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The paper presents an adaptive control technique for a damaged large transport air-

craft subject to unknown atmospheric disturbances such as wind gust or turbulence. It is

assumed that the damage results in vertical tail loss with no rudder authority, which is

replaced with a differential thrust input. The proposed technique uses the adaptive pre-

diction based control design in conjunction with the time scale separation principle, based

on the singular perturbation theory. The application of later is necessitated by the fact

that the engine response to a throttle command is substantially slow that the angular rate

dynamics of the aircraft. It is shown that this control technique guarantees the stability

of the closed-loop system and the tracking of a given reference model. The simulation

example shows the benefits of the approach.

I. Introduction

The survivability of damaged aircraft is one of the main research topics in the aviation safety research.
The catastrophic loss of control of American Airlines Flight 587 illustrates the degree of hazards we can
expect due to structural failures of airframe components.2 Nevertheless, there are many stories in aviation
history of aircraft surviving after suffering major structural damage to their airframes. The recent example
of survived aircraft is the DHL A300 cargo flight, which completely lost the hydraulics after it was struck
by a missile after departing from Baghdad.1 Pilots were able to stabilize and to land the aircraft using
differential thrust.

Using differential thrust as an emergency substitute for failed control surfaces has been a research topic
after the development of Propulsion-controlled aircraft (PCA) system at NASA Dryden Research Center,
which was first evaluated on a piloted B-720 simulation.9 The research on the PCA system continued at
NASA Dryden and Ames Research Centers in simulations as well as in actual flight test for different flight
platforms.4 The objective of the PCA system is to provide a necessary thrust command for each engine for
emergency flight control in response to pilots flightpath input, assuming that each engine can be controlled
individually.

The majority of results in this field are based on known model of the vertical tail loss aircraft, and
derive thrust control command using conventional control methods (see for example References3, 7, 10, 21). In
Reference14 an adaptive control scheme is used to control the aircraft in the presence of unknown actuator
failure, when differential trust is used to generate necessary moment. In all this cases the engine dynamics
are ignored, despite the fact that the engine response has a significant lag, especially in law trust levels.

In this paper we consider a propulsion control problem for a transport aircraft with vertical tail loss,
taking into account the aircraft’s engine dynamics. It is assumed that the damage alters the stability and
control derivatives and mass properties of the aircraft. In addition, the aircraft dynamic model involves
modeling uncertainties that account for aerodynamic forces and moments, and external disturbances. Since
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the aircraft is missing the rudder, it is assumed that the necessary yaw moment for the directional control
is generated through the differential thrust of the engines, the dynamics of which is know to be much slower
than the rotational dynamics of the aircraft. Moreover, it is assumed that the engine dynamics can be
modeled as an unknown stable system with throttle input and thrust output, which can be measured (or
very accurate estimates are available). Our adaptive control approach uses several ideas from L1 adaptive
control,5,6 singular perturbation method13 and adaptive time scale separation12 to derive aileron, elevator
and right and left engine throttle commands to track a given reference command. It is based on the state
prediction model based control design, which makes it possible to introduce a low-pass filter in the control
channel to suppress the high frequency oscillations that may be generated by adaptive laws.5 For the roll
and pitch channels this approach generates acceptable control signals. For the yaw channel the necessary
differential throttle input has to be generated as an output feedback signal of a cascaded system, comprised
of the yaw dynamics and engine dynamics. Therefore, it is tempting to use the the control architecture from
the Reference6 that allows to introduce a simple model for the engine dynamics, thus simplifying the output
feedback adaptive design. However, this approach guarantees good tracking when the model is sufficiently
fast, which can not be justified for the slow engine dynamics. Therefore, we propose to use the singular
perturbations method in adaptive settings, which is based on the prediction model as well.12 The required
differential thrust is computed to control the prediction model, and the differential throttle command is
computed via the time scale separation, which is proved to be valid for the prediction models constructed
for the yaw rate dynamics and engine dynamics. Afterwards, the closeness of the models to corresponding
dynamics are proved. Also, it is proved that the closed-loop system is stable and the tracking of the reference
commands can be achieved in steady state as well as in the transient.

The rest of the paper is organized as follows. In Section II we give the problem characteristics and
assumptions, and formulate the control objective. The engine dynamics is discussed in Section III. The
corresponding error dynamics are derived in Section IV. Section V presents the control design steps, and the
stability analysis is presented in Section ??. Simulation examples are presented in Section VI, and the paper
is concluded by Section VII. Throughout the paper bold symbols are used for vectors and small letters for
scalars.

II. Problem Formulation

Let the position vectors of the center of gravity O0 of undamaged aircraft be r0 in some inertial frame
FI . When the damage occurs, the center of gravity shifts to a new position O1, given by the vector r1 in the
same inertial frame. It is assumed that the shift is constant and is described by the vector ρ = r1 − r0. As
a consequence of this shift a coupling appears between the aircraft’s linear and angular accelerations. The
corresponding dynamic equations are derived in16 and have the following form:

F = m(v̇ + ω × v) + mω × (ω × ρ) + mω̇ × ρ (1)

