
March 2013

Failure Consequence Assessment System (FCAS)
Experiment Summary and Lessons Learned

Lilly Spirkovska,
Ames Research Center
Moffett Field, California

Gordon Aeseng
Ames Research Center
Moffett Field, California

Vijay Baskeran
Stinger Ghaffarian Technologies Inc.
Ames Research Center
Moffett Field, California

Silvano Colombano
Ames Research Center
Moffett Field, California

NASA/TM-2013-216507

John Ossenfort
Stinger Ghaffarian Technologies Inc.
Ames Research Center
Moffett Field, California

Mark Shwabacher
Ames Research Center
Moffett Field, California

Irene Smith
Perot Systems
Ames Research Center
Moffett Field, California

•	 CONFERENCE	PUBLICATION.																						
Collects	papers	from	scientific	and																	
technical	conferences,	synopsia,	seminars,	or	
other		meetings	sponsored	or	co-sponsored	by	
NASA.

•	 SPECIAL	PUBLICATION.	Scientific,													
technical,	or	historical	information	from	
NASA	programs,	projects,	and	missions,	often											
concerned	with	subjects	having	substantial	
public	interest.

•	 TECHNICAL	TRANSLATION.	English-
language	translations	of	foreign	scientific	and	
technical	material	pertinent	to	NASA’s	mis-
sion.

Specialized	services	also	include	creating	
custom	thesauri,	building	customized	databases,	
and	organizing	and	publishing	research	results.

For	more	information	about	the	NASA	STI							
program,	see	the	following:

•	 Access	the	NASA	STI	program	home	page	at
							http://www.sti.nasa.gov

•	 E-mail	your	question	via	the	Internet	to
							help@sti.nasa.gov

•	 Fax	your	question	to	the	NASA	STI	Help	Desk
							at	(301)	621-0134

•	 Phone	the	NASA	STI	Help	Desk	at
							(301)	621-0390

•	 Write	to:
							NASA	STI	Help	Desk
							NASA	Center	for	AeroSpace	Information
							7115	Standard	Drive
							Hanover,	MD	21076-1320

Since	its	founding,	NASA	has	been	dedicated	to	the	
advancement	of	aeronautics	and	space	science.	The	
NASA	scientific	and	technical	information	(STI)	
program	plays	a	key	part	in	helping	NASA	maintain	
this	important	role.

The	NASA	STI	program	operates	under	the	
auspices	of	the	Agency	Chief	Information	Officer.	It	
collects,	organizes,		provides	for	archiving,	and	
disseminates	NASA’s	STI.	The	NASA	STI	pro-
gram	provides	access	to	the	NASA	Aeronautics	and	
Space	Database	and	its	public	interface,	the	NASA	
Technical	Report	Server,	thus	providing	one	of	the	
largest	collections	of	aeronautical	and	space	science	
STI	in	the	world.	Results	are	published	in	both	non-
NASA	channels	and	by	NASA	in	the	NASA	STI	
Report	Series,	which	includes	the	following	report	
types:

•	 TECHNICAL	PUBLICATION.	Reports	of			
completed	research		or	a	major	significant	
phase	of	research	that	present	the	results	of	
NASA		Programs	and	include	extensive	data	
or	theoretical	analysis.	Includes	compilations	
of	significant	scientific	and	technical	data	
and					information	deemed	to	be	of	continuing	
reference	value.	NASA	counter	part	of	peer-
reviewed	formal	professional	papers	but	has	
less	stringent	limitations	on	manuscript	length	
and	extent	of	graphic	presentations.

•	 TECHNICAL	MEMORANDUM.	Scientific	
and	technical	findings	that	are	preliminary	or	of	
specialized	interest,	e.g.,	quick	release	reports,	
working	papers,	and	bibliographies	that	contain	
minimal	annotation.	Does	not	contain	extensive	
analysis.	

•	 CONTRACTOR	REPORT.	Scientific	and				
technical	findings	by	NASA-sponsored														
contractors	and	grantees.

