
Adaptive Stress Testing of Trajectory Predictions in
Flight Management Systems

Robert J. Moss∗, Ritchie Lee†, Nicholas Visser‡, Joachim Hochwarth‡, James G. Lopez§, and Mykel J. Kochenderfer∗
∗Stanford Intelligent Systems Laboratory, Stanford University, Stanford, CA, 94305

†NASA Ames Research Center, Moffett Field, CA, 94035
‡GE Aviation, Grand Rapids, MI, 49512

§GE Global Research, Niskayuna, NY, 12309

Abstract—To find failure events and their likelihoods in flight-
critical systems, we investigate the use of an advanced black-
box stress testing approach called adaptive stress testing. We
analyze a trajectory predictor from a developmental commercial
flight management system which takes as input a collection of
lateral waypoints and en-route environmental conditions. Our
aim is to search for failure events relating to inconsistencies in
the predicted lateral trajectories. The intention of this work is to
find likely failures and report them back to the developers so they
can address and potentially resolve shortcomings of the system
before deployment. To improve search performance, this work
extends the adaptive stress testing formulation to be applied more
generally to sequential decision-making problems with episodic
reward by collecting the state transitions during the search and
evaluating at the end of the simulated rollout. We use a modified
Monte Carlo tree search algorithm with progressive widening
as our adversarial reinforcement learner. The performance is
compared to direct Monte Carlo simulations and to the cross-
entropy method as an alternative importance sampling baseline.
The goal is to find potential problems otherwise not found by
traditional requirements-based testing. Results indicate that our
adaptive stress testing approach finds more failures and finds
failures with higher likelihood relative to the baseline approaches.

I. INTRODUCTION

A primary function of aircraft flight management systems
(FMS) is to provide guidance in the form of navigational
waypoints between origin and destination airports. A trajectory
predictor is the subsystem that provides trajectories to the
guidance subsystem that commands the autopilot. Failures
within the trajectory prediction system can occur if the output
waypoints are unreachable given the physical limitations of the
aircraft, or if there are problems with the implementation or
design of the software. The goal of this work is to find likely
failure cases before system deployment so that the engineers
can resolve or address potential problems in the system.

Traditionally, large-scale Monte Carlo testing is used to
generate these failure cases [1]. However, Monte Carlo testing
can be inadequate for large input spaces with rare failure
events [2]. We investigate the use of adaptive stress testing
(AST), an advanced black-box stress testing approach that
has been successfully applied to find failures in safety-critical
systems [3]–[6]. Adaptive stress testing is a method that uses
reinforcement learning to adversarially search for rare failure
events in sequential decision-making systems [7]. This work

applies the AST approach to trajectory prediction systems to
efficiently find failure events and their likelihoods.

The trajectory prediction system is treated as a black-box
simulator and AST controls the selection of waypoints and
other environmental input parameters. Monte Carlo tree search
(MCTS) with progressive widening is used to explore the
possible trajectories and a notion of “miss distance” to a failure
event is used to help guide the search. Transition probabilities
between states are also used to guide the search towards
the most likely failures. In traditional AST formulations, a
sequential decision-making problem is assumed, but our open-
looped trajectory predictor does not provide a sequence of
decisions, but rather generates trajectories based on complete
flight plans. We regard each waypoint in the flight plan as
a step in the sequence. Although we can forcibly fit the
problem to a strict sequential framework by calling the system
with partial flight plans, this is prohibitively expensive and
unnecessary. Instead, we collect the intermediate states and
actions and only evaluate the system at the end of a simulated
rollout, then back-propagate the reward to unevaluated parts of
the tree. We can do this due to the structure of the AST reward
function. Therefore, this work extends the AST approach
to be applied more generally to sequential decision-making
problems with episodic reward (i.e. rewards accumulated at
the end of an episode with intermediate rewards of zero).