M = J0ω̇ + ω × J0ω + mω × (ρ × v) + mv × (ω × ρ) + mρ × v̇ − ρ × W

These equations are written with respect to a body frame FB , which is attached to the nominal center
of gravity O0, with the longitudinal axis through the aircraft’s nose. In these equations, v is the velocity
vector of the point O0 and ω is the aircraft’s angular rate vector, both expressed in the frame FB, F

and M represent the sum of external forces and moments in the same frame, and W is the gravity force.
m = m∗ + ∆m is the unknown mass of the damaged aircraft, where the mass change ∆m from the known
nominal mass m∗ is negative. J0 is the unknown moment of inertia of the damaged aircraft, computed in the
frame FB . Substituting v̇ from the first equation in (1) into the second one, after some algebra the angular
rate equation can be written as

M − ρ × F + ρ × W = (J0 + mρρ⊤ − mI3×3ρ
⊤ρ)ω̇ + ω × J0ω + mρ⊤ω(ρ × ω) . (2)

We notice that J = J0 + mρρ⊤ − mI3×3ρ
⊤ρ is the moment of inertia of the damaged aircraft computed in

the parallel to FB frame attached to the new center of gravity O1. We decompose the external force F into
the sum of the aerodynamic force F A, gravity force W and the collective thrust T generated by left and
right engines.

F = F A + W + T . (3)



Similarly, we decompose the external moment M into the sum of the aerodynamic moment MA, the moment
of the gravity force W and the moment generated by the differential thrust ∆T . The aerodynamic moment
MA is further decomposed into the sum of the moment generated by the control surfaces M δ and the
moment generated by the rest of the aircraft M b.

MA = M b + M δ + ρ × W + a × ∆T . (4)

where a denotes the radius vector of the center of the right engine thrust vector. Substituting the force and
moment equations into (2), the angular rate dynamics can be expressed in the following form

Jω̇ = −ω × J0ω + mρ⊤ω(ρ × ω) − ρ × (T − W ) + M δ + a × ∆T + M b − ρ × F A , (5)

Next, we substitute ω̇ into first equation in (1) and obtain a force equation in the following form

v̇ =
F

m
− ω × v − ωω⊤ρ − J−1(−ω × J0ω + mρ⊤ω(ρ × ω)

− ρ × (T − W ) + M δ + a × ∆T + M b − ρ × F A) × ρ (6)

The complete dynamics of the damaged aircraft includes also the orientation equations and navigation
equations. However, in this paper we are not interested in navigation problems as well as the yaw orientation
equation. That is, the damaged aircraft’s dynamics are given by the equations (5), (6) and

φ̇ = p + q sin φ tan θ + r cosφ tan θ

θ̇ = q cosφ − r sinφ (7)

We assume that the thrust vector is aligned with the longitudinal axis, that is T = [T 0 0]⊤ and
∆T = [∆T 0 0]⊤, where T and ∆T are the magnitudes of the collective thrust and differential thrust
respectively. This quantities are subject to the following constraints

0 ≤ T ≤ Tmax (8)

−
1

2
T ≤ ∆T ≤

1

2
T ,

where Tmax is the given maximum collective thrust that can be generated by engines. The second inequality
in (8) implies that the one sided thrust is allowed during the maneuvers.

It is assumed that the damage of the aircraft results in the vertical tail loss. This in turn results in the
directional instability of the aircraft with no rudder authority. The objective is to control the aircraft using
the available control surfaces and the differential thrust.

III. Engine Dynamics

In general, typical aircraft engine dynamics are highly nonlinear and of distributed character. The
response depends not only on the throttle input and other combustion parameters, but also on the thrust
level. Figure 1 displays some examples of engine response data to a full throttle input at different altitudes
with initial thrust levels corresponding to trim conditions for a generic transport aircraft model.8

It also shows that for the low thrust level the initial delay in response is much larger than on the high
thrust level, and the response is faster at law altitudes. The forms of the engine response data suggest that it
is possible to approximate the engine dynamics by a stable linear system with time delay, which afterwards
can be transformed into a high order linear time invariant system using Pade approximations. Figure 2 shows
the forth order linear approximation of the engine response at low trust level, which corresponds to a high
altitude cruise. It can be seen that the high order linear time invariant approximation describes the engine
response with sufficient accuracy. Therefore, for the purpose of this paper it is assumed that the thrust
generated by engines can be described as the output of a slow but stable minimum phase linear system with
known relative degree and with a single throttle input.

Since the left and right engines are assumed to be identical, the collective thrust and the differential
thrust are described by the same dynamic model

ǫ−1ẋe(t) = Aexe(t) + be(ue(t) + de(t))

ye(t) = cexe(t) . (9)
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Figure 1. Engine response data for different altitudes and initial thrust level
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Figure 2. Engine response data and 4th order linear approximation response at altitude 30000 ft

where xe(t) is the model’s state, Ae, Be, Ce are matrices of compatible dimensions with Ae being Hurwitz,
ǫ is a small parameter indicating that the engines dynamics are slow in the real time scale, and de(t) is a
bounded external disturbance. For the collective thrust generation ye(t) = T (t), ue(t) = δT (t), where δT (t)
is the collective throttle input, and for the differential thrust generation ye(t) = ∆T (t), ue(t) = δ∆T (t),
where δ∆T (t) is the differential throttle input. The throttle inputs to the left and right engines are defined
as

δTL
=

1

2
[δT + δ∆T ] (10)

δTR
=

1

2
[δT − δ∆T ] ,

IV. Error Dynamics

With the vertical tail loss the aircraft is still symmetrical with respect to the xz plane, that is the center of
gravity shift has zero y coordinate and Jyz = 0. Therefore, it is possible to decouple the longitudinal and the
lateral-directional dynamics. However, coupling remains in the control inputs via the thrust generation. The
point will be clarified shortly. Keeping this in mind, we linearize the aircraft’s dynamics about a trim point
that corresponds to a damaged state, and write the longitudinal and lateral-directional dynamics separately

