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Abstract. The topographical and photometric reconstruction of the moon from 
Apollo metric data has gained attention to support manned mission planning since the 
NASA has been working on return to the moon in 2004. This paper focuses on 
photometric recovery of the moon surface from Apollo orbital imagery. The statistical 
behavior of photons generates the scene radiance which follows a continuous Poisson 
distribution with the mean of surface radiance. The pixel value is determined by the 
camera response of sensor exposure which is proportional to scene radiance and 
exposure time. The surface radiance, exposure time and camera response are 
estimated by the maximum likelihood method for sensor exposure. The likelihood 
function is highly nonlinear and we were unable to find an estimator in closed form. 
Grouping the three sets of parameters (surface radiance, exposure time, and camera 
response), an EM-like juggling algorithm is proposed to determine the one family of 
parameters from the others. The photometric recovery of otho-images derived from 
Apollo 15 metric camera imagery was presented to show the validity of the proposed 
method. 

1. Introduction 

The Lunar Mapping Modeling Project (LMMP) has been actively carried out to develop 
maps and tools to benefit the Constellation Program (CxP) lunar planning. It will provide 
common, consistent and useful access to this information for lunar exploration and science 
communities. One of the requirements for LMMP is to construct geo-registered global and 
local albedo (visible image) base maps of the Moon from the digital stereo pair scans 
collected by Apollo era lunar missions (Figure 1). These scans, despite their high quality, 
are affected by noise inherent to the scanning process: the presence of film grain, dust and 
lint particles. Attenuating the effect of these scanning artifacts and estimating the surface 
radiance from Apollo orbital imagery are the central focus of this paper. 

More than ever, scanned images are used as texture maps for geometric models. When a 
picture of a scene is taken and digitized to obtain “brightness” values, these values are 
rarely true measurements of relative radiance in the scene. There is usually a nonlinear 



 

 

mapping that determines how radiance in the scene becomes pixel values in the image [1]. 
The image acquisition pipeline shows how the nonlinear mapping composite the each 
component in a digital image formation (Figure 2).  

In this paper, the scene radiance is modeled as a continuous Poisson distribution with 
surface radiance due to the statistical behavior of photons. The pixel value is determined by 
the camera response of sensor exposure which is proportional to scene radiance and 
exposure time. The surface radiance, exposure time and camera response are estimated by 
the maximum likelihood method for sensor exposure. The likelihood function of all 
parameters is highly nonlinear and an estimator was unable to be found in in closed form. 
An EM-like juggling algorithm is proposed to determine the one family of parameters from 
the others. Finally, the reconstructed radiance map from lunar orbital imagery is presented. 

2. Image formation 

Scene radiance becomes pixel values through several linear and nonlinear transformations 
as seen in the image acquisition pipeline (Figure 2). These unknown nonlinear mapping 
scan occur during exposure, development, scanning, digitization, and remapping. The 
camera response function is the aggregate mapping from sensor exposure X to pixel values 
Z. We estimate it from a set of sufficiently overlapped images with different exposure 
times, as described in [1]. 

After the development, scanning and digitization processes, we obtain an intensity value 
Z, which is a nonlinear function of the original exposure X at the pixel. Let us call this 
function f, which is the composition of the characteristic curve of the film as well as all the 
nonlinearities introduced by the later processing steps. We write down the film reciprocity 
equation as: 

 ( )Z f X= . (1) 
Since we assume f is monotonic, it is invertible, and we can rewrite (1) as: 

 
Figure 1: Examples of Ortho-images from Apollo 15 Metric Camera Imagery. 



 

 

 ( )X g Z= . (2) 
where 1g f −= . 

A continuous Poisson distribution is adopted to model the scene radiance and sensor 
exposure. Several sources of image noise are listed in [2], but the photon noise dominates 
the other components in CCD or CMOS cameras. The other noise can be reduced by 
appropriate design of manufacturer and negligible. Photon production is governed by the 
laws of quantum physics which restrict us to consider an average number of photons within 
a give observation window. The probability distribution of p  photons during seconds is 
known to be discrete Poisson [2,3]: 
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where ρ  is the rate or intensity parameter measured in photons per second. By the 
continuous nature of measurement, the sensor exposure X  is represented by the continuous 
Poisson distribution: 
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where r  is the scene radiance.  