We analyze a trajectory predictor from a developmental
commercial FMS which takes as input winds aloft, origin and
destination airports, and a collection the lateral waypoints. The
trajectory predictor outputs the discrete-time controls that de-
termine translational motion which would be input to the FMS.
Within the FMS, the trajectories are passed to the guidance
subsystem which determines how to command the autopilot.
Although we focus on arc length discrepancies as the primary
failure mode (described in Section V), this work can be easily
extended to other failure events. The performance of AST
is compared to two baselines: direct Monte Carlo simulation
and the cross-entropy method. Current failure assessment is
performed exhaustively over a navigational database of prede-
fined aircraft routes defined by lateral waypoints. This testing
method is used during development while requirement-based
testing is used for final system certification following RTCA
DO-178C [8]. The intention of testing during development
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is to find failures otherwise not covered by requirements-
based tests. As a comparison of developmental testing ap-
proaches, we sample routes from the navigational database
as another baseline to relate the simulation-based approach
to the standard navigational database approach. Experiments
were run to generate likely failure events that are provided
to the developers of the trajectory predictor to analyze and
resolve potential shortcomings of the system.

AST has been successfully applied to safety-critical systems
such as aircraft collision avoidance systems [3], [5] and au-
tonomous vehicles [4]. Lee, Puig-Navarro, Agogino, et al. [9]
applied AST to trajectory planning systems, but as will be
discussed further in Section III-A, that problem had access
to the full FMS, thus fitting the model of traditional AST.
They looked at runtime behavior of the FMS on a simulated
aircraft, where the disturbances were added as sensor noise.
In our work, we do not rely on simulating aircraft dynamics
and use input waypoints as the disturbances.

Other work has been proposed to efficiently search for
failures in black-box cyber-physical systems [10]. Norden,
O’Kelly, and Sinha [11] propose an importance sampling
approach to find rare failure events to assess autonomous
vehicle safety. Their work is similar to AST but relies on an
accurate importance distribution. Other approaches formulate
the problem of falsification as an optimization problem and
solve it using Bayesian optimization [12], simulated annealing
[13], [14], or rapidly-exploring random trees [15]. Each of
these approaches are formulated as a classical optimization
problem and use different techniques to search the input
space for failures—although there is no likelihood estimation
for a given falsifying input. A different approach altogether
uses an existing set of falsifying inputs to bootstrap the
search for neighboring failures [16]. That work relies on
existing counterexamples to base the neighboring search upon.
Our work addresses falsification of sequential systems with
episodic reward and includes most likely failure analysis.

This paper is organized as follows. Section II provides
necessary background of AST and commercial aircraft FMS.
Section III describes how this work extends existing AST
approaches and modifications made to the MCTS algorithm.
Section IV details the implementation of this work using the
Julia programming language and provides a description of the
interface for AST to interact with black-box systems. Section
V describes the simulation environment constructed for the
FMS application and the failure events we are searching for.
Section VI describes the experiments and discusses the anal-
ysis of the results. Lastly, Section VII provides a discussion
on the conclusions from this work.

II. BACKGROUND

This section describes background of the adaptive stress
testing approach and flight management systems.

A. Adaptive Stress Testing

Adaptive stress testing (AST) is a black-box approach to
find rare failure events in cyber-physical systems [3], [17].

Simulator S̄

Environment System
Under Test

Reinforcement
Learner

Reward
Function

seed ā

reward r terminal τ ,
transition probability p,
event e, miss distance d

Fig. 1. Adaptive stress testing formulation.

The AST problem is formulated as a Markov decision pro-
cess (MDP) and can be solved using reinforcement learning
algorithms to guide the search towards likely failure events.
AST can also be formulated more generally as other sequential
decision-making processes, such as a partially observable
Markov decision process (POMDP) [3], [4], [9].

Figure 1 illustrates how the AST concept is formulated. The
system under test is treated as a black box while the simulator
S̄ is treated as a gray box that passes the transition probability
p, event indicator e, miss distance d, and termination state
indicator τ to the reward function. The AST problem is
solved using an adversarial reinforcement learner that selects
a random number generator seed ā to indirectly control the
SUT through the simulator. In other types of simulators, AST
could directly control input disturbances rather than seeds. In
prior work, Monte Carlo tree search and deep reinforcement
learning have been used to solve the MDP [3], [4]. The output
of the AST process is a set of state trajectories determin-
istically controlled by a set of seeds. These seeds are used
to deterministically playback the simulation starting from an
initial state.