ẋL(t) = ALxL(t) + BL [ΛLuL(t) + fL(xL(t), xD(t)) + dL(t)] , (11)



where the longitudinal state xL and the control input uL are defined as

xL =
[

∆V ∆α q ∆θ

]⊤

, uL =
[

T δe

]⊤

,

the control allocation matrix AL ∈ R
4×2 is assumed two ne known, matrices matrix AL ∈ R

4×4 and ΛL ∈
R

2×2 are unknown, where ΛL is diagonal positive definite, and represents the unknown control effectiveness.
the nominal value of ΛL is the identity matrix. The continuous and locally Lipschitz function fL(xL, xD)
represents modeling uncertainties and the bounded time function dL(t) is added to account for external
disturbances such as the turbulence or wind gust. In the above equation,

xL =
[

β r p φ

]⊤

is the lateral-directional state that satisfies the equation

ẋD(t) = ADxD(t) + BD [ΛDuD(t) + fD(xL(t), xD(t)) + dD(t)] , (12)

where uD = [δa ∆T ]⊤ is the lateral-directional control input, the matrices AD, BD, ΛD and functions
fD(xL, xD), dD(t) have the same meaning as in the case of longitudinal dynamics.

Remark 1 . In the above equations the collective thrust T and the differential thrust ∆T are considered as
independent input signals that are generated through the engines, the required thrusts of which are defined
according to the equations

Tleft = T +
1

2
∆T (13)

Tright = T −
1

2
∆T , (14)

where T and ∆T are considered commands generated from the perspective of controlling the longitudinal and
lateral-directional dynamics respectively. In this case the collective thrust remains intact while the engines
undergo changes to generate the required differential thrust. Therefore, the decoupling of the dynamics is
complete. However, as we will see in the simulations, this way of generating the differential thrust is not
always the best solution, since for the vertical tail loss aircraft the directional stability is a priority and all
possible control capabilities must be used for this purposes. The alternative is to control the engines separately
to achieve maximal differential thrust at each operating point in the expense of altering the desired collective
thrust, which cannot be considered as an independent control signal any more. The excess collective thrust
will affect the longitudinal motion, which can be compensated for after the directional stability is archived.

We construct the reference models for the longitudinal and lateral-directional dynamics that meet the
desired performance characteristics as follows. Let AL = A0

L + ∆AL and AD = A0
D + ∆AD, where A0

L and
A0

D are known matrices such that the pairs (AL, BL) and (AL, BL) are controllable, and ∆AL and ∆AD are
the uncertainties that satisfy the following model matching assumption.

Assumption 1 . For Hurwitz matrices ALm and ADm there exist constant matrices K∗

Lx ∈ R
2×4, K∗

Lr ∈
R

2×2, K∗

Dx ∈ R
2×4 and K∗

Dr ∈ R
2×2 such that

BLK∗

Lx = ∆AL BDK∗

Dx = ∆AD

BLK∗

Lr = BLm BDK∗

Dr = BDm . (15)

Remark 2 . The true knowledge of the matrices K∗

Lx, K∗

Lr, K∗

Dx and K∗

Dr is not required, only their
existence is assumed. �

The reference models are obtained from the corresponding dynamics in the absence of uncertainties and
disturbances by means of the linear controls

u0
L(t) = −K0

LxxL(t) + K0
LrrL(t)

u0
D(t) = −K0

DxxD(t) + K0
DrrD(t) , (16)



where the gains K0
Lx, and K0

Dx are chosen such the the matrices ALm = A0
L − BLK0

Lx and ADm = A0
D −

BDK0
Dx are Hurwitz. The reference models for the longitudinal dynamics and lateral directional dynamic

have form

ẋLm(t) = ALmxLm(t) + BLmrL(t)

ẋDm(t) = ADmxDm(t) + BDmrD(t) , (17)

where the rL(t) and rD(t) are external command signals.
We take the adaptive augmentation approach in the control law design. That is the control signals are

represented as

uL(t) = u0
L(t) + uad

L (t)

uD(t) = u0
D(t) + uad

D (t) , (18)

where u0
L(t) and u0

D(t) baseline control signals in (16), and uad
L (t), uad

D (t) are adaptive augmentations to be
designed later. Denoting the longitudinal tracking error by eL(t) = ẋL(t)− ẋLm(t), the error dynamics can
be written in the

ėL(t) = ALmeL(t) + BL

[

ΛL(uL(t) − u0
L(t)) + KLxxL(t) + KLrrL(t) + fL(xL(t), xD(t)) + dL(t)

]

, (19)

where KLx = (I−ΛL)K0
Lx + K∗

Lx and KLr = (I−ΛL)K0
Lr + K∗

Lr. Similarly, the lateral-directional tracking
error dynamics can be written as

ėD(t) = ADmeD(t) + BD

[

ΛD(uD(t) − u0
D(t)) + KDxxD(t) + KDrrD(t) + fD(xL(t), xD(t)) + dD(t)

]

, (20)

where eD(t) = ẋD(t) − ẋDm(t), KDx = (I − ΛD)K0
Dx + K∗

Dx and KDr = (I − ΛD)K0
Dr + K∗

Dr.

