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1. Project Goals 
 
The Autonomous Systems (AS) Habitat Automation (HA) project is extending the 

Advanced Caution and Warning System (ACAWS) – first demonstrated on the Deep 

Space Habitat (DSH) in Black Point Lava Flow, AZ in September 2011 as part of the 

ETDD ASA project – by continuing to develop technologies to support the real-time 

decision process of mission operators and/or crew in dealing with spacecraft anomalies 

and failures. In addition to real-time mission support, ACAWS will support the analysis 

and training tasks associated with spacecraft operations and will enable ground 

operations with fewer personnel as well as provide crew autonomous fault management 

capabilities. 

 

ACAWS consists of three main research and development objectives: 

 Understand the operators’ needs, the existing Mission Control Center (MCC) 

tools that can be integrated, the existing Integrated System Health Management 

(ISHM) technology, and the concept of operations for incorporating ISHM 

technology. The product of the task is not just a prototype system, but also the 

associated lessons learned in developing it. Although it is not an objective for the 

task to drive a standard format for any future spacecraft program(s), the task will 

demonstrate the benefits of specific formats and, more importantly, demonstrate 

the benefits of having standard data sets that can be reused across multiple 

projects of a program. Human-in-the-loop evaluations will provide quantitative 

measures of the effectiveness of ACAWS technologies. 

 

 Develop an infrastructure that allows reuse and integration of multiple products, 

enabling the operator to focus on accomplishing mission tasks with minimal need 

of managing multiple software tools. In particular, the task will develop 

technologies to enable reuse of engineering data sets and diagnostic models and 

will develop methods to integrate these products with other relevant fault 

management products such as procedures, flight rules, anomaly reports, etc. 

 

 Develop technologies to determine the full impact of a given set of spacecraft 

configurations and/or failures on crew/vehicle safety and mission success during 

real-time operations and simulation script development.  
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These three objectives work in concert to provide an effective and efficient approach to 

fault management. Not only will ACAWS support operators and crew with the 

identification of root cause of failures, but it will also support them in determining the 

operational impacts of those failures. Further, combined with the technology developed 

in the Automated Planning and Scheduling Technology task, ACAWS will provide the 

capability to automatically or semi-automatically replan habitat operations in response to 

a failure.  

 

The main focus of the fiscal year (FY) 2012 effort was to develop a failure consequence 

assessment system (FCAS) that would reuse the models developed for system diagnostics 

to automatically determine the impact (or effects) of a failure on the rest of the system. 

FCAS was demonstrated on the DSH, this year located at NASA Johnson Space Center 

(JSC), as part of the Mission Operations Test (MOT) in September 2012. Also 

demonstrated at the MOT was ACAWS integrated with three mitigation recovery 

options: manual recovery, semi-automated recovery, and automated recovery. All three 

recovery options were based on diagnostic information received from ACAWS.  

2. Method 

2.1. Diagnostic Model Extensions 
 

The ACAWS fault isolation system utilizes the Qualtech Inc. TEAMS tool. TEAMS 
determines the root cause (failed components and their failure modes, the “bad” 
components in the TEAMS vernacular). When the sensor signature is ambiguous, 
TEAMS provides a list of possibly failed components (the “suspect” set). A 
companion tool, TEAMATE, provides to the operator recommendations on 
additional observations to perform to most effectively reduce the ambiguity. 
 
TEAMS is a model-based system. The model captures a system’s structure, 
interconnections, tests, procedures, and failures. This dependency model captures 
the relationships between various system failure modes and system 
instrumentation. The models are created in Qualtech’s TEAMS-Designer from 
FMECA1 reports, fault trees, schematics, instrumentation lists, operational use cases, 
other technical documentation, and system engineering expertise. They can be 
developed incrementally, adding knowledge as designs mature. They can also be 
developed at a desired level of detail, say at the subsystem level, the LRU (line 
replaceable unit) level, or the internals of the LRUs level. This flexibility allows for 
appropriate project scoping. Model-building requires system knowledge and 
modeling expertise. However, the careful analysis of technical documentation 
required for modeling can uncover gaps in the system design, and once the model is 
developed, it can help with diagnosis, troubleshooting procedure development, 
operator training, and – because of the work on this task – failure consequence 
assessment. 
 

