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ABSTRACT
Generating accurate three dimensional planetary models is becom-
ing increasingly more important as NASA plans manned missions
to return to the moon in the next decade. This paper describes
a stereo correspondence system for orbital images and focuses
on a novel approach for the sub-pixel refinement of the disparity
maps. Our method uses a Bayesian formulation that generalizes
the Lucas-Kanade method for optimal matching between stereo
pair images. This approach reduces significantly the pixel locking
effect of the earlier methods and reduces the influence of image
noise. The method is demonstrated on a set of high resolution
scanned images from the Apollo era missions.

1. INTRODUCTION

The work 1 in this paper is motivated by the need for accurate, high
resolution Lunar 3D maps that play a central role in NASA’s future
manned and unmanned missions to the moon. These maps support
astronaut training, landing site planning, computer assisted land-
ing, robotic exploration and provide very valuable information for
lunar scientists and geologists. Although the resolution and cover-
age of these maps will be enhanced by data from upcoming mis-
sions, digital stereo pair scans from the Apollo era lunar missions
(Figure 1) provide some of the best lunar imagery available to-
day [3]. These images, despite their high quality, are affected by
two types of noise inherent to the scanning process: the presence
of film grain and dust and lint particles. The central focus of this
paper is the attenuation of the effect of these scanning artifacts and
improving the accuracy of the sub-pixel disparity maps.

A common technique in sub-pixel refinement is to fit a parabola
to the correlation cost surface in the 8-connected neighborhood
around the integer disparity estimate, and then use the parabola’s
minimum as the sub-pixel disparity value. This method is easy
to implement and fast to compute, but exhibits a problem known
as pixel-locking: the sub-pixel disparities tend toward their inte-
ger estimates and can create noticeable ”stair steps” on surfaces
that should be smooth [8], [10]. One way of attenuating the pixel-
locking effect is through the use of a symmetric cost function [5]
for matching the “left” and “right” image blocks. To avoid the
high computational complexity of these methods another class of
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approaches relying on Lucas Kanade algorithm [1] proposes an
asymmetric score where the disparity map is computed using the
best matching score between the left image block and an optimally
affine transformed block in the right image. Recently, several sta-
tistical approaches [2] have emerged to show encouraging results.
Our sub-pixel refinement approach generalizes the earlier work by
Stein et al. [8] to a Bayesian framework that models both the data
and image noise. Iteratively estimating the model parameters de-
termines the optimal disparity map that reduces the effects of im-
age noise and attenuates the sub-pixel locking effect. The next
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Fig. 1. Apollo Metric Camera stereo pair.

sections describe the discrete stereo correlation (Section 2), and
the subsequent sub-pixel refinement approach (Section 3) of the
integer disparity map. In Section 4 we present a set of experi-
mental results and a comparison with other sub-pixel refinement
techniques.

2. FAST DISCRETE STEREO CORRELATION

The integer disparity map is computed in the following steps. First,
the left and right images are aligned using automatically gener-
ated tie points and geometric constraints from the camera models.
Next, the images are filtered using a Laplacian of the Gaussian
filter to reduce the lighting variations effect [6]. The integer dis-
parity map DSI(i, j, dx, dy) stores the matching cost between a
left image block centered around pixel (i, j) and a right image
block centered at position (i − dx, j − dy). One efficient way



to compute the block matching cost is the sum of absolute differ-
ences of all block pixels. The normalized cross correlation [4],
used in our system, is a computationally more complex approach
for the block matching cost that provides more robust results with
respect to variation in illumination conditions. A box filter [9] is
applied to reduce duplicate operations in the calculation of DSI .
To further reduce the computational complexity our system uses a
pyramid-based approach where disparities are estimated using low
resolution images, and successively refined at higher resolutions.
At each level of the pyramid, we partition the image into rectangu-
lar sub-regions with similar values of the disparity determined in
the previous lower resolution level of the pyramid [9].

