
1. INTRODUCTION
When the demand in a region of airspace or at an airport

is expected to exceed the available capacity for an extended
period of time, traffic flow management specialists within the
Federal Aviation Administration (FAA) implement TMIs in
order to mitigate these demand-and-capacity imbalances.
Initiatives available to these specialists include Airspace
Flow Programs, Ground Delay Programs, Ground Stops,
rerouting and MIT restrictions. By far the most frequently
used initiative is the MIT restriction, largely due to its

simplicity and ease of implementation [1]. Past surveys of
Traffic Management Coordinators within the FAA indicate
that MITs are most frequently fulfilled in response to volume
and weather constraints [1]. Briefly, MIT restrictions are used
to ensure a minimum spacing between aircraft in a stream,
and they are typically implemented in increments of 5
nautical miles (nmi) in a range between 10 and 30 nmi. The
number of aircraft entering a region of airspace controlled by
a MIT restriction is inversely proportional to the MIT
restriction.

2013-01-2301
Published 09/17/2013

doi:10.4271/2013-01-2301
saeaero.saejournals.org

Modeling Weather Impact on Airport Arrival Miles-in-Trail
Restrictions

Yao Wang
NASA Ames Research Center

Shon Grabbe
National Aero & Space Administration

ABSTRACT
When the demand for either a region of airspace or an airport approaches or exceeds the available capacity, miles-in-

trail (MIT) restrictions are the most frequently issued traffic management initiatives (TMIs) that are used to mitigate these
imbalances. Miles-in-trail operations require aircraft in a traffic stream to meet a specific inter-aircraft separation in
exchange for maintaining a safe and orderly flow within the stream. This stream of aircraft can be departing an airport,
over a common fix, through a sector, on a specific route or arriving at an airport. This study begins by providing a high-
level overview of the distribution and causes of arrival MIT restrictions for the top ten airports in the United States. This is
followed by an in-depth analysis of the frequency, duration and cause of MIT restrictions impacting the Hartsfield-Jackson
Atlanta International Airport (ATL) from 2009 through 2011. Then, machine-learning methods for predicting (1) situations
in which MIT restrictions for ATL arrivals are implemented under low demand scenarios, and (2) days in which a large
number of MIT restrictions are required to properly manage and control ATL arrivals are presented. More specifically,
these predictions were accomplished by using an ensemble of decision trees with Bootstrap aggregation (BDT) and
supervised machine learning was used to train the BDT binary classification models. The models were subsequently
validated using data cross validation methods. When predicting the occurrence of arrival MIT restrictions under low
demand situations, the model was able to achieve over all accuracy rates ranging from 84% to 90%, with false alarm ratios
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In recent years, a number of MIT-related studies have
appeared in the literature. For example, descriptions of
currently practiced MIT operations and their impact on the
National Airspace System (NAS) are presented in Refs. [1-2].
Since MIT restrictions are largely developed and carried out
manually in current operations, some researchers proposed
techniques for modeling the impact of MIT restrictions prior
to operational implementation (see for example, [3-4]). In
Ref. [3], a decision support capability, called the MIT Impact
Assessment capability, which allows a user to model the
impact of proposed MIT restrictions, is described. An
analytic formulation and a linear programming approach for
modeling the effects of MIT restrictions are introduced in
Ref. [4]. Despite the past work in this area, there have been
few published studies that seek to predict whether or not a
MIT restriction will be required and if so what the value of
the restriction should be. To the best of the authors'
knowledge, the only work attempting to explore this issue is
the one reported in Ref. [5]. In this study, the authors
prototyped and evaluated four machine learning algorithms
for providing probabilities that a particular MIT restriction
may be applied to manage arrivals destined for Newark
Liberty International Airport (EWR).

This work seeks to build on the work in Refs. [2, 3, 4, 5]
by first offering an updated analysis of the cause, frequency
and duration of historical MIT restrictions, and subsequently
using machine learning techniques to predict the occurrence
of MIT restrictions to manage arrivals into ATL airport. The
historical analysis was accomplished using data from the
FAA's National Traffic Management Log (NTML) database
for 2009 through 2011 to obtain MIT start times, end times,
locations, causes, and values. Since MIT restrictions often
operate in conjunction with additional TMIs, records for
Ground Delay Programs (GDP) and Ground Stops (GS)
impacting ATL were also obtained. In addition to the NTML
data, schedule arrival rates, actual arrival rates and arrival
delays were obtained for 2009 through 2011 from the FAA's
Aviation System Performance Metric (ASPM) system.
Following the historical analysis, BDT was used to classify
the weather-related MIT restrictions for ATL arrivals.
Supervised machine learning was applied to train the BDT
binary classification models, and the models were
subsequently validated using data cross validation methods.
The model was able to achieve overall accuracy rates ranging
from 80% to 90% with false alarm ratios ranging from 10%
to 20%.

The data mining and cross validation approach is
described in Section 2. The NTML and ASPM data input
sources are outlined in Section 3. The historical analysis of
MIT restrictions is presented in Section 4, while the data
mining predictions are presented in Section 5. Finally a
summary of the results is presented in Section 6.
 
 

2. APPROACH AND MODELING
METHODOLOGY

Data mining techniques were used to classify MIT
restrictions in terms of variations in the arrival demand (i.e.,
demand less or greater than the airport arrival capacity) and
the number of restrictions issued on a particular day (i.e.,
either a low number of restrictions or a high number of
restrictions). In this case, an Ensemble Bagging Decision
Tree model, described below, was used to classify the results,
and supervised machine learning was applied to train the
BDT binary classification models. Validation of the models
was accomplished using data cross validation methods, as
stated below.