                                                        
1 FMECA = Failure Modes, Effects, and Criticality Analysis 
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For real-time diagnosis, a dependency matrix (D-matrix) is generated from the 
model. The D-matrix is a two-dimensional matrix of failure modes (causes) and 
effects (“tests”; things that can be observed). The values are binary with 1 meaning a 
test can detect a failure mode and 0 meaning that a test cannot detect that failure 
mode. 
 
TEAMS models link different components for the purpose of building a dependency 
matrix, and not necessarily a causal chain. The TEAMS model structure is necessary 
but not sufficient to provide the framework for FCAS reasoning. To enable FCAS, 
each component in the TEAMS model needs to be extended to include three Boolean 
expressions, as follows (see also Figure 1 and Figure 2): 

A. Expression indicating whether the component is faulty or not 

B. Expression indicating whether the impact should be spread or not (this expression 

is associated with an output) 

C. Expression indicating whether this component is impacted or not 



 4 

 
Figure 1: TEAMS model needs to be extended to enable FCAS.  

 

Figure 2: Key for component types that need to be handled as exceptions. 

Ignoring syntax details, this is how these Boolean expressions are used in the algorithm 

described in the next section: 

1. If the component is faulty, the Booleans indicate the following (the lower-case 

item bullet corresponds to the upper-case item bullet in the list above): 

a. This component is faulty 

b. The identified output or outputs should be set to FALSE 

c. This component should not be put on the impact list 

2. If the component is impacted, the Booleans indicate the following: 

a. (Boolean expression is ignored) 

b. The identified output or outputs should be set to same values as the inputs 

– i.e. this component is “pass-through” – or negated – i.e. this component 

will not spread the impact 
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c. This component should be put on the impact list – or not   

3. For all other components, all Boolean expressions are ignored. 

 

2.2. Failure Consequence Assessment System (FCAS) 
 

The FCAS software processes the enhanced TEAMS model to arrive at the system 

impacts of a failed component. 

 

The FCAS software consists of three main components: 

1. TEAMS diagnostic model parser 

2. FCAS reasoner 

3. Communication mechanism that connects FCAS to other modules in the system 

such as the ACAWS Diagnosis Engine and the ACAWS GUI. 

The FCAS software components are generic and can be reused for other NASA 

programs. The model is specific to the system of interest and needs to be developed with 

FCAS (and the operator displays, as described later) in mind or enhanced after the fact. 

Considering the needs of FCAS and GUI at the start is preferred. Guidelines for how to 

develop a TEAMS model to support not only diagnosis but also FCAS and display are 

provided in the Modeling Guidelines section. 

 

1. TEAMS model parser 

A front-end parser reads and converts an XML
2
 version of the TEAMS model into an 

FCAS representation that is primarily a graph whose nodes are TEAMS "nodes" that are 

made up of hierarchical components, failure modes and switches. Test points in a 

TEAMS model are ignored. The "edges" or "arcs" in the FCAS graph denote the 

connectivity between different components and failure modes. For a large part, the 

"edges" in the FCAS graphical representation corresponds to "signals" in the TEAMS 

model. However, there were very several occasions where special "impact" or 

"consequence" connections were added to the TEAMS model to aid in impact 

propagation. Another important function of the parser is to extract Boolean functions 

associated with each output port of a component. The TEAMS model parsing is 

performed only once and it is done during the initialization phase of the FCAS 

application. 

  

2. The FCAS reasoner 

The FCAS reasoner is a depth-first graph search mechanism that starts its traversal from 

the graph node corresponding to the failure mode whose impact needs to be determined. 

