  where ijm  is the 

membership of line correspondence ( , )i j
′l l . Each line in L  

and L ′  cannot abuse its resources so that its individual 
memberships, the sum of all memberships of a line in one 
set to all lines in the other set, does not exceeds a unit. 
Accordingly, the relaxed constraints of individual 
memberships are  
 , [0,1]

i j
m m′ ∈ . (8) 

The correspondence measure to minimize ( , )SSE M H  
and maximize m  simultaneously is borrowed from the 
forward stepwise regression. The forward stepwise 
regression is to select significant variables in the regression 
model [4]. It determines variables by the following 
significance test of a reduced model to full model: 
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where ( )MSE •  and ( | )MSR • • means mean squared error of 
full and reduced models, respectively, and ΔM  is the 
indicator matrix which variables are added or removed. 
Forward (or backward) stepwise regression determines 
discrete ΔM which maximizes (9) in each step. The relaxed 
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Figure 2. Line Homography 

   
Figure 3. Flow chart of proposed algorithm  



version of (9) induced by small ΔM is derived: 
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Therefore, membership M and homography H is obtained to 
maximize (10) subject to 1=H . 

The objective function ( , )F M H  is maximized in an 
alternating scheme is proposed because it is highly nonlinear 
with respect to M and H (Figure 3). On one hand, F  of 
(10)is a quadratic function with respect to H for a fixed M. 
On the other hand, F  is a linear fraction with respect to M 
for a fixed H. Given M, H is obtained by weighted least 
squares method. Conversely, M is obtained by linear 
fractional program. Initial membership is crucial to find a 
correct correspondence and homography because F  is not 
convex. 

 
3. INVARIANTS OF FIVE COPLANAR LINES 

 
The initial correspondences of line homography are 
restricted by the invariants of five coplanar lines in the case 
to match a small line set to a large reference one. Given five 
coplanar lines, labeled 1 2 5, , , ,l l l  two independent 
projective invariants are 
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where [ , , ],ijk i j kL = l l l  and ijkL  is the determinant of 

ijkL . Notice that each ijkL  is viewed as the area of the 
triangle the vertices of which are the intersections of the 
lines , ,  and i j kl l l . Invariant vectors 1 2( , )I I  of the 
reference set stored in a database are restricted by those of 
the small set, which drastically reduces the number of initial 
guesses. 

The trigonometric invariants are defined to take into 
account degenerate configurations, uniform distribution of 
noise and cyclic continuity. For certain configurations, the 
labeling of lines in each ijkL  may make some determinants 
in the denominators vanish. Trigonometric invariants are 
defined as 
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where atan2  is the two-argument variation of the 
arctangent function. In practice, the noise variance of cross-
ratio is not uniform and is proportional to its values. 
Trigonometric invariants whiten the noise in somehow. 
Lastly, the configurations having cross-ratios of negative 

and positive infinity are very close. The periodicity of 
trigonometric invariants accommodates this property. Figure 
4 shows an example database of trigonometric invariants 
obtained from a satellite image. 
 

4. EXPERIMENTAL RESULT 
 

Simulation result of a toy example with three lines is shown 
in Figure 5. The line correspondence is set to be identity 
matrix and the homography is defined to enlarge the one 
image by the scaling factor 2. The initial membership is 
chosen from trigonometric invariants with small noise. The 
true and initial homographies are  

 0
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ˆ0 2 0  and 0.2 2.0 4.3
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The initial lines transformed by 0H  are distorted very much 
from the corresponding lines. The first four lines of image 1 
(Figure 5a) are displayed in Figure 5b to show how much 
the initial homography distorts them. However, the 
proposed method recovers the perfect correspondence in a 
few iterations. The probabilistic matching is converged to 
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(a) Roadmap from a satellite image 
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(b) Trigonometric invariant  

Figure 4. Trigonometric invariants of five coplanar lines 
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the true correspondence from a reasonable initial guess. All 
lines are randomly rotated by the direction angle. The 
proposed method is tolerable to about 6° noise variance in 
direction angle of lines. 

The experimental result for a real image is also 
convincing (Figure 6). Seven and eighteen lines are 
extracted manually from aerial and satellite images, 
respectively. The initial membership is chosen by the 
invariants of five coplanar lines. The homography is 
estimated by the proposed method: 
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The squared error of Ĥ  is 0.03471 and the relaxed number 
of correspondence is 7.21.  
 

5. CONCLUSION 
 

A probabilistic approach to match line between two images, 
taken from largely different camera configuration, is 
proposed to calculate their homography. A combinatorial 
problem of line matching is converted from the relaxed 
membership into nonlinear optimization. The forward 
stepwise regression speeds up the combinatorial 
optimization even though it is a suboptimal method. The 
relaxed version of the forward and backward stepwise 
regression is derived and maximized with respect to the 

membership and homography. An alternating algorithm of 
the weighted least square method and linear fractional 
program provides the optimal solution. The probabilistic 
matching is converged to the optimal correspondence from a 
reasonable initial guess. Invariants of five coplanar lines 
restrict effectively the initial guess of the correspondence. 
The extensive error analysis is needed to verify the 
performance. The location of aerial vehicles is estimated 
from the homography. 
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Figure 6. Aerial and satellite images 

 
(a) image 1                         (b) image 2  

Figure 5. Toy example 