	

NASA STI Program... in Profile

March 2013

Failure Consequence Assessment System (FCAS)
Experiment Summary and Lessons Learned

NASA/TM-2013-216507

National	Aeronautics	and
Space	Administration

Ames	Research	Center
Moffett	Field,	California,	94035-1000

Lilly Spirkovska,
Ames Research Center
Moffett Field, California

Gordon Aeseng
Ames Research Center
Moffett Field, California

Vijay Baskeran
Stinger Ghaffarian Technologies Inc.
Ames Research Center
Moffett Field, California

Silvano Colombano
Ames Research Center
Moffett Field, California

John Ossenfort
Stinger Ghaffarian Technologies Inc.
Ames Research Center
Moffett Field, California

Mark Shwabacher
Ames Research Center
Moffett Field, California

Irene Smith
Perot Systems
Ames Research Center
Moffett Field, California

	 	 	 	 	 Available	from:

NASA	Center	for	Aerospace	Information	 	 	 National	Technical	Information	Service
7115	Standard	Drive	 	 	 	 	 5285	Port	Royal	Road
Hanover,	MD	21076-1320		 	 	 	 Springfield.	VA	22161
443-757-5802	 	 	 	 	 	 703-487-4650

 1

Failure Consequence Assessment System (FCAS)

Experiment Summary and Lessons Learned
September 2012

Lilly Spirkovska, Gordon Aaseng, Vijay Baskaran,

Silvano Colombano, John Ossenfort, Mark Schwabacher, Irene Smith

1. Project Goals

The Autonomous Systems (AS) Habitat Automation (HA) project is extending the

Advanced Caution and Warning System (ACAWS) – first demonstrated on the Deep

Space Habitat (DSH) in Black Point Lava Flow, AZ in September 2011 as part of the

ETDD ASA project – by continuing to develop technologies to support the real-time

decision process of mission operators and/or crew in dealing with spacecraft anomalies

and failures. In addition to real-time mission support, ACAWS will support the analysis

and training tasks associated with spacecraft operations and will enable ground

operations with fewer personnel as well as provide crew autonomous fault management

capabilities.

ACAWS consists of three main research and development objectives:

 Understand the operators’ needs, the existing Mission Control Center (MCC)

tools that can be integrated, the existing Integrated System Health Management

(ISHM) technology, and the concept of operations for incorporating ISHM

technology. The product of the task is not just a prototype system, but also the

associated lessons learned in developing it. Although it is not an objective for the

task to drive a standard format for any future spacecraft program(s), the task will

demonstrate the benefits of specific formats and, more importantly, demonstrate

the benefits of having standard data sets that can be reused across multiple

projects of a program. Human-in-the-loop evaluations will provide quantitative

measures of the effectiveness of ACAWS technologies.

 Develop an infrastructure that allows reuse and integration of multiple products,

enabling the operator to focus on accomplishing mission tasks with minimal need

of managing multiple software tools. In particular, the task will develop

technologies to enable reuse of engineering data sets and diagnostic models and

will develop methods to integrate these products with other relevant fault

management products such as procedures, flight rules, anomaly reports, etc.

 Develop technologies to determine the full impact of a given set of spacecraft

configurations and/or failures on crew/vehicle safety and mission success during

real-time operations and simulation script development.

 2

These three objectives work in concert to provide an effective and efficient approach to

fault management. Not only will ACAWS support operators and crew with the

identification of root cause of failures, but it will also support them in determining the

operational impacts of those failures. Further, combined with the technology developed

in the Automated Planning and Scheduling Technology task, ACAWS will provide the

capability to automatically or semi-automatically replan habitat operations in response to

a failure.

The main focus of the fiscal year (FY) 2012 effort was to develop a failure consequence

assessment system (FCAS) that would reuse the models developed for system diagnostics

to automatically determine the impact (or effects) of a failure on the rest of the system.

FCAS was demonstrated on the DSH, this year located at NASA Johnson Space Center

(JSC), as part of the Mission Operations Test (MOT) in September 2012. Also

demonstrated at the MOT was ACAWS integrated with three mitigation recovery

options: manual recovery, semi-automated recovery, and automated recovery. All three

recovery options were based on diagnostic information received from ACAWS.

2. Method

2.1. Diagnostic Model Extensions

The ACAWS fault isolation system utilizes the Qualtech Inc. TEAMS tool. TEAMS
determines the root cause (failed components and their failure modes, the “bad”
components in the TEAMS vernacular). When the sensor signature is ambiguous,
TEAMS provides a list of possibly failed components (the “suspect” set). A
companion tool, TEAMATE, provides to the operator recommendations on
additional observations to perform to most effectively reduce the ambiguity.