The reasoner maintains an internal stack to hold the components being processed as well 

as a separate impact list that will be populated with the components that have been 

determined to be impacted. The reasoner publishes the final impact list when all affected 

nodes in the graph have been traversed. The reasoner does not maintain any memory of 

its previous searches and each impact request is started with a clean slate. Each output of 

                                                        
2 XML = Extensible Markup Language, a markup language that defines a set of rules 
for encoding documents in a format that is both human-readable and machine-
readable. 
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a component is annotated in the model with two types of Boolean expressions, one for 

determining whether the failure consequence being analyzed has to be propagated to the 

next component and a second Boolean function that is used to determine whether the 

component being currently analyzed needs to be inserted into the impact list. In the 

current implementation of the reasoner, all the Boolean expressions are functions of only 

the component inputs. In future versions, the Boolean function will also need to take into 

consideration variables that represent the system modes. A run-time Boolean expression 

evaluator was implemented to determine the result of the Boolean expression for the 

current state of inputs. 

  

3. Communication mechanism 

The FCAS application is able to service requests for impact analysis from either the 

ACAWS diagnosis engine as will be the case during live operation or from the ACAWS 

GUI during a user-fail mode system analysis. After performing a graph search as 

described in the previous section the results will be broadcasted into the communication 

layer and will be picked up by the ACAWS GUI. 

 

2.3. Operator Interface 
 

The ACAWS GUI was redesigned based on lessons learned from experiences at DRATS 

and the AES Autonomous Mission Operations (AMO) project and extended to support 

FCAS. 

 

System telemetry values, diagnosis, and failure effects are each displayed on the 
ACAWS GUI. One of the key objectives for the general framework of the interface is 
providing flexibility to support the operator to work how she/he wants rather than 
dictating a certain approach. Each of the panels (e.g., diagram, system health 
annunciators, C/W msgs, etc.) is independent yet interaction with each panel is 
coordinated with the other panels; that is, a diagnosis component selected in the 
diagnosis panel also selects the components in that diagnosis on the diagram. A 
panel can be resized; moved to a different location within the window; “torn” off the 
main window into its own window and placed on the same display monitor or an 
adjacent monitor; hidden; or duplicated to contain another system health 
annunciator group, for instance. Multiple configurations of panels can be saved, 
allowing each operator to set up the panels as desired for different tasks. For 
example, an operator may have one panel configuration for monitoring that 
deemphasizes failure impact, procedures, and flight rules, a different configuration 
for analysis that focuses (and assigns more display real estate) on those panels. 
Figure 3 shows an example layout and provides instructions on how to manipulate 
the panels; Figure 4 shows how to interpret the coding. 
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Figure 3: ACAWS GUI layout and interaction instructions. 
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Figure 4: ACAWS GUI coding interpretation. 

As shown in Figure 4 FCAS output is represented in the GUI by the attachment of two 

different icons to a display element associated with a system component: A stylized “E” 

or a stylized “E” with orange “UF” overlayed. In addition to providing system-level 

effects of a failure detected from system telemetry, ACAWS can be run in failure 

analysis mode (“what-if” mode) in which the operator can fail a component (“user-fail” a 

component) and see the effects of that failure on the system. We provide a number of 

visual cues to inform and remind an operator of ACAWS’s mode including an orange 

status-line border, orange border of all panes, and orange “UF” overlays on each 

ACAWS icon, as shown in Figure 7. 

 

Additional details about the GUI implementation are available in Appendix 1: ACAWS 

GUI Details.  

3. Experiment 
 
The MOT version of the DSH electrical power system was modified to support 
ACAWS and Intelligent Controls technology testing. In particular, redundant power 
sources were added for both the 24 VDC power supply and the 28 VDC converter, as 
shown by the diagram in Figure 5. 
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Figure 5: MOT DSH Redundant Power Configuration. 

In the MOT tests, ACAWS was used to diagnose a simulation-injected failure in any 
of the four ports powering the converter or power supply. The Intelligent Controls 
software received the ACAWS failure message and provided an advisory to the DSH 
crew that led them through a reconfiguration procedure in one of three modes, as 
follows: 

1. Manual: crew performs all tasks using a procedure  
2. Semi-automated: crew monitors procedure, confirms and allows software to 

execute reconfiguration 
3. Automated: crew is not involved in the procedure, software executes the 

reconfiguration and notifies crew after the fact. 
The importance of recovering from the selected failures was increased by specifying 
that CO2 and O2 sensing are considered critical and must be recovered within 10 
minutes to assure crew safety. 
 