Remark 3 . We notice that the error dynamics (19) and (20) are in the form considered earlier in the
literature and the suitable adaptive control design techniques guaranteeing tracking both in the steady state
and in transient can be found in References.20,22 Next step would be to design suitable laws for the throttle
inputs in order to generate the required collective and differential thrust signals designed in the previous step.
Whereas for the longitudinal design the direct application of any design approach would perform satisfactory,
for the lateral-directional design it leads to a throttle command that involves high gain terms.19 The reason
is that the engine dynamics are much faster than the fungoid mode and much slower than the rotational
dynamics controlled by the rudder deflection. One of the remedies for the situation is the principle of the
time scale separation, which is based on the Tikhonov’s theorem.13 This theorem requires some exponential
stability properties for the cascaded systems under the consideration. However, no exponential stability of the
error system (20) can be establish without the parameter convergence, which cannot be guaranteed in general,
especially when the unknown nonlinearities are involved. This prevents the direct application of for the
time scale separation. As an intermediate step we follow the approach from Reference12 and design suitable
prediction models for which the time scale separation theorem can be applied. Since the longitudinal dynamics
do not require two time scale separation, we drop them from further consideration, assuming that the suitable
longitudinal design is already available, and the longitudinal variables reside in the suitable bounded regions.
That is to design control laws for the lateral-directional dynamics all longitudinal variables are assumed to
be bounded.

Since fD(xL, xD) is continuous, we approximate it on a compact set ΩxL
× ΩxD

by any known approx-
imation method. Here, we use normalized radial bases functions11 to approximate f(v, ω) by a linear in
parameter neural network on the compact set ΩxL

× ΩxD
. That is we write

fD(xL, xD) = W⊤ϕ(xL, xD) + ε(xL, xD) , (21)

where W ∈ R
N×2 is the unknown optimal weight matrix, which minimize the norm difference ‖fD(xL, xD)−

W⊤ϕ(xL, xD)‖, ϕ(xL, xD) is the vector of basis functions and ε(xL, xD) is function reconstruction error that
is uniformly bounded by a constant ε∗. We notice that from the above considerations the relationship xL ∈
ΩxL

is satisfied, and xD ∈ ΩxD
will be guaranteed by the control design. Substituting the approximation

(21) into the error dynamics (20) we obtain

ė(t) = Ame(t) + B
[

Λu(t) + Kxx(t) + Krr(t) + W⊤ϕ(t) + σ(t)
]

, (22)



where for the notational simplicity we drop the subscript ”D” and introduce notations u(t) = uD(t)−u0
D(t),

ϕ(t) = ϕ(xL(t), xD(t)), σ(t) = ε(xL(t), xD(t)) + dD(t), where σ(t) is bounded componentwise by some
positive constant vector σ∗ as long as the relationship (xL(t), xD(t)) ∈ ΩxL

×ΩxD
holds. Also, since Am is

a Hurwitz matrix there exists a symmetric positive definite matrix P that satisfies the Lyapunov equation

A⊤

mP + PAm = −Q (23)

for some symmetric positive definite matrix Q.

V. Control Design

In this section we construct the stabilizing control law for the cascaded system that is comprised od the
error dynamics (22) and the engine dynamics (9). To this end we assume that the engine dynamics is of full
relative degree n, and therefore can be represented in the normal form without internal dynamic

ε−1ẋe(t) = (A0 − b0k
⊤)xe(t) + b0 [ωue(t) + de(t)]

ye(t) = c0⊤xe(t) . (24)

where the triplet (A0, b0, c0) is the canonical form representation of chain of n integrators, k is an unknown
constant vector, ω is the unknown constant control effectiveness of known sign (assume is positive), and
ye(t) = ∆T (t) and ue(t) = ∆δT (t).

A. Prediction Models

The prediction model for the lateral-directional tracking error dynamics is introduced according to equation

˙̂e(t) = Amê(t) + B
[

Λ̂(t)ū(t) + K̂⊤

x (t)x(t) + K̂⊤

r (t)r(t) + Ŵ⊤(t)ϕ(t) + h(t)
]

, (25)

where the variables with ”hat” are the estimates of the corresponding unknown constant parameters,
ū(t) = [δa(t) − δ0

a(t) ∆̂T (t) − ∆T 0(t)]⊤, δ0
a(t) and ∆T 0(t) are baseline aileron deflection and differen-

tial thrust commands, ∆̂T (t) is the prediction of the differential thrust command to be design shortly,

h(t) = [σ̂1(t)sign(χ1(t)) σ̂2(t)sign(χ2(t))]
⊤, σ̂(t)

∆
= [σ̂1(t) σ̂2(t)]

⊤ is the estimate of the unknown bound σ∗

and χ(t)
∆
= [χ1(t) χ2(t)]

⊤ = B⊤P ẽ(t), and ẽ(t) = e(t) − ê(t) is the prediction error. The estimates Λ̂(t),
K̂x(t), K̂r(t), Ŵ⊤(t) and σ̂(t) are given by the adaptive laws

˙̂
Λ(t) = γ1Π

{

Λ̂(t), u(t)χ⊤(t)
}

˙̂
Kx(t) = γ2x(t)χ⊤(t)

˙̂
Kr(t) = γ3r(t)χ⊤(t)

˙̂
W (t) = γ4ϕ(t)χ⊤(t)
˙̂σr(t) = γ5|χ(t)| , (26)

where γ1 > 0, γ2 > 0, γ3 > 0, γ4 > 0 and γ5 > 0 are the adaptation rates, the projection operator17

Π(·, ·) is introduced to keep the estimate Λ̂(t) positive, and the absolute value of the vector χ(t) is defined
componentwise. The prediction error dynamics can be written as

˙̃e(t) = Amẽ(t) + B
[

Λ̃(t)u(t) + Λ̂(t)ũ(t) + K̃⊤

x (t)x(t) + K̃⊤

r (t)r(t) + W̃⊤(t)ϕ(t) + σ(t) − h(t)
]

, (27)

where Λ̃(t) = Λ− Λ̂(t), K̃x(t) = Kx − K̂x(t), K̃r(t) = Kr − K̂r(t), and W̃ (t) = W − Ŵ (t) are the parameter
estimation errors, ũ(t) = [0 ∆̃T (t)]⊤ and ∆̃T (t) = ∆T (t) − ∆̂T (t) is the differential thrust prediction error.