TEAMS is a model-based system. The model captures a system’s structure,
interconnections, tests, procedures, and failures. This dependency model captures
the relationships between various system failure modes and system
instrumentation. The models are created in Qualtech’s TEAMS-Designer from
FMECA1 reports, fault trees, schematics, instrumentation lists, operational use cases,
other technical documentation, and system engineering expertise. They can be
developed incrementally, adding knowledge as designs mature. They can also be
developed at a desired level of detail, say at the subsystem level, the LRU (line
replaceable unit) level, or the internals of the LRUs level. This flexibility allows for
appropriate project scoping. Model-building requires system knowledge and
modeling expertise. However, the careful analysis of technical documentation
required for modeling can uncover gaps in the system design, and once the model is
developed, it can help with diagnosis, troubleshooting procedure development,
operator training, and – because of the work on this task – failure consequence
assessment.

1 FMECA = Failure Modes, Effects, and Criticality Analysis

 3

For real-time diagnosis, a dependency matrix (D-matrix) is generated from the
model. The D-matrix is a two-dimensional matrix of failure modes (causes) and
effects (“tests”; things that can be observed). The values are binary with 1 meaning a
test can detect a failure mode and 0 meaning that a test cannot detect that failure
mode.

TEAMS models link different components for the purpose of building a dependency
matrix, and not necessarily a causal chain. The TEAMS model structure is necessary
but not sufficient to provide the framework for FCAS reasoning. To enable FCAS,
each component in the TEAMS model needs to be extended to include three Boolean
expressions, as follows (see also Figure 1 and Figure 2):

A. Expression indicating whether the component is faulty or not

B. Expression indicating whether the impact should be spread or not (this expression

is associated with an output)

C. Expression indicating whether this component is impacted or not

 4

Figure 1: TEAMS model needs to be extended to enable FCAS.

Figure 2: Key for component types that need to be handled as exceptions.

Ignoring syntax details, this is how these Boolean expressions are used in the algorithm

described in the next section:

1. If the component is faulty, the Booleans indicate the following (the lower-case

item bullet corresponds to the upper-case item bullet in the list above):

a. This component is faulty

b. The identified output or outputs should be set to FALSE

c. This component should not be put on the impact list

2. If the component is impacted, the Booleans indicate the following:

a. (Boolean expression is ignored)

b. The identified output or outputs should be set to same values as the inputs

– i.e. this component is “pass-through” – or negated – i.e. this component

will not spread the impact

 5

c. This component should be put on the impact list – or not

3. For all other components, all Boolean expressions are ignored.

2.2. Failure Consequence Assessment System (FCAS)

The FCAS software processes the enhanced TEAMS model to arrive at the system

impacts of a failed component.

The FCAS software consists of three main components:

1. TEAMS diagnostic model parser

2. FCAS reasoner

3. Communication mechanism that connects FCAS to other modules in the system

such as the ACAWS Diagnosis Engine and the ACAWS GUI.

The FCAS software components are generic and can be reused for other NASA

programs. The model is specific to the system of interest and needs to be developed with

FCAS (and the operator displays, as described later) in mind or enhanced after the fact.

Considering the needs of FCAS and GUI at the start is preferred. Guidelines for how to

develop a TEAMS model to support not only diagnosis but also FCAS and display are

provided in the Modeling Guidelines section.

1. TEAMS model parser

A front-end parser reads and converts an XML
2
 version of the TEAMS model into an

FCAS representation that is primarily a graph whose nodes are TEAMS "nodes" that are

made up of hierarchical components, failure modes and switches. Test points in a

TEAMS model are ignored. The "edges" or "arcs" in the FCAS graph denote the

connectivity between different components and failure modes. For a large part, the

"edges" in the FCAS graphical representation corresponds to "signals" in the TEAMS

model. However, there were very several occasions where special "impact" or

"consequence" connections were added to the TEAMS model to aid in impact

propagation. Another important function of the parser is to extract Boolean functions

associated with each output port of a component. The TEAMS model parsing is

performed only once and it is done during the initialization phase of the FCAS

application.

2. The FCAS reasoner

The FCAS reasoner is a depth-first graph search mechanism that starts its traversal from

the graph node corresponding to the failure mode whose impact needs to be determined.

The reasoner maintains an internal stack to hold the components being processed as well

as a separate impact list that will be populated with the components that have been

determined to be impacted. The reasoner publishes the final impact list when all affected

nodes in the graph have been traversed. The reasoner does not maintain any memory of

its previous searches and each impact request is started with a clean slate. Each output of

2 XML = Extensible Markup Language, a markup language that defines a set of rules
for encoding documents in a format that is both human-readable and machine-
readable.