The ACAWS diagnostic engine, GUI and FCAS ran in JSC’s Bldg. 220, co-located with 
the DSH. Instances of the ACAWS GUI also ran in the Operations Test Facility (OTF) 
in the Mission Control Center (MCC) at a number of controller positions including 
Flight Director, CapCom (Capsule Communicator), SimSup (Simulation Supervisor), 
PETM (Power, ECLSS, Thermal & Mechanisms), Software, and the ACAWS console. 
The GUI was also installed in the DSH on the Telerobotics Workstation (TRWS) and 
the GeoLab Workstation and was used by the crew in some failure scenarios. 
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For each of the seven test runs, one of the four failures was injected by software 
spoofing of telemetry. The diagnosis and effects of that failure were shown on the 
GUI. In six cases, ACAWS correctly diagnosed the failure. In one case, ACAWS 
misdiagnosed, resulting in no crew advisory; in this case, contingency plans were 
activated, verbally directing the crew to the proper recovery procedure so the 
Intelligent Controls project could accomplish its portion of the tests.  
 
For each test case, real-time diagnosis and failure effects were shown on the GUI. An 
example from MOT is shown in Figure 6. 
 

 
Figure 6: Simulation-injected failure, correct diagnosis, and failure effects shown in three views of the 
DSH power system. 

 
The flight director, PETM, and Software controllers were also provided with a 
demonstration of the off-line failure analysis (“what-if”) capability, as shown in 
Figure 7. 
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Figure 7: Offline "user-fail" GUI mode showing three views of operator-induced failure and its effects. 

4. Results 
 
The key performance parameters (KPP) for FCAS are as follows: 
 

Key Performance 

Parameter 

State of the Art 

 
Threshold 

Value 

Goal 

Value 

Coverage: number of failure modes for 

which FCAS can assess the failure 

consequences 

 

For DSH: 0 

For other 

systems: TBS 

3 10 

System Accuracy: Percentage of failure 

consequence assessments for which the 

human experts agree with FCAS 

For DSH: 0 

For other 

systems: TBS 

70% 90% 

 

4.1. Coverage 
The TEAMS model of DSH consisted of a total of 487 failure modes. FCAS is able to determine 

the impact list of about 75% of them resulting in a coverage number of approximately 365 failure 

modes, which is way above the FY12 target of 10. 

4.2. System Accuracy: During Development Testing 
During the development phase of FCAS, a total of 10 faults as listed below were injected 

and the impacted component list generated by FCAS was compared against the ground 

truth list obtained from a domain expert. The faults that were used for the analysis were 

deemed to be relevant to the failure scenarios planned for the MOT. The results were 

quite encouraging. The accuracy rate for each of the faults is shown next to the fault: 
  



 12 

 

  

 

Failure Mode Component Impacts Accuracy 

PDU-B1_Bank2_Port3_StuckOff PDU-B1_Bank2_Port3 105 100% 

PDU-B1_Bank2_Port2_StuckOff PDU-B1_Bank2_Port2 93 100% 

9219-SensorData1-failure 9219-SensorData-Card1 4
3
 67% 

cRIO-failure cRIO-A 91 100% 

28VDC-B-Failure 28VDCConverter 91 100% 

24VDC-PowerSupply-failure 24VDC-PowerSupply 103 100% 

9477-WSN-control-failure 9477-WSN-Control-Card 85 92% 
PDU-B1-No-Current-Failure PDU-B1 152 100% 
PDU-B1-Total-Failure PDU-B1 152 100% 
PDU-B1-Bank2-Failure PDU-B1_Bank2 139 100% 
 

4.3. System Accuracy: During MOT 
 
FCAS was used in three capacities during MOT: to determine impacts following a 

simulation-injected failure (“S” in the table below), to determine impacts following an 

actual DSH failure that occurred during MOT (“F”), and in the user-fail mode (“U”). The 

percentage of failure consequence assessments for which the ground truth agrees with 

FCAS easily surpassed the KPP threshold value, as follows: 

 