Ensemble bagging decision tree
Ensemble methods use multiple machine learning

decision tree models to obtain better predictive performance
than what any of its individual constituent members can
produce. Bagging stands for bootstrap aggregation. Bootstrap
aggregation is a machine learning ensemble meta-algorithm
designed to improve the stability and accuracy of machine
learning algorithms used in statistical classification and
regression [6]. In classification scenarios, the random
resampling procedure in bagging induces some classification
margin over the dataset. Additionally, when bagging is
performed in different feature subspaces, resulting
classification margins are likely to be diverse, which is
essential for an ensemble to be accurate. This method takes
into account the diversity of classification margins in feature
subspaces to improve the performance of bagging. First, it
studies the average error rate of bagging, converts the task
into an optimization problem for determining some weights
for feature subspaces. Then, it assigns the weights to the
subspaces via a randomized technique in classifier
construction. Experimental results demonstrate that the
ensemble method is robust to classification noise and often
generates improved predictions than any single classifier [7,
8, 9]. In this study, the BDT classification model is
implemented using the MATLAB TreeBagger function.

Model validation methods
Machine learning models are data driven and therefore

resist analytical or theoretical validation. The models are
constructed from an initial random state to a trained state
using training data sets and have to be tested or validated
using a different data set. Several validation approaches are
available. Among them, the very popular one, which has been
used frequently by researchers, is cross-validation.

In cross-validation, a series of BDT models are
constructed, each time by dropping a different part of the data
from the training set and applying the resulting model to the
dropped data to predict the target. The merged series of
predictions for dropped or test data are checked for accuracy
against the observations. In one version of the cross-
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validation approach, called group cross-validation approach,
data are divided into N groups. A total of N models are then
constructed one by one using N-1 data groups for model
training, and the remaining group is used for testing. At the
end of this procedure, all predictions assembled from the
dropped cases are compared with the observed targets to
compute validation of model error for the cross-validation
result. The ten-fold cross-validation is used in this study.

Performance measures
A number of methods are available to evaluate the

performance of binary classifiers. For a classifier with any
given discrimination threshold, the number of cases correctly
and incorrectly classified can be computed. This gives a
confusion matrix with four numbers as shown in Table 1. YY
is the number of true positives, i.e., how many cases are
estimated by classifier as “Yes” events, which actually are
“Yes” events. Similarly we can define NN as the number of
true negatives, NY as the number of false positives and YN
as the number of false negatives. Using the statistics
generated in Table 1, some frequently used classifier
performance evaluation methods are described briefly below.
More information about these methods can be found in Refs.
[9, 10, 11, 12].

The Overall Accuracy Rate (OAR) is defined as OAR=
(YY+NN) / (YY+YN+NY+NN). It has a range of 0 to 1. “1” is
the best classification performance score. The probability of
detection (POD), also called as precision, is the proportion of
“Yes” observed events that were correctly predicted,
POD=YY / (YY+NY). The probability of false alarm (PFA),
also called as false alarm ratio, is the proportion of “No”
observed events that were not correctly estimated as “Yes”
predicted events, PFA = YN / (YY + YN). Its values also
range from 0 to 1. If YN= 0, then the score goes to 0, the best
one can expect. The Critical Success Index (CSI) is the
proportion of true positives that were either estimated or
observed. CSI = YY / (YY + YN + NY). Its values range from
0 to 1 with a value of 1 indicating a perfect classification
performance score. The PFA can be controlled by
deliberately under-predicting the event; such a strategy risks
increasing the number of missed events, which is not
considered in the PFA. For this reason, the POD and the PFA
should both be considered for a better understanding of the
performance of the forecast.

The OAR, POD, PFA, and CSI classifier performance
measures are used in this research.
 
 

3. EXPERIMENTAL SETUP
This section describes the TMI data, weather data, and air

traffic data that were used in this study. The data sources are
NTML [13], Center-level Weather Impacted Traffic Index
(WITI) data [14], and ASPM database [15]. All data at MIT
issue time for 2009 through 2011 were derived from these
data sources.

MIT data
MIT start hours, actual durations and values (e.g., 10

MIT) were obtained from the NTML database and were used
for historical analyses (see Section 4) and as the targets to the
machine learning models (see Section 5).

GDP and GS data
GDP and GS start hours and actual durations were

obtained from the NTML database. These records were
primarily used for preconditioning the inputs to the machine
learning models to identify time periods in which only MIT
restrictions were impacting the ATL arrivals, as opposed to
situations when both an MIT and a GDP or GS restriction
were impacting the arrivals.

Airport terminal weather data
Actual hourly airport surface weather observations

(METAR), such as wind, ceiling, visibility, and
meteorological condition flags for the ATL airport were
obtained from the ASPM database. These data were
preprocessed to convert character records to numerical values
and to filter out the missing ones. The processed METAR
data were used as the inputs to the machine learning methods.

Center-level WITI data
The Center-level WITI data was calculated for the Atlanta

Air Route Traffic Control Center (ARTCC) and used as a
proxy to estimate the impact of en route convective weather
on the ATL arrivals. Briefly WITI is an indicator of the
number of aircraft affected by weather. The computation of
the WITI values used in this study was accomplished by
overlaying a one-degree latitude by one-degree longitude grid
over the Atlanta ARTCC. The computation of WITI consists
of (1) assigning a value of one to every grid cell Wi,j of the
weather grid W where severe weather is present and zero
elsewhere, (2) counting the number of aircraft in every grid
cell Ai,j, and (3) computing the WITI as a function of time t
using Eq. (1).