 6

a component is annotated in the model with two types of Boolean expressions, one for

determining whether the failure consequence being analyzed has to be propagated to the

next component and a second Boolean function that is used to determine whether the

component being currently analyzed needs to be inserted into the impact list. In the

current implementation of the reasoner, all the Boolean expressions are functions of only

the component inputs. In future versions, the Boolean function will also need to take into

consideration variables that represent the system modes. A run-time Boolean expression

evaluator was implemented to determine the result of the Boolean expression for the

current state of inputs.

3. Communication mechanism

The FCAS application is able to service requests for impact analysis from either the

ACAWS diagnosis engine as will be the case during live operation or from the ACAWS

GUI during a user-fail mode system analysis. After performing a graph search as

described in the previous section the results will be broadcasted into the communication

layer and will be picked up by the ACAWS GUI.

2.3. Operator Interface

The ACAWS GUI was redesigned based on lessons learned from experiences at DRATS

and the AES Autonomous Mission Operations (AMO) project and extended to support

FCAS.

System telemetry values, diagnosis, and failure effects are each displayed on the
ACAWS GUI. One of the key objectives for the general framework of the interface is
providing flexibility to support the operator to work how she/he wants rather than
dictating a certain approach. Each of the panels (e.g., diagram, system health
annunciators, C/W msgs, etc.) is independent yet interaction with each panel is
coordinated with the other panels; that is, a diagnosis component selected in the
diagnosis panel also selects the components in that diagnosis on the diagram. A
panel can be resized; moved to a different location within the window; “torn” off the
main window into its own window and placed on the same display monitor or an
adjacent monitor; hidden; or duplicated to contain another system health
annunciator group, for instance. Multiple configurations of panels can be saved,
allowing each operator to set up the panels as desired for different tasks. For
example, an operator may have one panel configuration for monitoring that
deemphasizes failure impact, procedures, and flight rules, a different configuration
for analysis that focuses (and assigns more display real estate) on those panels.
Figure 3 shows an example layout and provides instructions on how to manipulate
the panels; Figure 4 shows how to interpret the coding.

 7

Figure 3: ACAWS GUI layout and interaction instructions.

 8

Figure 4: ACAWS GUI coding interpretation.

As shown in Figure 4 FCAS output is represented in the GUI by the attachment of two

different icons to a display element associated with a system component: A stylized “E”

or a stylized “E” with orange “UF” overlayed. In addition to providing system-level

effects of a failure detected from system telemetry, ACAWS can be run in failure

analysis mode (“what-if” mode) in which the operator can fail a component (“user-fail” a

component) and see the effects of that failure on the system. We provide a number of

visual cues to inform and remind an operator of ACAWS’s mode including an orange

status-line border, orange border of all panes, and orange “UF” overlays on each

ACAWS icon, as shown in Figure 7.

Additional details about the GUI implementation are available in Appendix 1: ACAWS

GUI Details.

3. Experiment

The MOT version of the DSH electrical power system was modified to support
ACAWS and Intelligent Controls technology testing. In particular, redundant power
sources were added for both the 24 VDC power supply and the 28 VDC converter, as
shown by the diagram in Figure 5.

 9

Figure 5: MOT DSH Redundant Power Configuration.

In the MOT tests, ACAWS was used to diagnose a simulation-injected failure in any
of the four ports powering the converter or power supply. The Intelligent Controls
software received the ACAWS failure message and provided an advisory to the DSH
crew that led them through a reconfiguration procedure in one of three modes, as
follows:

1. Manual: crew performs all tasks using a procedure
2. Semi-automated: crew monitors procedure, confirms and allows software to

execute reconfiguration
3. Automated: crew is not involved in the procedure, software executes the

reconfiguration and notifies crew after the fact.
The importance of recovering from the selected failures was increased by specifying
that CO2 and O2 sensing are considered critical and must be recovered within 10
minutes to assure crew safety.