 Failure Mode Component Impacts Accuracy 

S PDU-B1_Bank2_Port3_StuckOff PDU-B1_Bank2_Port3 105 100% 

S PDU-B1_Bank2_Port4_StuckOff PDU-B1_Bank2_Port4 105 100% 

S PDU-B1_Bank2_Port2_StuckOff PDU-B1_Bank2_Port2 93 100% 

F WSN-F-MFailure WSN-F-M 5 100% 

F WSN-Y-TFailure WSN-Y-T 4 100% 

F WSN-G-TFailure WSN-G-T 10 100% 

F WSN-G-MFailure WSN-G-M 10 100% 

F WSN-L-MFailure WSN-L-M 2 100% 

U 9219-SensorData1-failure 9219-SensorData-Card1 4
4
 67% 

U 9219-SensorData2-failure 9219-SensorData-Card2 4 50% 

U cRIO-failure cRIO-A 91 100% 

U ACDCFailure 120AC120DCConverter 9 100% 

U 28VDC-B-Failure 28VDCConverter 91 100% 

U 24VDC-PowerSupply-failure 24VDC-PowerSupply 103 100% 

U 9477-WSN-control-failure 9477-WSN-Control-Card 85 93% 

T PDU-B1-No-Current-Failure PDU-B1 152 100% 

T PDU-B1-Total-Failure PDU-B1 152 100% 

T PDU-B1-Bank2-Failure PDU-B1_Bank2 139 100% 

                                                        
3 For this failure, FCAS produced 2 false positive (extra) impacts. 
4 For this failure, FCAS produced 2 false positive (extra) impacts. 
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S = Simulated Failure during MOT 

F = Actual DSH failure during MOT 

U = User-Defined Failure requested by OTF Controller during MOT 

T = Data from test prior to MOT 

4.4. Diagnostic Results 

During the MOT, ACAWS ran continuously, with brief periodic restarts to close log 
files or to clear prior diagnostic history. A summary of the detected failures is 
included in the table below:  
 
 Week 1 Week 2 

Diagnosable Events 69 70 

Simulated PDU 4 4 

WSN Transients 47 50 

WSN Hard Fail 6 6 

WSN Gateway Hard 3 3 

WSN Gateway Soft 5 1 

PDU 1  

Other 3 6 

 

5. Lessons Learned 
 
The most significant lesson learned through this project was that we could indeed 
reuse TEAMS diagnostic models for failure consequence analysis (FCA). However, 
TEAMS models are not sufficient for FCA. They must be enhanced with Boolean 
expressions, as described above. Relevant to Boolean expressions, we learned that: 

a. About 80% of all components can be handled with the default Boolean 
expression. 

b. We have lots of flexibility to handle exceptions such as: impacted components 
that do not spread impacts, pass-through components that are not impacted 
and components that are reached by impact signals but are in fact not 
impacted and not spreading impacts. 

c. The logic can be based on any combination of input values giving all needed 
reasoning power 

d. The syntax is ready to handle modes and more detailed function failure 
information. 
 

Additional lessons learned regarding reusing the TEAMS model for FCA is that paths 
in TEAMS models are not always sufficient or appropriate for FCAS. Specifically,  

a. Some paths that are necessary to carry impact signals are not part of the 
TEAMS model. This situation is rare, but we have had the need to create new 
ports and new links to carry impact signals.  (See Figure 8.) 

b. One of the issues that affected the usage of the TEAMS model of DSH that was 
originally developed for ACAWS was the intermixing of Power and Data 
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signals. From an FCAS point of view these two signals should be separate.

 
Figure 8: TEAMS model augmentation. Some connections to impacted components are not in the TEAMS 
model because they are not needed for diagnosis. In these cases, the FCAS modeler needs to create 
appropriate links. 

 
TEAMS models can also be reused for development of the GUI if a few guidelines are 
followed, including the following:  

a. All components that appear on the GUI should have their own components in 
the TEAMS model. As an example, some of the DSH sensors were modeled as 
just failure modes associated with the component they were sensing. The GUI 
needs all sensors modeled as components to facilitate general naming 
schemes that reuse the TEAMS data model. 

b. All components in the TEAMS model should have a failure mode associated 
with them. 

c. There should be a connection between the telemetry names (XTCE 
information for DSH), TEAMS component names, and display (GUI) names. 
This connection should be kept in a shared location.  

d. If the Teams Model instances adhere to a known schema, then it is possible to 
write and test algorithms and data structures. This is true for both servers 
and GUIs. It would be useful to publish a TEAMS schema, then each TEAMS 
model can validate against the schema. 