3. Radiance Maps from Apollo Imagery 

The input to our algorithm is n digitized photographs taken from the same vantage point 
with different known exposure durations jt ( 1,2, ,j n= ). Let the pixel values be 
uniformly quantized. In this case, 256 gray levels ( 0,1, ,255z = ). We will assume that 
the scene is static and that lighting changes can be safely ignored. For brevity and 

 
Figure 2: Image Acquisition Pipeline  



 

 

simplicity, one-dimensional illustrations of images will be presented which can be easily 
extended to two-dimensional images (Figure 3). 

Suppose that we have perfectly aligned images on a regular grid (Figure 4). It can then be 
assumed that each pixel value on a grid point comes from the same radiance value on that 
point. We denote i  by a spatial index over pixels and j  by an image index. Let ir  be the 
radiance value on ith grid point and jt  be the exposure time of jth image. The inverse 
function of camera response is represented by a vector. We will denote sensor exposure and 
pixel values by ijx  and ijz , respectively. From (2) we can write 

 ( )ij ijx g z= . (5) 
All parameters such as surface radiance, exposure time, and camera response are 

estimated by the maximum likelihood method of the continuous Poisson distribution. Let 
g , r , and t  be the parameterized vectors for camera response, sensor irradiance and 
exposure time, respectively. We then have their likelihood of the continuous Poisson 
distribution: 
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subject to  
 0 (0) (1) (254) (255)g g g g≤ ≤ ≤ ≤ ≤ . (7) 

Taking the natural logarithm of (6), we have: 
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Figure 3: Radiance Map Recovered from Orbital Imagery. 



 

 

Taking the derivative with respect to ir , jt  and ( )g k , we have: 
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where Ψ  is the digamma function. 

4. Juggling Algorithm 

Since we were unable to find a close form solution to make (9) zeros, we determine them 
iteratively as in the expectation maximization (EM) method. Fortunately, we have the 
closed-form solution for scene radiance and exposure times from (9):  
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We have the closed-form solution for the camera response function from (9) as long as it 
satisfies the increasing property (7): 

 
Figure 4: Aligned Image Set in Regular Grid. 
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In practice, we have to optimize (8) directly with linear constraints of (7). This 
optimization is stable in that the objective function and domain are convex. Still, (12) is 
useful to provide a good initial guess of the optimization. The following approximation is 
also useful unless we have a built-in function code of the inverse digamma function: 
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This is based on the fact that the digamma function has the same value with the logarithm 
function asymptotically: 

 ( 1) lnx xΨ + . (14) 
Iteratively we can update all parameters from an initial guess to the convergence. We call it 
juggling algorithm as the one family of parameters are fully determined by the others. It is 
reasonable to choose exposure times uniformly because the images were taken 
continuously. The camera response function is initialized linearly because most cases it 
follows the gamma correction function. 

The extension to the case of the unaligned images is straightforward for the exposure 
times and the camera response function in that they have sufficient number of real 
observations to be determined. However, scene radiance should be determined by a single 
point of interest because there is no corresponding observation in the other overlapping 
images. This eliminates the robustness of the estimation. To avoid single observations, 
virtual observations for all real observations are generated in all other images. Figure 5 
illustrates that the virtual observations (hollow points) are interpolated bilinearly to real 
observations (solid points). But, it is sufficient to calculate exposure times and camera 
response function from the real observations as in the regular case. The virtual observations 

 
Figure 5: Unaligned Image Set with Virtual Pixels. 



 

 

are used to calculate the radiance: 
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where ( )ijg z  is the estimated sensor exposure for real observation or interpolated values 
for virtual observations.  

5. Experimental Results 

The National Aeronautics and Space Administration (NASA) Exploration Systems Mission 
Directorate (ESMD) has been charged with producing cartographic products via LMMP for 
use by mission planners and scientists in NASA’s Constellation program. As part of the 

 
(a) Original Image Mosaic 

 
(b) Photometric Recovery Map 

Figure 6: Radiance Maps of Subset Images. 