To be able to introduce a suitable prediction model for the engine dynamics in (24), we introduce filters
following the conventional linear system parametrization scheme (see for example15, 18)

ε−1ξ̇1(t) = (A0 − b0k⊤

0 )ξ1(t) + b0ya(t), ξ1(0) = 0

ε−1ξ̇2(t) = (A0 − b0k⊤

0 )ξ2(t) + b0ue(t), ξ2(0) = 0

ε−1ξ̇3(t) = (A0 − b0k⊤

0 )ξ3(t) + b0de(t), ξ3(0) = 0 , (28)



where b0 = [1 b0
2 . . . b0

n]⊤ is chosen such that the pair (A0, b
0) is controllable and the polynomial sn−1 +

b0
2s

n−2 + · · ·+ b0
n is Hurwitz, k0 ∈ R

n is chosen such that A0−b0k⊤

0 is Hurwitz. Then, the differential thrust
can be represented as

ye(t) = q⊤ξ1(t) + ωξ21(t) + σe(t) , (29)

where we denote q = k0 − k and σe(t) = ξ31(t). Since the filters are stable, from the boundedness of the
inputs the boundedness of the outputs follow. That is σf (t) is bounded by some positive constant σ∗

f since
de(t) is assumed to be bounded. The prediction model for the differential thrust is introduced as

ŷe(t) = q̂
⊤(t)ξ1(t) + ω̂(t)ξ21(t) + σ̂e(t)sign(χ2(t)) , (30)

where q̂(t) and ω̂(t) are the estimates of unknown parameters q and ω respectively, and σ̂f (t) is the estimate
of the unknown bound σ∗

f . The prediction error ỹe(t) = ye(t) − ŷe(t) is given by the equation

ỹe(t) = q̃⊤(t)ξ1(t) + ω̃(t)ξ21(t) + σe(t) − σ̂e(t)sign(χ2(t)) , (31)

where q̃(t) = q − q̂(t), and ω̃(t) = ω − ω̂(t) are the parameter estimation errors. The adaptive laws for the
estimates q̂(t) and ω̂(t) in the differential thrust prediction model are defined as

˙̂q(t) = γ6[ỹe(t)ξ1(t) + λ̂2(t)χ2(t)ξ1(t)]

˙̂ω(t) = γ7Π
{

ω̂(t), ỹe(t)ξ21(t) + λ̂2(t)χ2(t)ξ21(t)
}

˙̂σe(t) = γ8[|ỹe(t)| + λ̂2(t)|χ2(t)|] , (32)

where γ6 > 0, γ7 > 0 and γ8 > 0 are the adaptation rates, and the projection operator17 Π(·, ·) is introduced
to keep ω̂(t) positive.

The following lemma guarantees the closeness of the prediction models to the corresponding dynamics.

Lemma 1 . The adaptive laws (26) and (32) guarantee boundedness of the estimates Λ̂(t), K̂x(t), K̂r(t),
Ŵ⊤(t) and σ̂(t) as well as q̂(t), ω̂(t), σ̂f (t) and the prediction errors ẽ(t) and ỹe(t). Moreover, ẽ(t) ∈ L2

and ỹe(t) ∈ L2.

Proof. Consider the following candidate Lyapunov function

V (t) = ẽ⊤(t)P ẽr(t) + tr
{

γ−1
1 Λ̃⊤(t)Λ̃(t) + γ−1

2 K̃⊤

x (t)K̃x(t) + γ−1
3 K̃⊤

r (t)K̃r(t) + γ−1
4 w̃⊤(t)W̃ (t)

}

+ γ−1
5 (σ∗

r − σ̂r(t))
⊤(σ∗

r − σ̂r(t)) + γ−1
6 q̃⊤(t)q̃(t) + γ−1

7 ω̃(t)ω̃(t) + γ−1
8 (σ∗

e − σ̂e(t))
2 . (33)

The derivative of V (t) is computed along the trajectories of systems (27), and (26), (31) and (32).