3. SUB-PIXEL REFINEMENT

After the integer disparity estimates are computed in the fast dis-
crete correlation step, the sub-pixel correlator refines these esti-
mates to sub-pixel accuracy. Let IR(m,n) and IL(i, j) be two
corresponding pixels in the right and left image respectively, where
i = m + dx, j = n + dy and dx, dy are the integer disparities.
Using a linear approximation of the Taylor extensions around pixel
(i, j) in the left image

IL(i+ δx, j + δy) ≈ IL(i, j) + δx
dIL
dx

(i, j) + δy
dIL
dy

(i, j) (1)

where δx and δy are the local sub-pixel displacements. Let e(x, y) =
IR(x, y) − IL(i + δx, j + δy) and W be an image window cen-
tered around pixel (m,n). The local displacements are not con-
stant across W and they vary according to:

δx(i, j) = a1i+ b1j + c1

δy(i, j) = a2i+ b2j + c2. (2)

The goal of the method presented in [8] is to find the parameters
a1, b1, c1, a2, b2, c2 that minimize the cost function

E(m,n) =
X

(x,y)∈W

(e(x, y)w(x, y))2 (3)

wherew(x, y) are a set of weights used to reject outliers. Note that
the local displacements δx(i, j) and δy(i, j) depend on the pixel
positions within the window W . In fact, the values
a1, b1, c1, a2, b2, c2 that minimize E can be seen as the parame-
ters of an affine transformation that best transform the right image
window to match the reference (left) image window.

In the original Lucas-Kanade method the weights are setw(x, y) =
1. In [8] the values the weightsw(x, y) determined heuristically to
reject the noise and emphasize the pixel closer to the center of the
window. An alternative solution is to use a set of weights derived
from the Cauchy distribution [4] given by:

w(x, y) =

q
b2 log(1 +

I2e (x,y)

b2
)

|Ie(x, y)|
(4)

where b is some fixed threshold (in our experiments b = 10−4)
and Ie(x, y) = IR(x, y)− IL(i, j).

The steps of this method are given below

• Step 1: Compute dIL
dx

(i, j), dIL
dy

(i, j) and the IR(x, y) val-
ues using bilinear interpolation. Initialize the parameters
a1, b1, c1, a2, b2, c2.

• Step 2: Determine a1, b1, c1, a2, b2, c2 to minimize E.

• Step 3: Compute δx(i, j) and δy(i, j) using Equation 2.

• Step 4: Compute a new point (x′, y′) = (x, y) + (δx, δy)
and the IR(x′, y′) values using bilinear interpolation.

• Step 5: Check for convergence. If norm of (δx, δy) vec-
tor falls below a fixed threshold the iterations converged.
Otherwise, go to step 1.

One shortcoming of this method is directly related to the cost func-
tion that is minimized. The cost function E has a low tolerance to
noise and often creates erroneous disparity information in areas af-
fected by image noise. The method introduced in this paper tries
to overcome this problem by replacing the cost function E with a
probabilistic framework that allows to optimally estimate the pa-
rameters of the noise model.

In our approach the probability of a pixel in the right image is
given by the following Bayesian model:

P (IR(m,n)) =
X
k=0,1

P (IR(m,n)|z = k)P (z = k) (5)

The first mixture component (z = 0) is a normal density function
with mean IL(i+ δx, j + δy) and variance σp

P (IR(m,n)|z = 0) = N (IR(m,n)|IL(i+ δx, j + δy), σp) (6)

The second mixture component (z = 1) in Equation 6 models the
image noise using a normal density function with mean µn and
variance σn.

P (IR(m,n)|z = 1) = N (IR(m,n)|µn, σn) (7)

Let IR(m,n) be a vector of all pixels values in a window W cen-
tered in pixel (m,n) in the right image. Then,

P (IR(m,n)) =
Y

(x,y)∈W

P (IR(x, y)) (8)

The parameters λ = {a1, b1, c1, a2, b2, c2, σp, µn, σn} that max-
imize the model likelihood in Equation 8 are determined using
the Expectation Maximization (EM) algorithm. Maximizing the
model likelihood in Equation 8 is equivalent to maximizing the
auxiliary function:

Q(λ) =
X
k

P (k|IR, λt) logP (IR, k, δ|λ)

=
X
k

X
x,y

P (k|IR(x, y), λt) logP (IR(x, y)|k, θ)P (k|λ)

The EM algorithm for the stereo image pair is described by the
following steps:

• Initialization: Iteration start with a set of values chosen at
random or based on a priori knowledge of the data. In our
system a1 = 1, b1 = 0, c1 = 0, a2 = 0, b2 = 1, c2 =
0, σp = 10−3, µn = 0.0, σn = 10−2.