A necessary clarification is differentiating what is black-
box with respect to the AST problem. Given that the simulator
must provide 〈p, e, d, τ〉 to the AST reward function, the output
needs access to the transition probabilities p and terminal
indication τ from the environment, but can determine the event
indication e and miss distance d from the output of the SUT.
Thus, depending on the problem, the environment may be
required to be white-box but the SUT is strictly black-box.

The standard AST reward function is designed to guide the
search towards failure events and to maximize the likelihoods
of those events. It is also affected by the notion of miss
distance d: a measure of “closeness” to a particular event.
The miss distance helps guide the search towards failures to
search efficiently. The standard reward function is given by:

R(p, e, d, τ) =


RE if τ ∧ e
−d if τ ∧ ¬e
log(p) otherwise

(1)

The non-negative constant reward for finding an event is given
by RE and is generally set to 0. The boolean e indicates when
an event has been found and the boolean τ indicates that the
simulation is in a terminal state. If the simulation terminates
without finding an event, then the negative miss distance −d
is awarded to guide the search towards failure. Otherwise,
the log-likelihood of each state transition is used, denoted by
log(p). This term is used to maximize the likelihood of the
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Fig. 2. Modified adaptive stress testing formulation for the trajectory predictor with episodic reward. The simulation environment samples waypoints from
a distribution and passes those waypoints as input to the SUT at the end of the rollout. The modified reward function is guided by both the severity and
likelihood of the failure event. Information on the dashed lines is only provided to the reward function when the SUT is evaluated.

overall trajectory and is designed to guide the search towards
likely failures. Recall that the goal of reinforcement learning
is to maximize the expected sum of rewards [18]. Using log-
likelihood means we can maximize the summations, which is
equivalent to maximizing the product of the likelihoods.

B. Flight Management Systems

Aircraft flight management systems (FMS) have been a
critical part in reducing workload of pilots in commercial
aircraft by contributing to in-flight automation [19]. Major
components of FMS include flight planning, navigation, guid-
ance, performance optimization, and trajectory prediction [20].
This work focuses on the subsystem of the FMS that generates
the aircraft trajectory given a flight plan. This subsystem,
called the trajectory predictor, provides deterministic trajec-
tories based on an operator-defined input flight plan and
estimates of environmental conditions. Inputs include winds
aloft, origin and destination airports, aircraft weight, cost index
(a balance between cost of fuel and time of arrival), and a set
of navigational waypoints that define the lateral route. For our
purposes, we focus on the winds aloft, origin and destination
airports, and the placement of the lateral waypoints. The
trajectory predictor outputs the discrete-time controls that de-
termine translational motion (i.e. both vertical and horizontal
motion) which become input to the guidance subsystem of the
FMS. The trajectories may be processed before being passed
to the guidance in the cases where a change in the lateral
or vertical trajectory needs to be anticipated and controlled
towards. Therefore, the trajectory predictor is not a strictly
sequential decision-making problem because the full sequence
of lateral paths are deterministically constructed based solely
on the inputs.

III. APPROACH

Several modifications were made to adapt AST for sequen-
tial decision-making systems with episodic reward. Modifi-
cations to the standard reward function were made to guide
the search towards severe failures as well as likely failures.
Modifications to the Monte Carlo tree search algorithm are
also described; adapting the search algorithm for efficient SUT

evaluations and to use progressive widening with a single
deterministic next state (given the nature of controlling seeds).

A. Adaptive Stress Testing for Episodic Reward Problems

Traditionally, AST is used to steer sequential decision-
making systems towards likely failures by controlling the seed
used to sample environmental variables within the simulator at
each time step (as seen in Figure 1). The issue with applying
this formulation directly to the trajectory predictor is that this
system does not rely on sequential feedback to generate the
trajectory and solely relies on its set of inputs. Therefore, we
propose a modification to the AST formulation to abstract the
sequential nature of the problem to the simulation environ-
ment. In other words, we collect the state transitions during the
search and evaluate the system at the end of the rollout. This
distinction can be seen in Figure 2. The transition probability
p is output from the environment and the event indication e,
miss distance d, and terminal state indication τ are output
from the black-box SUT, i.e. the trajectory predictor. The 4-
tuple 〈p, e, d, τ〉 is passed as input to the reward function and
the transition probability p and miss distance d are used to
guide the search.