A GUI design guideline learned was that using a small set of views of each 
component type will reduce test/maintenance time because each view needs to 
paint various states (telemetry on/off/valid and diagnostic icons) then clear those, 
too. Non-“default” views include pane-specific rendering or rolling up “child” 
components to their (hierarchy) “parent”. 
 
Finally, we re-encountered development issues that affected ACAWS for DRATS 
development, reinforcing the need for the following: 

a. It is important to have either regular access to the hardware with the ability 
to inject failures or a variety of data sets that can be played back for testing. 
Playback sets need to be configuration managed with the appropriate demo 
platform software (in this case, playback sets depend on the XTCE telemetry 
definition file). 
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b. The demo platform software (the DSH software, in our case) needs to become 
stable early in the ACAWS development. Otherwise, the ACAWS team spends 
its time chasing changes rather than doing technology development.  

c. Configuration management of the demo platform software is vital.  
d. Configuration management of ACAWS can be improved. Executable software 

should be CM’ed without any model or data. Models should be CM’ed 
separately from the XTCE and mapping between models, GUI, ACAWS, and 
telemetry. With proper separation it should be possible to use the same 
executables with different models, and use the same model with different 
versions of DSH (or other target system) telemetry. 

e. Separate the executable and system data from the models, telemetry data, and 
configurations. Executable software can then be installed in a standard 
location while models and configuration data can be stored in the user’s local 
directory, allowing each user the flexibility to test with different models, 
telemetry definition files (XTCE), ICE server, and other configurable items. 

 
On the positive side, development of ACAWS and FCAS was facilitated by staying 
with the same demonstration platform. We already had a fairly comprehensive 
model of the DSH which we could just extend rather than expending effort on 
building a new model. We already had the software infrastructure in place to 
interact with the telemetry stream, the fault monitoring software (the telemetry-
driven system observations that feed the TEAMS diagnosis engine; that is, the 
“tests”), the procedure display (WebPD). We already had a good working 
relationship with the DSH team. 

6. Modeling Guidelines 
6.1. Separate diagnostic model signals into their individual constituents. For 

example, attach separate connectors (links in the model) for power and for 
data rather than one combined power+data connector. 

6.2. Enhance diagnostic model with Boolean expressions, as details above. 
6.3. Include signal paths required only for impact propagation even if not 

required for diagnosis. 
6.4. Include in the model all components that are important to the operator (and 

are thus represented in the GUI). Do not model a component as a failure 
mode of a related component.  

6.5. All components in the TEAMS model should have a failure mode associated 
with them. 

6.6. Name model components consistent with telemetry naming scheme. 
6.7. Name model components consistently to facilitate determining the 

correspondence with the display elements. 
6.8. Name failure modes so they are understandable by the operator. The GUI 

can then display them without requiring additional mapping to operator-
approved display names. 

6.9. Avoid use of connections that do not represent a physical pathway. 
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7. Future Work 
The results of the initial FCAS development have been quite encouraging. We plan to 
continue extending FCAS by generalizing its capabilities to support more complex 
systems, with the eventual goal of demonstrating it on a flight system such as EFT-1. 
Toward that end, areas of future work include the following: 

 Extend FCAS (model, parser, reasoner) to include the state of the system, 
multiple failures, and redundancy. 

 Generalize the FCAS parser to accommodate a variety of TEAMS model 
structures. 

 Automate insertion into the TEAMS model of the Boolean expressions 
needed by FCAS. 

 Develop automatic regression testing for diagnosis system to identify 
problems in the diagnostic engine, the executive/control code, and the 
model. 

 Incorporate QSI’s TEAMATE guided troubleshooting product to 
recommend procedures useful for disambiguating diagnoses. 

 Extend ACAWS to appropriately handle system behavior during failure 
recovery. 
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Appendix 1: ACAWS GUI Details 
 

1 User Interface Implementation  

Public APIs are documented in javadoc, which is produced by the build. 
Here are excerpts for the main APIs.  
 