V̇ (t) = −ẽ⊤

r (t)Qrẽr(t) + 2χ⊤(t)
[

Λ̃(t)u(t) + Λ̂(t)ũ(t) + K̃⊤

x (t)x(t) + K̃⊤

r (t)r(t) + W̃⊤(t)ϕ(t) + σ(t)

− h(t)
]

+ 2tr
{

γ−1
1 Λ̃⊤(t) ˙̃Λ(t) + γ−1

2 K̃⊤

x (t) ˙̃
Kx(t) + γ−1

3 K̃⊤

r (t) ˙̃
Kr(t) + γ−1

4 w̃⊤(t) ˙̃
W (t)

}

− 2γ−1
5 (σ∗ − σ̂(t))⊤ ˙̂σ(t) − 2γ−1

6 q̃⊤(t) ˙̂q(t) − 2γ−1
7 ω̃(t) ˙̂ω(t) − 2γ−1

8 (σ∗

e − σ̂e(t)) ˙̂σe(t)

= −ẽ⊤(t)Qẽ(t) + 2tr
{

Λ̃⊤(t)
[

u(t)χ⊤(t) − γ−1
1

˙̂
Λ(t)

]}

+ 2tr
{

K̃⊤

x (t)
[

x(t)χ⊤(t) − γ−1
2

˙̂
Kx(t)

]}

+ 2tr
{

K̃⊤

r (t)
[

r(t)χ⊤(t)γ−1
3

˙̂
Kr(t)

]}

+ 2tr
{

W̃⊤(t)
[

ϕ(t)χ⊤(t) − γ−1
4

˙̂
W (t)

]}

+ 2χ2(t)λ̂2(t)
[

q̃⊤(t)ξ1(t) + ω̃(t)ξ21(t) + σe(t) − σ̂e(t)sign(χ2(t))
]

+ 2χ(t)⊤(σ(t) − h(t))

− 2γ−1
5 (σ∗ − σ̂(t))⊤ ˙̂σ(t) − 2γ−1

6 q̃⊤(t) ˙̂q(t) − 2γ−1
7 ω̃(t) ˙̂ω(t) − 2γ−1

8 (σ∗

e − σ̂e(t)) ˙̂σe(t) . (34)

where we use the well known trace property tr(a⊤b) = tr(ba⊤) for any vectors a and b of the same dimension.
Substituting the adaptive laws and after some algebra we obtain

V̇ (t) ≤ −ẽ⊤(t)Qẽ(t) + 2χ(t)⊤(σ(t) − h(t)) − 2(σ∗ − σ̂(t))⊤|χ(t)| − 2ỹe(t)
[

q̃⊤(t)ξ1(t) + ω̃(t)ξ21(t)
]

+ 2χ2(t)λ̂2(t)[σe(t) − σ̂e(t)sign(χ2(t))] − 2(σ∗

e − σ̂e(t))[|ỹe(t)| + λ̂2(t)|χ2(t)|] , (35)



where we have used the following properties of the projection operator17

tr
{

Λ̃⊤(t)
[

u(t)χ⊤(t) − Π
{

Λ̂(t), u(t)χ⊤(t)
}]}

≤ 0

ω̃(t)
[

ỹe(t)ξ21(t) + λ̂2(t)χ2(t)ξ21(t) − Π
{

ω̂(t), ỹe(t)ξ21(t) + λ̂2(t)χ2(t)ξ21(t)
}]

≤ 0 , (36)

The terms χ(t)⊤(σ(t) − h(t)) − (σ∗ − σ̂(t))⊤|χ(t)| are evaluated componentwise as follows

χ(t)⊤(σ(t) − h(t)) − (σ∗ − σ̂(t))⊤|χ(t)| = χ1(t)σ1(t) − |χ1(t)|σ̂1(t) − (σ∗

1 − σ̂1(t))|χ1(t)| + χ2(t)σ2(t)

−|χ2(t)|σ̂2(t) − (σ∗

2 − σ̂2(t))|χ2(t)| = χ1(t)σ1(t) − σ∗

1 |χ1(t)| + χ2(t)σ2(t) − σ∗

2 |χ2(t)|χ2(t) ≤ 0 . (37)

Taking into account the positivity of the estimate λ̂2(t) the last two terms are evaluated as follows

χ2(t)λ̂2(t)[σe(t) − σ̂e(t)sign(χ2(t))] − (σ∗

e − σ̂e(t))[|ỹe(t)| + λ̂2(t)|χ2(t)|] = σe(t)χ2(t)λ̂2(t)

−σ∗

e |χ2(t)|λ̂2(t) − (σ∗

e − σ̂e(t))|ỹe(t)| ≤ −(σ∗

e − σ̂e(t))|ỹe(t)| ≤ −(σ∗

e − σ̂e(t))ỹe(t) . (38)

Taking into account the inequalities above and the error definition (31) we obtain

V̇ (t) ≤ −ẽ⊤(t)Qẽ(t) − ỹ2
a(t) , (39)

which implies that the error signals Λ̃(t), K̃x(t), K̃r(t), W̃ (t), σ∗ − σ̂(t), q̃(t), ω̃(t) and σ∗
e − σ̂e(t) are

bounded. Then, the estimates Λ̂(t), K̂x(t), K̂r(t), Ŵ (t), σ̂(t), q̂(t), ω̂(t) and σ̂e(t) are bounded as well. At
this moment we cannot conclude anything about the boundedness of ê(t), e(t), ŷe(t), ỹe(t) or ye(t). However,
we can integrate the inequality (39) and obtain

∫ t

0

[

ẽ⊤(τ)Qẽ(τ) + ỹ2
e(τ)

]

dτ ≤ V (0) − V (t) . (40)

From Lemma 1 it follows that V (t) is bounded, therefore ẽ(t) ∈ L2 and ỹe(t) ∈ L2. �

We notice that Lemma 1 holds independent of specific control design, which we provide in the next
subsection following the steps from Reference.19

B. Control Signal

Our goal is design aileron deflection and differential throttle commands δa(t) and ∆δT (t) for the cascaded
prediction system