 

 

LMMP, we have produced 70 preliminary Digital Terrain Models (DTMs) and 
ortho-images derived from Apollo 15 Metric Camera (AMC) orbit 33 imagery using the 
Ames Stereo Pipeline (ASP); a software tool that generates high quality DTMs from orbital 
imagery using a fully automated process. Given a pair in Apollo Metric Imagery, the 
reference image is projected onto the reconstructed DTM from the pair by ASP and then the 
ortho-image is reconstructed by orthographic projection. The whole image set consists of 
66 ortho-images and has significant overlap between adjacent frames (80%) so that it is 
well-suited for photometric recovery. 
The photometric recovery program is implemented based on the NASA Vision Workbench 
(VW). The NASA VW is a general purpose image processing and computer vision library 
developed by the Intelligent Robotics Group in the Intelligent Systems Division at the 
NASA Ames Research Center. Figure 6 shows the original mosaic image constructed from 
ortho-images and photometrical radiance maps from the consecutive 12 images. The 
relative radiance is adjusted to be consistent with the remaining images. As you can see in 
the figure, the original image mosaic shows the vertical seams on the overlapping 
boundaries. However, the proposed method provides the seamless radiance map. Figure 7 
shows the whole image mosaics of original images and the proposed method. The aspect 
ratio is adjusted because of limited space. 

The camera response is shown in Figure 8. The initial guess by (13) is much closer to the 
optimal solution. The camera response function is obtained by the inverse function shown 
in Figure 8b. The estimated exposure times of each image are shown in Figure 9. 

 
(a) Original Image Mosaic 

 
(b) Photometric Recovery Map 

Figure 7: Radiance Maps of Full Set. 



 

 

6. Conclusion 

The photometric radiance map of the moon was successfully reconstructed from Apollo 
15 metric camera imagery. The pixel value is determined by the camera response of sensor 
exposure which is proportional to scene radiance and exposure time. The statistical 
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(a) Inverse Camera Response                            (b) Camera Response Function 

Figure 8: Camera Response Functions. 
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Figure 9: Exposure Times. 



 

 

behavior of photons was considered and the maximum likelihood function of the 
parameters was derived. The surface radiance, exposure time and camera response are 
estimated by the maximum likelihood method. The likelihood function is highly nonlinear 
so that the three sets of parameters (surface radiance, exposure time, and camera response) 
are iteratively optimized. A juggling algorithm is proposed to determine the one family of 
parameters from the others. The experimental results show the validity of the proposed 
method. 

A residual analysis would be desirable to provide a quantitative measure of the proposed 
method. A parametric representation of surface radiance would also be valuable to enhance 
the recovery resolution and robustness of the algorithm. 

7. Acknowledgements 

This work was funded by the NASA Lunar Advanced Science and Exploration Research 
(LASER) program grant #07-LASER07-0148, NASA Advanced Information Systems 
Research (AISR) program grant #06-AISRP06-0142, and by the NASA ESMD Lunar 
Mapping and Modeling Program (LMMP). The first author conducted the research under 
the Visiting Researcher Agreement between the NASA and the Korea Advanced Institute 
of Science and Technology. 

8. References 

1. Paul E. Debevec and Jitendra Malik, Recovering high dynamic range radiance maps from 
photographs. In SIGGRAPH 97 Conference Proceedings, Addison Wesley, T. Whitted, Ed., 
Annual Conference Series, ACM SIGGRAPH, 369–378, 1997. 

2. I. Young, J. Gerbrands, and L. van Vliet. Fundamentals of image processing, 1995. Delft 
University of Technology. 

3. Youngbae Hwang, Jun-Sik Kim and In-So Kweon, "Sensor noise modeling using the Skellam 
distribution: Application to the color edge detection", in IEEE International Conference on 
Computer Vision and Pattern Recognition (CVPR), 2007. 

4. S. J. Lawrence, M. S. Robinson, M. Broxton, J. D. Stopar, W. Close, J. Grunsfeld, R. Ingram, L. 
Jefferson, S. Locke, R. Mitchell, T. Scarsella, M. White, M. A. Hager, T. R. Watters, E. 
Bowman-Cisneros, J. Danton, and J. Garvin. The Apollo Digital Image Archive: New Research 
and Data Products. In Proc of the NLSI Lunar Science Conference, page 2066, 2008. 

5. M. J. Broxton, Z. M. Moratto, A. Nefian, M. Bunte, M. S. Robinson, Preliminary Stereo 
Reconstruction from Apollo 15 Metric Camera Imagery, 40th Lunar and Planetary Science 
Conference (2009) 

6. W. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle Adjustment: A Modern 
Synthesis. In Vision Algorithms: Theory and Practice, number 1883 in LNCS, pages 298–373. 
Springer-Verlag, Corfu, Greece, September 1999.  