Table 1. Confusion matrix for dichotomous (“Yes”/”No”) events.
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(1)

Air traffic data from the FAA's Aircraft Situation Display
to Industry system was used to calculate Ai,j while Wi,j was
calculated using current observations from the Convective
Weather Avoidance Model [16].

Airport air traffic data
ATL arrival air traffic data during the MIT issuance

times, such as scheduled arrival, the Enhanced Traffic
Management System (ETMS) aircraft arrival counts, and
arrival demand were collected from the ASPM database. The
dynamic airport capacity, Airport Arrival Rate (AAR), was
also gathered from the ASPM database for model
development.

4. HISTORICAL ARRIVAL MILES-IN-
TRAIL ANALYSIS

MIT restrictions can be used to control en-route (i.e., over
flight) traffic, arrivals and departures. A preliminary analysis
of the distribution of the historical MITs in Atlanta Center
indicated that 23% of MITs were issued to control en-route
traffic, 19% were issued for departures and 58% were issued
to control arrivals in 2009. Because of the predominance of
MITs issued for arrivals in this Center, they were the
predominant restrictions considered in this study. In the
remainder of this section, analyses of historical arrival MITs
at ATL will be presented in terms of the cause, temporal
usage (e.g., daily, weekly, monthly), duration and value, and
usage in conjunction with other TMIs, such as GDPs and
GSs.

4.1. Analysis of the Top-10 Airports
A distribution of the airport arrival MITs for the top 10

U.S. airports from 2009-2011 is given in Fig. 1. Chicago
O'Hare International Airport (ORD) accounted for 26% of all
arrival MIT restrictions, ATL accounted for 15% of the
restrictions and Chicago Midway International Airport
(MDW) accounted for 8% of the arrival MIT restrictions.

The major causal factors, as recorded in the NTML
database, of the arrival MITs for the top-10 airports in the
U.S. from 2009-2011 are shown in Fig. 2. As can be seen
from this plot, “Volume” is the predominant stated cause for
arrival MITs at most of the analyzed airports. The notable
exception is for ORD where the cause for a large number of
MITs was not specified. The presence of “Weather” related
MITs at ATL, Los Angeles International Airport (LAX) and
Denver International Airport (DEN) is also noteworthy, since
they account for over 40% of all arrival MITs. In this figure,
“Volume” is used to indicate air traffic congestion at arrival
fixes or airports. Because of the prevalence of MITs
impacting arrivals into ATL, the remainder of this section and

the following section will focus on the MIT restrictions
impacting the ATL arrival flights only.

Figure 1. Distribution of Airport Arrival MITs from
2009-2011.

Figure 2. Causal Factors for arrival MITs at the top-10
U.S. airports from 2009-2011.

4.2. ATL Arrival MIT Statistics
The major weather causal factors associated with the

arrival MIT restrictions at ATL from 2009-2011 are shown in
Fig. 3. As indicated by the figure, low ceilings account for
nearly 75% of all the restrictions, followed by thunderstorms,
low visibility and winds. Weather phenomena, such as snow,
rain and ice, accounted for less than 1% of causal factors,
which is not surprising given the geographical location of
ATL.

Temporal usage statistics (e.g., monthly, daily and hourly)
for arrival MIT restrictions at ATL from 2009-2011 are
exhibited in Fig. 4. The data is divided in terms of weather
(blue bars) and non-weather (red bars) (labeled as “Volume
& Unknown”) events. Starting with the monthly usage
statistics, which appear in the upper-most image in Fig. 4, it
is noted that there is a slight decrease in arrival MIT
restrictions in November and December timeframe.
Additionally, there tends to be more weather-related MIT
restrictions in the summer months (May through September),
while “Volume & Unknown” related MIT restrictions are
more prevalent in the winter and early-spring months. In
terms of the weekly usage of arrival MIT restrictions at ATL
(see the middle image in Fig. 4), the number of restrictions is
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fairly constants but there is a noticeable decrease in the usage
of these restrictions on Saturdays, which is to be expected
since the arrival demand also tends to be lower on Saturdays.
Finally, arrival MIT restrictions tend to be implemented early
in the morning between 6:00am and 7:00 am local time
(Easter Standard/Daylight Time), which coincides with the
first bank of arrivals destined for the airport (see the bottom
image in Fig. 4). There is also a second noticeable increase in
arrival MIT restrictions in the late afternoon (16:00-18:00),
which coincides with the last major bank of arrivals landing
at the airport for the day.

Figure 3. Weather Causal Factors for ATL arrival MITs
from 2009-2011.

Figure 4. Temporal usage statistics for ATL arrival MIT
restrictions from 2009-2011.

The duration and value of the arrival MIT restrictions for
ATL from 2009-2011 are shown in Fig. 5. As stated in the
previous analysis, the values are decomposed into weather
and non-weather related events in this figure. Non-weather
related restrictions tend to peak around 60 minutes, whereas a
much larger spread in the duration is observed for weather
related MITs. This seems logical since the “Volume &
Unknown” restrictions are typically used to “smooth out”

arrival pushes into the airport, which typically last on the
order of an hour, while on the other hand, weather impacts at
the airport are much more irregular, and can routinely last
several hours. As can be seen from the lower part of Fig. 5,
20 MIT restrictions are most commonly issued for non-
weather related events, whereas slightly higher restrictions
(e.g., 25 MIT) are needed for weather related events.

Figure 5. Histograms of Duration and Value of ATL
arrival MIT restrictions from 2009-2011.