• Estimation: Compute the a posteriori probabilities

γ(k)
xy = P (k|IR(x, y), λt)

=
P (IR(x, y)|k, λt)P (k|λt)P
l P (IR(x, y)|l, λt)P (l|λt)

(9)

for k = 0, 1.



• Maximization: Determine the parameters λ s.t. dQ
dλ

= 0

with the constraint
P
k P (k|λ) = 1.
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• Convergence test: The EM iteration stop when the abso-
lute difference of the P (IR(m,n)) at consecutive iterations
fall below a fixed threshold or after a maximum number of
iterations. Otherwise, continue with the estimation step.

Note that Equation 10 is similar to the equation used to determine
the parameters a1, b1, c1, a2, b2, c2 in step 2 of the the method pre-
sented in [8] and described earlier in this section. In our method
the values γ(0)

xy are interpreted as a posteriori probabilities and are
optimally re-estimated using EM to learn the noise and data pa-
rameters. In this way, our approach can be seen as a generalization
of the Lucas-Kanade method. The following steps summarize our
approach:

• Step 1: Compute dIL
dx

(i, j), dIL
dy

(i, j) and the IR(x, y) val-
ues using bilinear interpolation. Initialize the model param-
eters λ.

• Step 2: Compute iteratively the model parameters λ using
the EM algorithm described by Equations 9- 14.

• Step 3: Compute δx(i, j) and δy(i, j) using Equation 2.
• Step 4: Compute a new point (x′, y′) = (x, y) + (δx, δy)

and the IR(x′, y′) values using bilinear interpolation.
• Step 5: If the norm of (δx, δy) vector falls below a fixed

threshold the iterations converged. Otherwise, go to step 1.

4. EXPERIMENTAL RESULTS

The stereo processing system described in the previous sections is
used to generate three dimensional lunar models from the Apollo
metric camera (AMC) images captured during the Apollo 15, 16
and 17 missions [7]. AMC is a calibrated wide field (75deg) of
view orbital mapping camera that photographed overlapping im-
ages (80%) used as stereo pairs. The image set consisting of 8000
stereo pairs was obtained by scanning original film negatives cap-
tured by AMC. The scans (Figure 1) capture the full dynamic range
and resolution of the original film resulting in digital images of size
22,000 × 22,000 pixels representing a resolution of 10m2/pixel.

Film grain and the dust particles are inherent to the scanning
process and can significantly limit the accuracy of the stereo pro-
cessing system. One example where dust particle noise occurs in
one of the stereo pair images is shown in detail in Figure 2 a and b.
Figure 2 c illustrates the integer disparity map obtained by running
the fast discrete correlation method described in Section 2. Fig-
ure 2 d, e and f compares the horizontal sub-pixel disparity maps
obtained using the parabola method, the Lucas Kanade method
with Cauchy weights (Equation 4) and the Bayesian approach in-
troduced in Section 3 respectively. The Bayesian approach reduces
the “stair-steps” effect of the parabola based method apparent in
the horizontal and vertical artifacts, at the same time with reduc-
ing the effect of dust noise that affect the weighted Lucas Kanade
method. Figure 3 displays a 3D oblique view of Hadley Rille,
produced using our stereo processing system from the image pair
shown in Figure 1.

5. CONCLUSIONS AND FUTURE WORK

The method for sub-pixel disparity maps generation introduced in
this paper uses a novel statistical formulation for optimally deter-
mining the stereo correspondence and reducing the effect of im-
age noise. The method proposed here was tested on a set of very
large resolution scanned images from the Apollo era missions. Our
approach outperforms previous methods based on Lucas Kanade
optical flow formulations at the cost of a higher computational
complexity. Further research will be directed towards reducing
the complexity of the current approach and generating a high res-
olution 3D map from the entire set of stereo image pairs captured
during the Apollo missions.
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