The ACAWS diagnostic engine, GUI and FCAS ran in JSC’s Bldg. 220, co-located with
the DSH. Instances of the ACAWS GUI also ran in the Operations Test Facility (OTF)
in the Mission Control Center (MCC) at a number of controller positions including
Flight Director, CapCom (Capsule Communicator), SimSup (Simulation Supervisor),
PETM (Power, ECLSS, Thermal & Mechanisms), Software, and the ACAWS console.
The GUI was also installed in the DSH on the Telerobotics Workstation (TRWS) and
the GeoLab Workstation and was used by the crew in some failure scenarios.

 10

For each of the seven test runs, one of the four failures was injected by software
spoofing of telemetry. The diagnosis and effects of that failure were shown on the
GUI. In six cases, ACAWS correctly diagnosed the failure. In one case, ACAWS
misdiagnosed, resulting in no crew advisory; in this case, contingency plans were
activated, verbally directing the crew to the proper recovery procedure so the
Intelligent Controls project could accomplish its portion of the tests.

For each test case, real-time diagnosis and failure effects were shown on the GUI. An
example from MOT is shown in Figure 6.

Figure 6: Simulation-injected failure, correct diagnosis, and failure effects shown in three views of the
DSH power system.

The flight director, PETM, and Software controllers were also provided with a
demonstration of the off-line failure analysis (“what-if”) capability, as shown in
Figure 7.

 11

Figure 7: Offline "user-fail" GUI mode showing three views of operator-induced failure and its effects.

4. Results

The key performance parameters (KPP) for FCAS are as follows:

Key Performance

Parameter

State of the Art

Threshold

Value

Goal

Value

Coverage: number of failure modes for

which FCAS can assess the failure

consequences

For DSH: 0

For other

systems: TBS

3 10

System Accuracy: Percentage of failure

consequence assessments for which the

human experts agree with FCAS

For DSH: 0

For other

systems: TBS

70% 90%

4.1. Coverage
The TEAMS model of DSH consisted of a total of 487 failure modes. FCAS is able to determine

the impact list of about 75% of them resulting in a coverage number of approximately 365 failure

modes, which is way above the FY12 target of 10.

4.2. System Accuracy: During Development Testing
During the development phase of FCAS, a total of 10 faults as listed below were injected

and the impacted component list generated by FCAS was compared against the ground

truth list obtained from a domain expert. The faults that were used for the analysis were

deemed to be relevant to the failure scenarios planned for the MOT. The results were

quite encouraging. The accuracy rate for each of the faults is shown next to the fault:

 12

Failure Mode Component Impacts Accuracy

PDU-B1_Bank2_Port3_StuckOff PDU-B1_Bank2_Port3 105 100%

PDU-B1_Bank2_Port2_StuckOff PDU-B1_Bank2_Port2 93 100%

9219-SensorData1-failure 9219-SensorData-Card1 4
3
 67%

cRIO-failure cRIO-A 91 100%

28VDC-B-Failure 28VDCConverter 91 100%

24VDC-PowerSupply-failure 24VDC-PowerSupply 103 100%

9477-WSN-control-failure 9477-WSN-Control-Card 85 92%
PDU-B1-No-Current-Failure PDU-B1 152 100%
PDU-B1-Total-Failure PDU-B1 152 100%
PDU-B1-Bank2-Failure PDU-B1_Bank2 139 100%

4.3. System Accuracy: During MOT

FCAS was used in three capacities during MOT: to determine impacts following a

simulation-injected failure (“S” in the table below), to determine impacts following an

actual DSH failure that occurred during MOT (“F”), and in the user-fail mode (“U”). The

percentage of failure consequence assessments for which the ground truth agrees with

FCAS easily surpassed the KPP threshold value, as follows:

 Failure Mode Component Impacts Accuracy

S PDU-B1_Bank2_Port3_StuckOff PDU-B1_Bank2_Port3 105 100%

S PDU-B1_Bank2_Port4_StuckOff PDU-B1_Bank2_Port4 105 100%

S PDU-B1_Bank2_Port2_StuckOff PDU-B1_Bank2_Port2 93 100%

F WSN-F-MFailure WSN-F-M 5 100%

F WSN-Y-TFailure WSN-Y-T 4 100%

F WSN-G-TFailure WSN-G-T 10 100%

F WSN-G-MFailure WSN-G-M 10 100%

F WSN-L-MFailure WSN-L-M 2 100%

U 9219-SensorData1-failure 9219-SensorData-Card1 4
4
 67%

U 9219-SensorData2-failure 9219-SensorData-Card2 4 50%

U cRIO-failure cRIO-A 91 100%

U ACDCFailure 120AC120DCConverter 9 100%

U 28VDC-B-Failure 28VDCConverter 91 100%

U 24VDC-PowerSupply-failure 24VDC-PowerSupply 103 100%

U 9477-WSN-control-failure 9477-WSN-Control-Card 85 93%

T PDU-B1-No-Current-Failure PDU-B1 152 100%

T PDU-B1-Total-Failure PDU-B1 152 100%

T PDU-B1-Bank2-Failure PDU-B1_Bank2 139 100%

3 For this failure, FCAS produced 2 false positive (extra) impacts.
4 For this failure, FCAS produced 2 false positive (extra) impacts.