The arrival MIT restrictions are used to organize the air
traffic flows at airport arrival fixes and protect the airport.
The top five frequently used ATL arrival MIT restrictions are
applied at the arrival fixes closest to ATL. The durations and
the values of the arrival MIT restrictions at the closest arrival
fixes to ATL from four directions are shown in Fig. 6. These
closest arrival fixes to ATL are FLCON at the northeast (blue
bars), CANUK at the southeast (cyan bars), LGC and HONIE
at the southwest (yellow bars), and ERLIN at the northwest
(magenta bars). The most MIT restrictions are implemented
at fixes of LGC and HONIE which coincide with most arrival
flights coming from the southwest (yellow bars in Fig. 6).
Most restrictions tend to last around 60 minutes (see Fig. 6 a,
6 c); whereas a larger spread in the duration is observed for
weather related MITs (Fig. 6 a). Most non-weather related
events need 20 MITs(Fig. 6 d), whereas 25 MIT restrictions
are frequently used for weather related events (Fig. 6 b) with
an exception at ERLIN in which the most frequently used
MIT restriction value from the northwest is 15 MITs (Fig. 6
b, 6 d).

The arrival MIT restrictions can be applied at several
fixes at the same time. The ATL hourly arrival MIT
restriction count percentages from local time 5 am to
midnight for 2009 are listed in table 2. During these time
period, 46% of the time is without using any ATL arrival
MIT restrictions. The average of MIT hours (for hourly MIT
counts>0) is about three restrictions per hour. Conceptually,
the lower hourly MIT restriction counts, say one MIT per
hour, could be used to intentionally smooth out air traffic
congestion at arrival fixes, while the higher hourly MIT
counts would be used to constrain air traffic from more
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directions destined towards the ATL airport to mitigate the
imbalances of ATL arrival demand and ATL capacity.

Figure 7. MIT Duration versus MIT Start Time (a) and
MIT Value (b) for ATL arrival MIT restrictions from

2009-2011.

The MIT duration versus the MIT start time and the MIT
duration versus the MIT value for all ATL arrival MIT
restrictions from 2009 through 2011 are shown in Fig. 7. As
would be expected, the MIT duration is strongly influenced
by the MIT start time, and MIT restrictions implemented
earlier in the day tend to be longer than those happened later
in the day (see in Fig. 7 a). This trend strongly resembles the
ATL arrival demand profile, which drops rapidly after 22:00
and remains low until the first “arrival push” that reaches
ATL around 6:00am. The MIT duration results also exhibit a

sharp decrease from roughly 8:00 am to 10:00 am, which
coincides to the decrease in arrival demand between the
major morning arrival rushes. On average, the longer duration
MIT restrictions tend to have smaller values (e.g., less than
30 MIT) than the shorter duration MIT restrictions, as
indicated by (b) in Fig. 7.

4.3. MIT Interactions with Ground Delay
Programs and Ground Stops

Arrival MIT restrictions, which are local restrictions that
typically control flights within Atlanta Center, are often
operated in conjunction with national-level restrictions, such
as Ground Delay Programs and Ground Stops, that are used
to control all arrivals destined towards a capacity constrained
airport. The rational being that the GDP/GS applies a course
level of control, so that the appropriate number of arrivals
reach an airport within a given hour, while the MIT
restriction is used to “fine-tune” the spacing between
individual flights in the arrival stream.

Figure 8 contains histograms of the hourly arrival MIT
restriction counts over which ATL arrival MIT restrictions
operate in the presence of both ATL GDP and GS (see in Fig.
8 a), absence of ATL GDPs (Fig. 8 b), absence of GS (Fig. 8
c), and absence of both GDP and GS (Fig. 8 d) respectively.
When an arrival MIT restriction operated in conjunction with
a GDP or a GS, it was most common with around 3 MIT
restriction counts per hour (Fig. a, b, c). In contrast when

Figure 6. MIT Durations and Values for ATL MIT restrictions at arrival fixes from 2009-2011.

Table2. ATL hourly arrival MIT restriction counts

Wang et al / SAE Int. J. Aerosp. / Volume 6, Issue 1(September 2013)252



arrival MIT restrictions operate independently of GDPs and
GSs, typically only one restriction was applied, as indicated
by the (d) in Fig. 8.

Figure 8. Hourly ATL arrival MIT restriction counts
implemented with both GDP and GS (a), with GDP

without GS (b), with GS without GDP (c) and without
both GDP and GS (d) for the year 2009.

4.4. MIT Influence on Arrival Delays

Figure 9. Influence of hourly ATL arrival MIT counts
on schedule arrival and airborne delays for the year

2009.

Conceptually, higher hourly arrival MIT restriction counts
should lead to higher delays for the ATL arrivals. To test this,
the 2009 through 2011 ATL arrival MIT data was partitioned
into two sets based on whether the arrival delays during a
particular hour were either greater or less than the median
delays for ATL arrivals for the year 2009. The results are
presented in Figure 9 where the histograms (a) and (c) present
the hourly arrival MIT restriction counts for schedule arrival
delays and (b) and (d) for airborne delays. Fig. 9 (a) and 9 (b)
reveal the hourly ATL arrival MIT restriction counts when
the delays are greater than the median of the delays, and the
lower parts (Fig. 9 c, d) show the corresponding results when

the delays are less than the median delays. When the arrival
delays are less than the median arrival delays, the most
frequently used hourly arrival MIT restriction counts is one
(Fig. 9 c, d). However, when the arrival delays are greater
than the median arrival delays, there is tendency for hourly
arrival MIT restriction counts over two (Fig. 9 a, b).