˙̂e(t) = Amê(t) + B
[

Λ̂(t)ū(t) + K̂⊤

x (t)x(t) + K̂⊤

r (t)r(t) + Ŵ⊤(t)ϕ(t) + h(t)
]

ε−1ξ̇2(t) = (A0 − b0k
⊤

0 )ξ2(t) + b0ue(t) , (41)

such that ê(t) → 0 as t → ∞. We notice that the second system in (41) is of relative degree one and
minimum phase, and the matrix A0 − b0k

⊤

0 is Hurwitz. Therefore the vector k0 can be chosen such that the
transfer function from the input ue(t) to the output ξ21(t) has the form

ξ21(s) =
εω1

s + εω2

ue(s) . (42)

where ω1 > 0 and ω2 6= 0. The rest of the system is input to state stable, where the input is ξ21(t), and
is bounded as long as ξ21(t) is bounded. Therefor the control design besides the tracking task must also
guarantee the boundedness of ξ21(t). The cascaded system under the consideration takes the form

˙̂e(t) = Amê(t) + B
[

Λ̂(t)ū(t) + K̂⊤

x (t)x(t) + K̂⊤

r (t)r(t) + Ŵ⊤(t)ϕ(t) + h(t)
]

ε−1ξ̇21(t) = −ω1ξ21(t) + ω2ue(t) , (43)

Since Λ̂(t) is diagonal with positive entries, we can design the control signal ū(t) as follows

ū(t) = Λ̂−1(t)
[

−K̂⊤

x (t)x(t) − K̂⊤

r (t)r(t) − Ŵ⊤(t)ϕ(t) − h(t)
]

. (44)



Whereas the signal

δa(t) = ū1(t) + δ0
a(t) , (45)

where δ0
a(t) is the baseline signal from (16) is the actual aileron deflection command, the signal ∆T (t) =

ū2(t) + ∆T 0(t), where ∆T 0(t) is the baseline signal defined in (16), represents differential thrust command
to the engine dynamics. Since we will design the differential throttle command from the point of view of
controlling the model (52), the stabilizing function is designed as follows

µ(t) =
ū2(t) − q̂⊤(t)χ1(t) − σ̂e(t)sign(χ2(t))

ω̂(t)
, (46)

which is well defined since ω̂(t) > 0 is guaranteed by the adaptive law (32). Next we filter the stabilizing
function µ1(t) through a second order stable filter

ε−1ż1(t) = ωfz2(t)

ż2(t) = −2ζfωfz2(t) − ωf [z1(t) − µ(t)] , (47)

and introduce an error variable η(t) = ξ21(t)−z1(t). The tracking error prediction model now can be written
as

˙̂e(t) = Amê(t) + b2λ̂2(t)ω̂(t)η(t) + b2λ̂2(t)ω̂(t)[z1(t) − µ(t)] , (48)

where b2 is the second column of matrix B. Filtering the auxiliary error term λ̂2(t)ω̂(t)[z1(t)−µ(t)] through
the stable filter

ζ̇(t) = Amζ(t) + b2ω̂(t)η̂1(t)[z1(t) − µ(t)] , (49)

we introduce the compensated error ē(t) = ê(t) − ζ(t) which satisfies the dynamic equation

˙̄e(t) = Amē(t) + b2λ̂2(t)ω̂(t)η(t) . (50)

Differentiating η(t) we obtain

ε−1η̇(t) = −ε−1ω1ξ21(t) + ω2ue(t) − ωfz2(t) , (51)

which together with the compensated error dynamics (49) make a singular perturbation problem13

˙̄e(t) = Amē(t) + b2λ̂2(t)ω̂(t)η(t)

ε−1η̇(t) = −ω1ξ21(t) + ω2ue(t) − ωfz2(t) . (52)

In Reference19 we prove that the singular two time scale separation principle can be applied to the cascaded
system (52) and the control signal ue(t) can be designed through from the perspective of controlling the
reduced system

dη(τ)

dτ
= −ωfz2(t) − ω1ξ21(t) + ω2u(t) . (53)

in the time scale τ = εt. The boundary layer system in this case has the form

ẏ(t) = Amy(t) , (54)

where y(t) = e(t) − A−1
m b2λ̂2(t)ω̂(t)η(t), and is exponentially stable. The control signal is designed as

ue(t) =
−cµ(t) + (ω1 − c)ξ21(t) + ωfz2(t)

ω2

, (55)

and exponentially stabilizes reduced system (53).



Then it can be proved following the Reference19 that the solutions of the cascaded system (52 and the
following system

˙̂e(t) = Amê(t) + b2λ̂2(t)ω̂(t)η(t) + b2λ̂2(t)ω̂(t)[z1(t) − µ(t)]

ε−1η̇(t) = −ω1ξ21(t) + ω2ue(t) − ωfz2(t) . (56)

satisfies the relationship

η(t) = O(ε) (57)

for all t > 0, and the relationship

ê(t) = O(ε) + O(ω−1
f )

ē(t) = O(ε) (58)

for all t > t∗, where t∗ depends on the convergence rate of the compensated error system (52) in faster time
scale, and on ε. From the boundedness of ê(t) and η(t) and from the inequality (40) it follows thate(t),
ŷe(t) and ye(t) are bounded. Then, from the dynamics (27) it follows that ˙̃e(t) is bounded. Therefore, the
application of Barbalat’s lemma results in ẽ(t) → 0 as t → ∞. From this convergence one can infer that the
relationship

e(t) = O(ε) + O(ω−1
f ) (59)

holds as t → ∞.
Since the lateral-directional tracking error D(t) is bounded, from the boundedness of the reference com-

mand rD(t) it follows the the lateral-directional variables are bounded, and the bounds are independent of
the unknown parameters. That is the compact set ΩxD

can be chosen independent of the adaptive scheme
such that xD(T ) ∈ ΩxD

for all t ≥ 0. From this considerations and Remark 3 follows the validity of the
approximation (21). This completes the proof of the following theorem.