 13

S = Simulated Failure during MOT

F = Actual DSH failure during MOT

U = User-Defined Failure requested by OTF Controller during MOT

T = Data from test prior to MOT

4.4. Diagnostic Results

During the MOT, ACAWS ran continuously, with brief periodic restarts to close log
files or to clear prior diagnostic history. A summary of the detected failures is
included in the table below:

 Week 1 Week 2

Diagnosable Events 69 70

Simulated PDU 4 4

WSN Transients 47 50

WSN Hard Fail 6 6

WSN Gateway Hard 3 3

WSN Gateway Soft 5 1

PDU 1

Other 3 6

5. Lessons Learned

The most significant lesson learned through this project was that we could indeed
reuse TEAMS diagnostic models for failure consequence analysis (FCA). However,
TEAMS models are not sufficient for FCA. They must be enhanced with Boolean
expressions, as described above. Relevant to Boolean expressions, we learned that:

a. About 80% of all components can be handled with the default Boolean
expression.

b. We have lots of flexibility to handle exceptions such as: impacted components
that do not spread impacts, pass-through components that are not impacted
and components that are reached by impact signals but are in fact not
impacted and not spreading impacts.

c. The logic can be based on any combination of input values giving all needed
reasoning power

d. The syntax is ready to handle modes and more detailed function failure
information.

Additional lessons learned regarding reusing the TEAMS model for FCA is that paths
in TEAMS models are not always sufficient or appropriate for FCAS. Specifically,

a. Some paths that are necessary to carry impact signals are not part of the
TEAMS model. This situation is rare, but we have had the need to create new
ports and new links to carry impact signals. (See Figure 8.)

b. One of the issues that affected the usage of the TEAMS model of DSH that was
originally developed for ACAWS was the intermixing of Power and Data

 14

signals. From an FCAS point of view these two signals should be separate.

Figure 8: TEAMS model augmentation. Some connections to impacted components are not in the TEAMS
model because they are not needed for diagnosis. In these cases, the FCAS modeler needs to create
appropriate links.

TEAMS models can also be reused for development of the GUI if a few guidelines are
followed, including the following:

a. All components that appear on the GUI should have their own components in
the TEAMS model. As an example, some of the DSH sensors were modeled as
just failure modes associated with the component they were sensing. The GUI
needs all sensors modeled as components to facilitate general naming
schemes that reuse the TEAMS data model.

b. All components in the TEAMS model should have a failure mode associated
with them.

c. There should be a connection between the telemetry names (XTCE
information for DSH), TEAMS component names, and display (GUI) names.
This connection should be kept in a shared location.

d. If the Teams Model instances adhere to a known schema, then it is possible to
write and test algorithms and data structures. This is true for both servers
and GUIs. It would be useful to publish a TEAMS schema, then each TEAMS
model can validate against the schema.

A GUI design guideline learned was that using a small set of views of each
component type will reduce test/maintenance time because each view needs to
paint various states (telemetry on/off/valid and diagnostic icons) then clear those,
too. Non-“default” views include pane-specific rendering or rolling up “child”
components to their (hierarchy) “parent”.

Finally, we re-encountered development issues that affected ACAWS for DRATS
development, reinforcing the need for the following:

a. It is important to have either regular access to the hardware with the ability
to inject failures or a variety of data sets that can be played back for testing.
Playback sets need to be configuration managed with the appropriate demo
platform software (in this case, playback sets depend on the XTCE telemetry
definition file).