4.5. MIT Variations with Arrival Demand
and Arrival Counts

Since arrival MIT restrictions are used to enforce a
minimum spacing between subsequent flights in an arrival
stream, it is expected that the usage of MIT restrictions
should increase as the arrival demand approaches the airport
capacity and decrease as the number of flights in the arrival
stream decreases. To test this hypothesis, two sets of analyses
were undertaken. In the first analysis, the hourly ATL arrival
demand statistics from the year 2009 were partitioned into
two sets, and the hourly MIT restriction counts in each set
were investigated (see Figure 10 a, c). The first set (Fig. 10 a)
of data held all hourly records where the arrival demand was
greater than 80% of the AAR, whereas in the second set (Fig.
10 c), the demand was less than or equal to 80% of the AAR.
As would be expected, typically hourly arrival MIT
restriction counts from the first set were higher than the
counts from the second set. For the hours during which the
demand was greater than 80% of the AAR, the hourly MIT
restriction counts were typically over two restriction counts
(Fig. 10 a), while the hourly MIT counts were typically in
place of one MIT per hour as displayed in Figure 10 (c).

Figure 10. The relations between and ATL hourly
Arrival MIT Restriction counts and ATL hourly arrival

demand and actual arrival counts for the year 2009.

To determine if the MIT usage trends vary with the actual
arrival counts, the same trial was repeated by partitioning the
hourly arrival records into the following two sets: one with
ETMS arrival counts greater than the median of ATL ETMS
arrival counts (see in Fig. 10 b) and the other one with ATL
ETMS arrival counts less than the median ETMS arrival
count (Fig. 10 d). The comparison between (b) and (d) in Fig.
10 clearly reveals that the hourly applied MIT counts were
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strongly influenced by the actual arrival counts. In both
analyses, higher hourly MIT restriction counts were
associated with either the higher demand or higher actual
arrival counts at ATL as shown in Fig. 10.

In the results presented in Fig. 10, no effort was made in
the hourly records to distinguish if a GDP/GS was being
operated in conjunction with a MIT restriction or not, but as
was discussed in Section 4.3 it is fairly common for an arrival
MIT restriction to be implemented in conjunction with an
ATL GDP or GS. To extend the work presented in Figs. 8
and 10, the hourly normalized arrival demand and the hourly
normalized actual available arrival airport capacity as a
function of the applied restrictions (e.g., GDP/GS, MITs, or
no TMI restrictions) were displayed in Fig.11. The
normalized arrival demand is defined as hourly demand/
AAR-1, and the normalized actual available arrival airport
capacity is defined as 1-ETMS Arrival Counts/AAR.

Beginning with the results presented in Fig. 11 (a), (c) and
(e), the normalized hourly arrival demand is seen to vary
between −1 and two. A value of zero indicates situations in
which the arrival demand is equal to the AAR, negative
values signal those situations where the demand is less than
the AAR, and positive values occur when the demand exceed
the AAR. It should be noted that the vertical axis in Fig. 11 is
the event hours observed over the year 2009. Observations
associated with these three cases are stated as below:

• It is apparent that a GDP or GS is implemented when the
arrival demand exceeds the AAR (e.g., demand/AAR −1 > 0)
(Fig.11 a);

• When the demand is near or slightly below the AAR, there
is a tendency to use arrival MIT restrictions alone without
GDPs or GSs (Fig. 11 c). This shows a potential area for
improvement in establishing effective airport arrival MIT
controls because, from the perspective of an airport traffic
operation, using arrival MIT restrictions to slow down arrival
traffic flow is not needed if the airport arrival demand is less
than airport arrival capacity;

• Lastly, when the demand is significantly below the AAR
(Fig. 11 e), neither MIT nor GDP/GS is typically required to
control the arrival traffic flows.

Figure 11 (b), (d) and (f) present a complimentary set of
images in terms of the normalized hourly actual available
arrival airport capacity (1 - ETMS Arrival Counts/AAR). In
contrast to the results presented in Fig. 11 (a), (c) and (e), a
value of zero in this case indicates that the hourly actual
arrival counts were equal to the AAR, namely there is no
space for additional arrival aircraft to land, and positive
values indicate that there is a room for landing. A pattern can
be summarized from Fig. 11 as follows:

• A tendency to control ATL arrivals with a GDP or GS when
the actual arrival counts are slightly less than the AAR, i.e.
the normalized available capacity is less than 20% of AAR
(Fig. 11 b);

• A trend to control ATL arrivals only with MIT restrictions
when the normalized available capacity is less than 50% of
AAR (Fig. 11 d);

• When the hourly arrival counts are significantly less than
the AAR, no MIT or GDP/GS is required to control the
arrival traffic flows (Fig. 11 f).

Figure 11. ATL hourly Demand/AAR-1 (a, c, e) and 1-
ETMS Arrival Count/AAR (b, d, f) distributions in the

Presence of GDPs/GSs, MITs, and Absence of TMIs for
the year 2009.

As mentioned before, there is possibility that the usage of
arrival MIT restrictions is not necessary when the airport
arrival demand is less than airport AAR. Reducing the
number, duration and value of ATL MIT restrictions under
these conditions may allow better utilization of the airport
and avoid unnecessary delays. In the remainder of this study,
machine learning methods for optimizing the usage of MIT
restrictions were presented and validated. The methods may
have potential to be used by the traffic flow specialists to aid
in determining whether or not an MIT restriction is necessary
to control arrivals destined for ATL.