Theorem 1 . Let the outer loop variables xL be in the compact set ΩxL
. Then the differential throttle

command ∆δT (t) given by the equation (55), along with the aileron deflection command δa(t) (45), adaptive
laws (26), (32), stabilizing function (46) and filters (47), (49), (50) regulates the error signal eD(t) to
a neighborhood of the origin with the diameter proportional to ε and inversely proportional to the filters’
frequency ωf .

VI. Simulation Results

For the simulation we consider a damaged GTM model that before the damage was in straight and level
flight at h = 30000ft with speed M = 0.8. We consider only linearized lateral-directional dynamics of the
vertical tail loss GTM model, since the longitudinal dynamics do not change much and the model ia still
symmetric about the vertical plane. The linearized lateral directional system is given by the matrices

AD =











−0.0794 −0.9975 0.0496 0.0404

−0.5646 −0.0955 −0.0217 0

−7.4175 0.2784 −1.7186 0

0 0.0507 1.0000 0











, BD =











0.0024 0.0000

−0.0523 0.0293

6.4318 0.0010

0 0











. (60)

It is unstable with the poles at (−1.6473, − 0.7007, 0.3683, 0.0862). The engines are given by the linear
system

ε = 0.25, Ae =











0 1 0 0

0 0 1 0

0 0 0 1

−150.0135 −171.4720 −73.4960 −14.0000











, be =











0

0

0

150.0135











, (61)

which correspond to the normalized thrust and normalized throttle input. The engine dynamic model has a
settling time of ts = 10.3851sec.



We run a simulation assuming that the systems are known, but engine states are not accessible and only
thrust output Tn(t) is available for feedback. The engine dynamics are written in the equivalent form

ż1(t) = z2(t)

ż2(t) = z3(t)

ż3(t) = z4(t)

ż4(t) = −0.5860z1(t) − 2.6793z2(t) − 4.5935z3(t) − 3.5z4(t) + 0.5860un(t)

Tn(t) = z1(t) , (62)

for which an observer is constructed with the poles at (−8.9, − 8.8, − 8.7, − 8.6), and the states of the
observer are used in generating the differential thrust as well as the aileron deflection commands.

In the first simulation we stabilize the airplane given from initial conditions β(0) = 1.5o, r(0) = 0, p(o) =
0, φ(0) = 0. The simulation results are presented in Figures 3(a), 3(b), 4(a) and 4(b).
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Figure 3. Lateral directional performance of the airplane
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Figure 4. Stabilizing control signals

It is evident from the figures that the stabilization is achieved with the chosen engine model. The initial
rapid reduction in sideslip angle is due to aileron deflection at the initial period as can be seen from Figure
4(a). This also results in the negative banking of the airplane (Figure 3(b)), which buys some time for the
engines to generate a differential thrust. However, the thrust generated it is still not sufficient enough to



decrease the sideslip angle. When the aileron returns to a small region around equilibrium, the sideslip angle
increases again for the next 10 sec, but the engines are able to generate enough torque to stop the increase
and eventually regulate the sideslip angle.

The differential thrust command is large during the initial period and results in the saturation of throttle
inputs for both engines as can be seen in Figure 4(b). The engine responses are slow, but sufficient enough
to compensate for the chosen initial disturbance. It should be mentioned that the airplane departs from the
course during the recovery. After a stabile flight regime is established, the course can be changed, which we
demonstrate in the next simulation.

The next simulation results show the tracking performance of the airplane with initial −0.5o sideslip
angle following the 15o bank angle command while regulating the sideslip. The performance is displayed in
Figures 5(a), 5(b), 6(a) and 6(b).
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Figure 5. Tracking performance of the airplane
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Figure 6. Tracking control signals

It can be seen from the figures that the proposed control scheme has also tracking capabilities. The
steady turn rate is about 0.6o per second, which is sufficient enough to change the course of the given flight
conditions as required. The required differential thrust is again higher in the initial period and results in the
throttle saturation of both engines 4(b).

We run the last simulation to stabilize the airplane with the proposed adaptive control when the engine
dynamics are assumed to be unknown, but the relative degree is known. The results for the initial conditions
β(0) = 1.5o, r(0) = 0, p(o) = 0, φ(0) = 0 are displayed in Figures 5(a), 5(b), 6(a) and 6(b). Although the
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Figure 7. Adaptive stabilization of the vertical tail loss airplane
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Figure 8. Adaptive control signals

convergence is somewhat slower than in the known case, the overall performance is similar and the airplane
behaves in a similar way.

VII. Conclusion

We considered a control problem for the vertical tail loss generic transport aircraft model, using the en-
gines’ differential thrust in place of a rudder, which is assumed to be lost. Although the required differential
trust generation is substantially slower than the conventional yaw moment generation by the rudder deflec-
tion, we show that the aircraft can still be locally controlled, using the proposed control algorithm. This
approach is demonstrated in the simulations for both stabilization of the damaged airplane and tracking of a
given command. Future validation of the approach will be conducted using full nonlinear aircraft simulations
with realistic and accurate engine model.
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