 15

b. The demo platform software (the DSH software, in our case) needs to become
stable early in the ACAWS development. Otherwise, the ACAWS team spends
its time chasing changes rather than doing technology development.

c. Configuration management of the demo platform software is vital.
d. Configuration management of ACAWS can be improved. Executable software

should be CM’ed without any model or data. Models should be CM’ed
separately from the XTCE and mapping between models, GUI, ACAWS, and
telemetry. With proper separation it should be possible to use the same
executables with different models, and use the same model with different
versions of DSH (or other target system) telemetry.

e. Separate the executable and system data from the models, telemetry data, and
configurations. Executable software can then be installed in a standard
location while models and configuration data can be stored in the user’s local
directory, allowing each user the flexibility to test with different models,
telemetry definition files (XTCE), ICE server, and other configurable items.

On the positive side, development of ACAWS and FCAS was facilitated by staying
with the same demonstration platform. We already had a fairly comprehensive
model of the DSH which we could just extend rather than expending effort on
building a new model. We already had the software infrastructure in place to
interact with the telemetry stream, the fault monitoring software (the telemetry-
driven system observations that feed the TEAMS diagnosis engine; that is, the
“tests”), the procedure display (WebPD). We already had a good working
relationship with the DSH team.

6. Modeling Guidelines
6.1. Separate diagnostic model signals into their individual constituents. For

example, attach separate connectors (links in the model) for power and for
data rather than one combined power+data connector.

6.2. Enhance diagnostic model with Boolean expressions, as details above.
6.3. Include signal paths required only for impact propagation even if not

required for diagnosis.
6.4. Include in the model all components that are important to the operator (and

are thus represented in the GUI). Do not model a component as a failure
mode of a related component.

6.5. All components in the TEAMS model should have a failure mode associated
with them.

6.6. Name model components consistent with telemetry naming scheme.
6.7. Name model components consistently to facilitate determining the

correspondence with the display elements.
6.8. Name failure modes so they are understandable by the operator. The GUI

can then display them without requiring additional mapping to operator-
approved display names.

6.9. Avoid use of connections that do not represent a physical pathway.

 16

7. Future Work
The results of the initial FCAS development have been quite encouraging. We plan to
continue extending FCAS by generalizing its capabilities to support more complex
systems, with the eventual goal of demonstrating it on a flight system such as EFT-1.
Toward that end, areas of future work include the following:

 Extend FCAS (model, parser, reasoner) to include the state of the system,
multiple failures, and redundancy.

 Generalize the FCAS parser to accommodate a variety of TEAMS model
structures.

 Automate insertion into the TEAMS model of the Boolean expressions
needed by FCAS.

 Develop automatic regression testing for diagnosis system to identify
problems in the diagnostic engine, the executive/control code, and the
model.

 Incorporate QSI’s TEAMATE guided troubleshooting product to
recommend procedures useful for disambiguating diagnoses.

 Extend ACAWS to appropriately handle system behavior during failure
recovery.

 17

Appendix 1: ACAWS GUI Details

1 User Interface Implementation

Public APIs are documented in javadoc, which is produced by the build.
Here are excerpts for the main APIs.

MainWindow

Instantiates the GUI. Instantiates the Component Registry. When the registry is
created, the Teams model is read into the registry (all components and their
ancestors) and all XTCE mappings are read in to create a reverse lookup. If in
userFail mode, will not register as a receiver of acaws messages.

ImpactImpl.impactDataRequest

This method is registered as an ICE callback at the FCAS server. Because of how the

slice was defined, AcawsGUI is required to implement this method, and ignore the

callback.

ImpactImpl.impactDataResponse
This method (registered as an ICE callback) receives an Impact message from
the wire and applies the results to the GUI. Each invocation of this method
updates the "last impact received" area in the GUI status bar using the
timestamp from the message. Gets the Impact data from the wire and its
associated TeamsData from the Component Registry. This is the target
component.
If not in userFail mode (if in regular mode) accepts only data with the well
known Acaws sessionID (less than zero). Marks the source component with the
prospective diag state. Rolls up this state through all ancestors in the component
hierarchy, marking the source's ancestor components. Some diag states have
precedence rules.
Marking should be in a non AWT thread so GUI responsiveness is not
interrupted.

Submits application of the markings. Employs special "filter" rules such as don't
change the state of a parent if its child is already on the same pane.

If in userFail mode (if in regular mode) accepts only data with the a sessionID
which matches the request ID from this same session. If the request has timed
out or was canceled, ignores this data but logs that event. Upon receipt of impact
data, cancels the pending state and its associated progress bar, then examines
the message to get the target component. If he data is NULL, notifies the user of
the empty result, else does the rollup to ancestors and applies the visual results
as per regular mode. return void with side effect of component impact state
update.