The standard AST reward function described in Equation (1)
was modified to collect all rewards at the termination state and
to incorporate a severity measurement when a failure event
occurs. Both the log-likelihood and miss distance d are used
throughout the search. A multiplicative bonus RE is applied
when a failure event occurs and we set RE = 100 for our
experiments. The modified reward function becomes:

R(p, e, d, τ) =


(log(p)− d)RE if τ ∧ e
log(p)− d if τ ∧ ¬e
0 otherwise

(2)

The transition probability p is given by the probability of
sampling a set of waypoints from a multivariate Gaussian
distribution w

ā∼ N (µ,Σ) composed of waypoint direction
and distance (relative to the previous waypoint) and wind
direction and magnitude with mean vector µ and covariance
Σ, deterministically controlled by the seed ā. If an event is
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Fig. 3. The four steps of the Monte Carlo tree search algorithm.

found, then the reward is the negative miss distance combined
with the log-likelihood and adjusted by the multiplicative
bonus RE . This modification is used to incorporate severity
of an event gauged by the miss distance when an event is
found. If the simulation terminates without finding an event,
no multiplicative bonus is applied. This reward function may
not be suitable for certain AST problem formulations, but in
Section V we discuss how these modifications are applicable
for the failure event and miss distance we investigate.

B. Modified Monte Carlo Tree Search

Monte Carlo tree search (MCTS) is an anytime algorithm
that uses rollouts of a random policy to estimate the value
of each state-action node in the tree [21], [22]. MCTS has
found success in recent years in the reinforcement learning
field, notably playing games such as Go [23]. There are four
main stages in each simulation: selection, expansion, rollout
(or simulation), and backpropagation. Figure 3 illustrates these
four steps. The algorithm is “anytime” because a policy can be
constructed after any single iteration, but the state-action value
estimates become increasingly accurate as more simulations
are performed and the tree depth is expanded. The tree T is
iteratively expanded and the policy improves over time as the
algorithm balances exploration with exploitation of the state
and action spaces.

A commonly used extension of MCTS for large or con-
tinuous spaces is progressive widening (PW) [24]–[27]. We

s0

ā1

s1 ∼ G(s0, ā1)

ā3 ā4 ā5

EVALUATE
(
[s0, s1, . . . ]

)
ROLLOUT(s1, d)

ā2

s2 ∼ G(s0, ā2)

ā6 ā7

Fig. 4. MCTS-PW with a single deterministic state and system evaluations
at the end of the rollout.

apply PW on the action space of seeds because there are an
infinite number of seeds. There is no need to apply PW to

Algorithm 1 Top-level Monte Carlo tree search algorithm.
function MONTECARLOTREESEARCH(s, d)

loop
SIMULATE(s, d)

return arg max
ā∈A(s)

Q(s, ā)

Algorithm 2 Monte Carlo tree search simulation.
function SIMULATE(s, d)

if d = 0
return 0

if s 6∈ T
T ← T ∪ {s}
N(s)← N0(s)
return ROLLOUT(s, d)

N(s)← N(s) + 1
ā← SELECTACTION(s) . selection
(s′, r)← DETERMINISTICSTEP(s, ā) . expansion
q ← r + γSIMULATE(s′, d− 1) . simulation/rollout
N(s, ā)← N(s, ā) + 1

Q(s, ā)← Q(s, ā) + q−Q(s,ā)
N(s,ā) . backpropagation

return q

Algorithm 3 Modified rollout with end-of-depth evaluation.
function ROLLOUT(s, d)

if d = 0
(p, e, d)← EVALUATE(s)
τ ← ISTERMINAL(s)
ā∗ ← UPDATEBESTACTION(s,Q)
return R(p, e, d, τ)

else if d = bdmax/2c
ā← ā∗ . feed best action

else
ā← SAMPLEACTION(s,Q)

(s′, r) ∼ G(s, ā)
return r + γ ROLLOUT(s′, d− 1)



Algorithm 4 Action selection with progressive widening.
function SELECTACTION(s)

if |A(s)| ≤ kN(s)α

ā← SAMPLEACTION(s,Q)
(N(s, ā), Q(s, ā))← (N0(s, ā), Q0(s, ā))
A(s)← A(s) ∪ {ā}

return arg max
ā∈A(s)