5. CLASSIFICATION RESULTS
This section contains the classification results generated

using an Ensemble Bagging Decision Tree model to (1)
examine the usage of arrival MIT restrictions under low
arrival demand scenarios and to (2) estimate MIT usage on
days that historically required a significant number of MIT
restrictions. The former of these two studies was designed to
identify situations in which arrival MIT restrictions may have
been unnecessary, last too long or have a value that was too
high, while the later was to aid the specialists in their daily
post-operation review to evaluate if the restrictions
implemented in that day are effective or not based on the
model. In both cases, supervised machine learning was used
to train the BDT binary classification models, and model
validation was accomplished with ten-fold cross validation.
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5.1. MIT Classification for Low Arrival
Demand Scenarios

For predicting if MITs were used to control ATL arrivals
under low demand situations, the arrival MIT training data
was grouped into two classes. The first class was labeled
“Yes”, and was used to indicate that an arrival MIT was used
under a low demand scenario, while the second was labeled
“No” to indicate arrival MIT usage under high demand
scenarios. Using the binary indicator responses of arrival
MIT usage as targets, the BDT classification models were
first trained, and subsequently applied to the test data for
prediction purposes. Two alternative approaches were
examined to determine when a low demand scenario occurred
- the first involved analyzing the traffic demand, actual traffic
counts and airport arrival rate for the duration of the MIT
restriction, while the second involved examining the traffic
demand and arrival rate on an hourly basis. The former of
these approaches will be explored in more detail in Section
5.1.1, and the later will be examined in Section 5.1.2.

5.1.1. Restriction-based classification
In the restriction-based approach, all of the hours

associated with an arrival MIT restriction are examined to
identify situations in which an arrival MIT restriction was
implemented during a low demand and low arrival count
situation. Identifying these situations is accomplished using
the following technique.

Given a set of arrival MIT restrictions M, intermediate
variables αm (αm ∈ α) and βm (βm ∈ β) of a MIT restriction m
(m ∈ M) can be defined as

(2)
and

(3)
Where the normalized actual available arrival airport

capacity f(tm) = 1 − C(tm)/AAR(tm), the normalized arrival
demand g(tm) = D(tm)/AAR(tm)−1 and the MIT time set of m
Tm = {T1,m,…,Tn,m}. C (tm), D (tm) and AAR(tm) are the
corresponding actual airport arrival count, airport arrival
demand, and airport arrival rate at time tm, respectively. The
tm is the time (date and hour) between the start (T1,m) and the
end (Tn,m) time that the MIT restriction m was implemented.
The set of MIT restrictions with low demand and high
available capacity, called as “low demand” in short, is then
specified as

(4)
By this definition, 1,345 out of the 3,079 total MIT arrival

records for the year 2009 (where there were no GDPs or GSs)
were detected as low demand MIT restrictions. These arrival

MIT restrictions were labeled as “Yes” and the remaining
MITs were labeled as “No”. These binary values were treated
as the target variables in training and validating the model.
The terminal weather and airport conditions discussed in
Section 3 were applied as the inputs to the classification.
These inputs were selected at one hour before the MIT start
times, since the ATL arrival MIT restriction approval time is,
on average, 55 minutes earlier then the MIT start time for the
year 2009. The scatter plot of α versus β is shown in Fig. 12.
The red lines in Fig. 12 separates the whole space into two
sets with the upper-left representing the set for the MIT
restrictions implemented during the low demand period,
while the remaining space represents the high demand or low
available capacity period. The set S consists of those points
enclosed in the up-left portion of Fig. 12.

Figure 12. The α vs. β values for all ATL arrival MIT
restrictions during 2009.

The 1 hr prediction of low demand MIT restrictions at
ATL is shown in Table 3. Of the 3,079 total MIT events,
1,345 qualified as low demand events. The accuracy of the
BDT binary classifier, which is given by OAR, is the
proportion of correct results, (1161+1606)/(3079) = 0.90. Out
of a total of 1,345 predicted low demand MIT events, the
number of correctly predicted events was 1,161. The
precision is then given by 1,161/1,345= 0.86 (see POD in
Table 3).

The scatter plot of α versus β for all MIT restriction
predictions is shown in Fig. 13. The red dots and blue dots in
Fig. 13 are used to indicate the predictions for low demand
and high demand MITs, respectively. It illustrates that most
MIT restrictions are correctly predicted as the MIT
implemented during the low and high demand periods.
Overall, the BDT model was very good in identifying ATL
arrival MIT restrictions that were being implemented during
low demand periods. A review of the MIT restrictions
implemented under these conditions may help to eliminate or
reduce potentially unnecessary restrictions, MIT durations or
values.
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Figure 13. The α vs. β values for ATL arrival MIT
restrictions predictions during 2009.

5.1.2. Hourly low demand classification
This is an extension of the results presented in Section

5.1.1. In this section, the hourly records associated with all
arrival MIT restrictions are examined. As opposed to the
results presented in Section 5.1.1, which was identifying
potential opportunities for eliminating the usage of entire low
demand MIT restrictions, this extension may be useful in
determining if the time durations (hours), for example, of one
or more restrictions that were implemented under a low
demand scenario could be reduced. For this effort, the set of
all low demand MIT hours is given as follow:

(5)
Here g(t) is defined as in Section 5.1.1 and the ATL MIT

restriction hour set T = T1 ∪ T2∪…Tm∪… includes all MIT
restriction hours. Note that in contrast to the definition in Eq.
(4), the definition in Eq. (5) does not depend on the hourly
normalized actual available arrival airport capacity, f(t). The
scatter plot of f(t) versus g(t) is shown in Fig. 14. Using the

2009 hourly MIT arrival records for ATL (where there were
no GDPs or GSs), a total of 1,581 of the hourly records out of
3,133 MIT records were determined to be low demand MIT
hours. These events are graphically depicted as the set of all
points laying at the left side of the red vertical line in Fig. 14.