ImpactImpl.impactDataRequest

 18

This method is registered as an ICE callback at the FCAS server. Because of how the

slice was defined, AcawsGUI is required to implement this method, and ignore the

callback.

DiagnosisImpl.transfer

This method (registered as an ICE callback) receives a Teams RT message from the

wire and applies the results to the GUI. Each invocation of this method updates the

"last diag received" area in the GUI status bar using the timestamp from the message.

Each invocation clears all previous diagnoses of type Teams. Gets the Teams ID from

the wire and its associated TeamsData from the Component Registry. This is the

target component.

Categorizes the diag update into residual (possibly failed) or confirmed fail

(minimum) Marks the source component with the prospective diag state. Rolls up this

state through all ancestors in the component hierarchy, marking the source's ancestor

components. Some diag states have precedence rules. Marking should be in a non

AWT thread so GUI responsiveness is not interrupted. Submits application of the

markings. Employs special "filter" rules such as don't change the state of a parent if

its child is already on the same pane.

TelemetryImpl.transfer

This method (registered as an ICE callback) receives a Telemetry message from the

wire and applies the results to the GUI. Each invocation of this method updates the

"last telemetry received" area in the GUI status bar using the timestamp from the

message. Gets the xtce ID from the wire and its associated TeamsData from the

Component Registry. This is the target component.

Categorizes the telemetry update into valid-discrete, invalid-discrete, valid-real or

invalid-real. Marks the source component with the prospective telemetry state. Rolls

up this state through all ancestors in the component hierarchy, marking the source's

ancestor components. Some states have precedence states as per TelemetryState.

Marking should be done in a non AWT thread so GUI responsiveness is not

interrupted. Submits application of the markings to the visual updater. Employs

special "filter" rules such as don't change the state of a parent if its child is already on

the same pane.

1.1 Continuous Test

TestNG unit tests provide regression and functional testing. These are run upon
each checkin to the continuous build engine (bamboo).

HDU tester does not provide Impact testing. A few unit tests are run manually
to do augment the unit tests with Impact round trip testing.

1.2 Integration Testing

Linux box lunney is used. This is manual process, which must be updated and
restarted with each model update. It would be more efficient to have a team test

 19

machine available that is updated with the latest model with a script that
deploys the teams model to the deployed test areas.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or
any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate
for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that
notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITOR'S ACRONYM(S)

11. SPONSORING/MONITORING
REPORT NUMBER

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
17. LIMITATION OF

ABSTRACT
18. NUMBER

OF
PAGES

19b. NAME OF RESPONSIBLE PERSON

a. REPORT b. ABSTRACT c. THIS PAGE
19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

01-09-2012 Technical Manuscript 10/2011 - 09/2012

Failure Consequence Assessment System (FCAS)
Experiment Summary and Lessons Learned

865839.04.01.21

Lilly Spirkovska, Gordon Aaseng, Vijay Baskaran,
Silvano Colombano, John Ossenfort, Mark Schwabacher, Irene Smith

NASA Ames Research Center
Moffet Field, California 94035-1000

National Aeronautics and Space Administration
Washington, DC 20546-0001

NASA

NASA/TM–2013–216507

Unclassified-Unlimited
Subject Category 16
Availability: NASA CASI (443) 757-5802

The Autonomous Systems (AS) Habitat Automation (HA) project is extending the Advanced Caution and Warning System
(ACAWS) – first demonstrated on the Deep Space Habitat (DSH) in Black Point Lava Flow, AZ in September 2011 as part of the
ETDD ASA project – by continuing to develop technologies to support the real-time decision process of mission operators and/or
crew in dealing with spacecraft anomalies and failures. In addition to real-time mission support, ACAWS will support the analysis
and training tasks associated with spacecraft operations and will enable ground operations with fewer personnel as well as provide
crew autonomous fault management capabilities. The main focus of the fiscal year (FY) 2012 effort was to develop a failure
consequence assessment system (FCAS) that would reuse the models developed for system diagnostics to automatically determine
the impact (or effects) of a failure on the rest of the system.

failure analysis, impact, spacecraft operations

U U U UU 24

STI Help Desk (email: help@sti.nasa.gov)

(443) 757-5802

	FCAS ES & LL Cover
	FCAS ES & LL
	FCAS ES & LL Back