Q(s, ā) + c
√

logN(s)
N(s,ā)

Algorithm 5 Single deterministic next state.
function DETERMINISTICSTEP(s, ā)

if N(s, ā, ·) = ∅
(s′, r) ∼ G(s, ā)
SETCACHE(s, ā, s′, r)
N(s, ā, s′)← N0(s, ā, s′)

else
(s′, r)← GETCACHE(s, ā)
N(s, ā, s′)← N(s, ā, s′) + 1

return (s′, r)

the state transitions, since a seed uniquely determines the next
state. This notion can be seen in Figure 4 where each action
āi leads to a single deterministic state sj as its child node.
The states are deterministically sampled from the generative
model G given the current state and action. We define the
state s as a collection of all preceding actions deterministically
leading to that point in the simulation. Note that because the
state s is a sequence of seeds that uniquely determines the
state of the simulator S̄, we may overload the notation when
calling EVALUATE and ISTERMINAL for convenience. In our
formulation, the generative model samples state transitions
and does not evaluate the underlying system (unlike standard
MCTS). This difference is in Algorithm 3, ROLLOUT, where
new state transitions are generated during the rollout and
the system is only evaluated at the end. By default, actions
are uniformly selected from a random policy. However, to
encourage exploration of promising actions, the current best
action ā∗ is used mid-rollout. The best action is updated at
the end of the rollout based on updated Q-values.

These modifications were made to MCTS-PW specifically
for episodic reward problems. The evaluation of our SUT is
expensive so we limit the evaluations to the end of the rollout
(rather than at node creation and throughout the rollout).
This way, we can reduce the number of external system
executions but still provide the search with information during
tree expansion, namely using back-propagated values of the
transition probabilities and the miss distance from previously
finished rollouts. Choosing to evaluate at the end of the rollout
provides the SUT with an expanded set of waypoints which
it evaluates once the rollout has reached its maximum depth.
Generally for AST problem formulations, the discount factor
γ is set to 1. Algorithm 1 is the entry point of MCTS-PW.

IV. IMPLEMENTATION

The AST implementation was written in the Julia pro-
gramming language [28]. Implementation of the simulation
environment around the SUT was also written in Julia, but
this section will focus on the algorithms required for AST
and MCTS-PW. Modifications to MCTS were implemented
and merged into the existing MCTS.jl1 Julia package.

A. Interface

To apply AST to a general black-box system, a user has to
provide the interface defined in Table I. The simulation object
S̄ is the user-defined data structure that holds parameters for
their simulation. All of the following functions take the sim-
ulation object S̄ as input and can modify the object in place.
The INITIALIZE function resets the simulation and the SUT
to an initial state. The EVALUATE function executes the SUT
and returns the transition probability p, a boolean indicating an
event occurred e, and the miss distance d. Three subroutines
determine these output values: TRANSITION, MISSDISTANCE,
and ISEVENT (where all three subroutines are used by the
EVALUATE function, but may also be called individually).
Finally, the ISTERMINAL function returns a boolean τ to
indicate if the simulation is in a terminal state.

TABLE I
ADAPTIVE STRESS TESTING INTERFACE

Function Input 7→ Output

INITIALIZE S̄ 7→ ∅
EVALUATE S̄ 7→ 〈p, e, d〉

TRANSITION S̄ 7→ p ∈ R
MISSDISTANCE S̄ 7→ d ∈ R
ISEVENT S̄ 7→ e ∈ B

ISTERMINAL S̄ 7→ τ ∈ B

As an example, the functions in the above interface can
either be implemented directly in Julia or can call out to
C++, Python, MATLAB R© or run an executable on the com-
mand line. Typically, implementing the MISSDISTANCE and
ISEVENT functions rely solely on the output of the SUT, thus
keeping in accordance with the black-box formulation.

B. Stress Testing Julia Framework

We have implemented the AST interface written in Julia as
part of a new package called POMDPStressTesting.jl.2 This
package is inspired by work originally done in the Adap-
tiveStressTesting.jl3 package, but POMDPStressTesting.jl ad-
heres to the MDP interface defined by the POMDPs.jl4 package
[29]. Thus, POMDPStressTesting.jl fits into the POMDPs.jl
ecosystem, which is why it can use the MCTS.jl package as
an off-the-shelf solver. This design choice allows other Julia
packages within the POMDPs.jl ecosystem to be used; this
includes solvers, simulation tools, policies, and visualizations.