Figure 14. The hourly values f(t) versus g(t) of all ATL
arrival MIT restriction hours for the year 2009.

The 1 hr predictions of low demand arrival MIT hours at
ATL are listed in Table 4. As before a value of “Yes” is used
to indicate an hourly low demand arrival MIT event, while a
value of “No” indicates a high demand hourly event. The
accuracy of the BDT binary classifier, which is given by
OAR, was 84% for the 1-hr prediction (see Table 4). The
precision for the 1-hr forecast was 84% (see POD).

The scatter plot of f(t) versus g(t) for all hourly MIT
predictions is shown in Fig. 15. The red dots and blue dots in
Fig. 15 are used to indicate the predictions for low demand
and high demand MIT hours, respectively. Most MIT
restriction hours are correctly predicted as those actually
implemented during the low and high demand hours. As the
results exhibited in Section 5.1.1, the BDT model was able to
reliably recognize those arrival MIT restrictions being

Table 3. 1-hr Forecast of Low Demand/Arrival ATL Arrival MIT Restrictions.

Table 4. 1-hr Prediction of Low Demand ATL Arrival MIT Restriction hours.
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implemented during low demand hours. These predictions
may be useful to guide operation decisions to reduce
potentially unnecessary hours or values for the MIT
restrictions.

Figure 15. The hourly values f(t) vs. g(t) for ATL arrival
MIT restrictions predictions.

5.2. MIT Classification for High Restriction
Usage Scenarios

The ability to predict days requiring a significant number
of MIT restrictions could aid traffic flow specialists in
preparing for high workload situations. In order to predict if a
large number of restrictions is required or not on a given day,
the arrival MIT data was grouped into two classes. The first
class labeled as “Yes” was used to indicate that a high
number of arrival MIT restrictions was required on a
particular day, while the second one labeled as “No” was to
signify that a low number of MIT restrictions was needed on
that day. Using the binary indicator responses of arrival MIT
usage as targets, the BDT classification models were first
trained, and then subsequently applied to the test data for
prediction purposes. Two alternative approaches were
examined in determining if a day required a high number of
MIT restrictions or not. The first one relied on investigating
the total number of arrival MIT restrictions implemented on a
given day, while the second examined the product of the MIT
durations and the values over that day. For both approaches,
daily Atlanta Center WITI (see Section 3) values, daily
average airport weather conditions, daily average scheduled
arrival rates, actual arrival counts and airport arrival rates
from 2009 through 2011 were used as inputs to the model.

The first approach for identifying days with large number of
restrictions will be described in more detail in Section 5.2.1,
while the second one will be described in Section 5.2.2.

5.2.1. Daily MIT counts
To identify high arrival MIT usage days at ATL, the daily

MIT counts from 2009 through 2011 were calculated from
available NTML data. A histogram of the 1,095 daily records
is shown in Fig. 16 where the red vertical line indicates the
median value of five. For classification purposes, days with
more than five arrival MIT restrictions were classified as high
restriction days (labeled as “Yes”), and days with fewer were
labeled as “No”.

Figure 16. Daily MIT Restriction Counts for ATL
Arrivals from 2009-2011.

The BDT prediction of high daily arrival MIT usage at
ATL is shown in Table 5. Of the 1,095 total MIT hourly
events, 508 qualified as high daily usage events. The
accuracy of the BDT binary classifier, which is given by
OAR, is the proportion of correct results, (379+492)/(1095) =
0.80. Out of a total of 474 predicted high MIT usage events,
the number of correctly predicted events was 379. The
precision is then given by 379/508= 0.75 (see POD in Table
5). Overall, the BDT model accurately identifying days in
which a large number (e.g., more than five) of MIT
restrictions were being used to control arrivals into ATL. As
previously mentioned, an ability to correctly predict the
occurrence of these types of days, may help traffic flow
specialists by identifying these potentially high workload
situations.

Table 5. BDT Prediction of High MIT Usage Days for ATL using MIT Counts.
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5.2.2. Daily MIT durations and values counts
A second approach for identifying days with a high

number of arrival MIT restrictions involves calculating the
following expression for each day:

(6)

Here Di,d is the duration of the ith arrival MIT restriction
that was implemented on day d, Vi,d is the value of the MIT
restriction and Nd is the number of restrictions implemented
on day d. The values of δd from 2009 through 2011 are
shown in Fig. 17. The red vertical line in Fig. 17 is used to
identify the median value of δd, which is equal to 189
hour*mile. For classification purposes, days with δd > 189
were categorized as high restriction days (labeled as “Yes”),
and days with fewer were labeled as “No”.

Figure 17. Sum of the product of the MIT values and
durations for ATL Arrivals MIT Restrictions from

2009-2011.

The BDT prediction of high daily arrival MIT usage at
ATL is shown in Table 6. Of the 1,095 total MIT hourly
events, 547 qualified as high daily usage events. The
accuracy of the BDT binary classifier, which is given by
OAR, is the proportion of correct results, (433+449)/(1095) =
0.81. Out of a total of 532 predicted high MIT usage events,
the number of correctly predicted events was 433. The
precision is then given by 433/547= 0.79 (see POD in Table
6). Once again, the BDT model accurately identified the days
in which high δ values of MIT restrictions were being used to

control the arrivals into ATL. As stated before, this ability to
correctly predict the occurrence of these types of days may
help traffic flow specialists by identifying these potentially
high workload situations.