MainWindow 

Instantiates the GUI. Instantiates the Component Registry. When the registry is 
created, the Teams model is read into the registry (all components and their 
ancestors) and all XTCE mappings are read in to create a reverse lookup. If in 
userFail mode, will not register as a receiver of acaws messages. 
 
ImpactImpl.impactDataRequest 

This method is registered as an ICE callback at the FCAS server. Because of how the 

slice was defined, AcawsGUI is required to implement this method, and ignore the 

callback. 

ImpactImpl.impactDataResponse 
This method (registered as an ICE callback) receives an Impact message from 
the wire and applies the results to the GUI. Each invocation of this method 
updates the "last impact received" area in the GUI status bar using the 
timestamp from the message. Gets the Impact data from the wire and its 
associated TeamsData from the Component Registry. This is the target 
component.  
If not in userFail mode (if in regular mode) accepts only data with the well 
known Acaws sessionID (less than zero). Marks the source component with the 
prospective diag state. Rolls up this state through all ancestors in the component 
hierarchy, marking the source's ancestor components. Some diag states have 
precedence rules. 
Marking should be in a non AWT thread so GUI responsiveness is not 
interrupted.  
 
Submits application of the markings. Employs special "filter" rules such as don't 
change the state of a parent if its child is already on the same pane.  
 
If in userFail mode (if in regular mode) accepts only data with the a sessionID 
which matches the request ID from this same session. If the request has timed 
out or was canceled, ignores this data but logs that event. Upon receipt of impact 
data, cancels the pending state and its associated progress bar, then examines 
the message to get the target component. If he data is NULL, notifies the user of 
the empty result, else does the rollup to ancestors and applies the visual results 
as per regular mode. return void with side effect of component impact state 
update. 
 
ImpactImpl.impactDataRequest 
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This method is registered as an ICE callback at the FCAS server. Because of how the 

slice was defined, AcawsGUI is required to implement this method, and ignore the 

callback.  
 
DiagnosisImpl.transfer 

This method (registered as an ICE callback) receives a Teams RT message from the 

wire and applies the results to the GUI. Each invocation of this method updates the 

"last diag received" area in the GUI status bar using the timestamp from the message. 

Each invocation clears all previous diagnoses of type Teams. Gets the Teams ID from 

the wire and its associated TeamsData from the Component Registry. This is the 

target component.  

Categorizes the diag update into residual (possibly failed) or confirmed fail 

(minimum) Marks the source component with the prospective diag state. Rolls up this 

state through all ancestors in the component hierarchy, marking the source's ancestor 

components. Some diag states have precedence rules. Marking should be in a non 

AWT thread so GUI responsiveness is not interrupted. Submits application of the 

markings. Employs special "filter" rules such as don't change the state of a parent if 

its child is already on the same pane. 
  
TelemetryImpl.transfer 

This method (registered as an ICE callback) receives a Telemetry message from the 

wire and applies the results to the GUI. Each invocation of this method updates the 

"last telemetry received" area in the GUI status bar using the timestamp from the 

message. Gets the xtce ID from the wire and its associated TeamsData from the 

Component Registry. This is the target component.  

Categorizes the telemetry update into valid-discrete, invalid-discrete, valid-real or 

invalid-real. Marks the source component with the prospective telemetry state. Rolls 

up this state through all ancestors in the component hierarchy, marking the source's 

ancestor components. Some states have precedence states as per TelemetryState. 

Marking should be done in a non AWT thread so GUI responsiveness is not 

interrupted. Submits application of the markings to the visual updater. Employs 

special "filter" rules such as don't change the state of a parent if its child is already on 

the same pane. 

 
 
1.1 Continuous Test 

TestNG unit tests provide regression and functional testing. These are run upon 
each checkin to the continuous build engine (bamboo).   
 
HDU tester does not provide Impact testing.  A few unit tests are run manually 
to do augment the unit tests with Impact round trip testing.  
 

1.2 Integration Testing 

Linux box lunney is used. This is manual process, which must be updated and 
restarted with each model update. It would be more efficient to have a team test 
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machine available that is updated with the latest model with a script that 
deploys the teams model to the deployed test areas.   
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