6. CONCLUDING REMARKS
This paper begins by first providing an extensive analysis

of the MIT restrictions impacting ATL arrivals from 2009
through 2011. The paper subsequently presents machine-
learning methods for predicting (1) situations in which MIT
restrictions for ATL arrivals are implemented under low
demand scenarios, and (2) days in which a large number of
MIT restrictions are required to properly manage and control
ATL arrivals. These predictions were accomplished by using
an Ensemble Bagging Decision Tree (BDT) and supervised
machine learning was employed to train the BDT binary
classification models. The models were validated using data
cross validation methods. When predicting the occurrence of
arrival MIT restrictions under low demand situations, the
model was able to achieve over all accuracy rates ranging
from 84% to 90%, with false alarm ratios ranging from 10%
to 15%. In the second set of studies that were designed to
predict days on which a high number of MIT restrictions
were required, overall accuracy rates of 80% were achieved
with false alarm ratios of 20%.

In summary, the predictions proposed by the model give
better MIT usage information than what is being done under
current day operations. Traffic flow managers may use these
predictions in their decision making to determine potential
MIT restrictions to eliminate (e.g., those occurring during
low arrival demand periods), and identify days in which a
significant number of restrictions may be required.

There is a room for improving the models described in
this paper. For example, the estimates for other factors used
in MIT planning, such as the MIT value, duration and
impacted arrival fix, would be useful in developing better
models. Additionally, longer duration predictions (e.g., 3-4
hours) would also make these models more operationally
relevant.

REFERENCES
1. Kopardekar, P., Green, S. and Roherty, T., “Miles-in-Trail Operations: a

Perspective,” 3rd AIAA Aviation, Technology, Integration, and
Operations (ATIO) Conference, 2003.

2. Myers, T.A., Klopfenstein, M., Mintzer, J., Wilmouth, G., Sud, V., “A
Preliminary Analysis of the Impact of Miles-in-Trail Restrictions on
NAS Flight Operations,” 6th USA/Europe Air Traffic Management
Research and Development Seminar, 2005.

Table 6. BDT Prediction of High MIT Usage Days for ATL using MIT Durations and Values.

Wang et al / SAE Int. J. Aerosp. / Volume 6, Issue 1(September 2013)258



3. Ostwald, P., Topiwala, T. and DeArmon, J., “The Miles-in-Trail Impact
Assessment Capability,” 6th AIAA Aviation, Technology, Integration,
and Operations (ATIO) Conference, 2006.

4. Grabbe, S. and Sridhar, B., “Modeling and Evaluation of Miles-in-Trail
Restrictions in the National Airspace System,” AIAA Guidance,
Navigation and Control Conference, 2003.

5. Bloem, M., Hattaway, D. and Bambos, N., “Evaluation of Algorithms
for a Miles-in-Trail Decision Support Tool,” Proc. of the International
Conference on Research in Air Transportation, Berkeley, CA, 2012.

6. Breiman L., “Bagging Predictors,” Machine Learning, vol. 24, no. 2,
pp. 123-140, 1996

7. Dietterich T.G., “Ensemble Methods in Machine Learning,” Proc. Conf.
Multiple Classifier Systems, pp. 1-15, 2000.

8. Melville P., Shah N., Mihalkova L., and Mooney R.J., “Experiments
with Ensembles with Missing and Noisy Data,” Proc Fifth Int'l
Workshop Multiple Classifier Systems, pp. 293-302, 2004.

9. Wang Y., “Prediction of weather impacted airport capacity using
ensemble learning”, in Proceedings of the 30th AIAA/IEEE Digital
Avionics Systems Conference (DASC), October 2011.

10. Foresee, F.D. and Hagan M.T., “Gauss-Newton approximation to
Bayesian regularization,” Proceedings of the 1997 International Joint
Conference on Neural Networks, pp. 1930-1935, 1997.

11. “Accuracy and Precision.” n.p., n.d. Web. July 26, 2011. <http://
en.wikipedia.org/wiki/Accuracy_and_precision>.

12. Fukunaga, K., “Introduction to Statistical Pattern Recognition”,
Academic Press, 1990.

13. “Air Traffic Organization Policy.” FAA, Feb 11, 2010. Web. July 26,
2011. <http://www.faa.gov/air_traffic/publications/atpubs/FAC/
1705.html>.

14. Sridhar, B. and Swei, S.S.M., “Relationship between Weather, Traffic
and Delay Based on Empirical Methods,” 6th AIAA Aviation,
Technology, Integration, and Operations (ATIO) Conference, 2006.

15. “FAA Operations and Performance Data.” FAA, n.d. Web. July 26,
2011 <http://www.apo.data.faa.gov/>.

16. Evans, J.E. and Ducot, E.R., “Corridor Integrated Weather System,”
Lincoln Laboratory Journal, Vol. 16, No. 1, pp. 59-80, 2006.

DEFINITIONS/ABBREVIATIONS
AAR - Airport Acceptance Rate or Airport Arrival Rate
ARTCC - Air Route Traffic Control Center
ASPM - Aviation System Performance Metric system
BDT - An ensemble Bagging Decision Trees. Bagging stands
for bootstrap aggregation. A decision tree is a decision
support tool that uses a tree-like model of decisions and their
possible consequences
CSI - Critical Success Index
ETMS - Enhanced Traffic Management System
FAA - Federal Aviation Administration
GDP - Ground Delay Program
GS - Ground Stop
METAR - Meteorological Terminal Aviation Routine
Weather Report
MIT - miles-in-trail restrictions
NAS - National Airspace System
NTML - National Traffic Management Log
OAR - Overall accuracy rate
PFA - Probability of false alarm
POD - Probability of detection
TMI - Traffic management initiatives
WITI - Weather Impacted Traffic Index
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