1https://github.com/JuliaPOMDP/MCTS.jl
2https://github.com/sisl/POMDPStressTesting.jl
3https://github.com/sisl/AdaptiveStressTesting.jl
4https://github.com/JuliaPOMDP/POMDPs.jl
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The intention of the POMDPStressTesting.jl package is to
provide the user with a virtual black-box interface they must
define, and provide the necessary AST algorithms to run
the search. Future modifications will focus on inclusion of
benchmark falsification problems from the literature [30].

V. APPLICATION

The primary goal of this work is applying the modified
AST formulation to a trajectory predictor in a developmental
commercial FMS. The following sections will describe the
input and output specification of the trajectory predictor and
detail the investigated failure event and the associated miss
distance. We will also describe the simulation environment
constructed to run the SUT.

A. Trajectory Predictor

The inputs of the trajectory predictor controlled by AST
are the origin and destination airports, a set of intermediate
waypoints, and the wind direction and magnitude at each way-
point. The output of the trajectory predictor is a detailed flight
path which provides predicted vertical data, predicted lateral
data (i.e. lateral packets, illustrated in Figure 5), and other
flight path information currently unused in this application.
The following failure event and miss distance is calculated by
parsing the SUT output after each evaluation.

c

s

e

`1

r

`2

αr

β
α

Fig. 6. Arc length β and calculated arc length αr, showing a failure in red.

a) Arc Length Failure: Arc length is defined as the
distance traveled across the arc from the starting point s and
ending point e, shown in Figure 6. Failures can arise when
the arc length β does not agree with the arc length computed

using the angular extent α and arc radius r. Angular extent is
computed as

α = sign(r) · |zs − ze|+ 2π (3)

where zs is the azimuth from the center waypoint c to the
starting waypoint s, and ze is the azimuth from the center
waypoint c to the ending waypoint e. The sign of r determines
the turn direction, where negative values represent left turns.
A failure occurs when the calculated difference |β − αr| is
above the threshold h = 10 ft.

The arc length miss distance is how close the arc length
difference comes to the threshold h. We transform this dif-
ference by scaling the log-ratio of the threshold h and the
maximum miss distance from that trajectory. This way, non-
positive values indicate an event. Namely, we define miss
distance to be:

d = ρ log

(
h

max |β − αr|

)
(4)

We use a scale of ρ = 100 to match the expected range of the
log-likelihood in our problem so that the log-likelihood does
not dominate the miss distance in the reward function.

B. Simulation Environment

A simulator was constructed to sample waypoint trajectories
and evaluate the SUT. Starting from an origin airport, way-
points were sampled from a multivariate Gaussian distribution
of independent normals that encodes waypoint direction and
distance (relative to the previous waypoint) and wind direction
and magnitude, deterministically controlled by the seed ā:

w
ā∼ N (µ,Σ) (5)

Mean and variance values for the waypoint direction and
distance were set by a domain expert and the values for winds
aloft were learned from observational weather data.

µ = [180 ◦, 50 nmi, −88.5◦, 66.8 kts]

Σ =


45◦ 0 0 0
0 30 nmi 0 0
0 0 39.5◦ 0
0 0 0 24.4 kts





The simulator implements the interface defined in Sec-
tion IV-A for the trajectory predictor. The failure event and
miss distance calculations described in Section V were also
implemented within the simulator.

C. Navigational Database

In addition to the simulator, we have access to a navigational
database of aircraft routing procedures. The routes are encoded
as collections of waypoints describing departure, arrival, and
en-route airways. Exhaustively searching all combinations of
the waypoints in the navigational database is the current
approach to finding failures during development. We employ
the navigational database as a baseline by sampling the same
allotted number of SUT evaluations to assess the miss distance
distribution and search for failures.

VI. EXPERIMENTS

Experiments were run to test the AST approach using
MCTS-PW against direct Monte Carlo (MC) simulations as a
naı̈ve baseline and the cross-entropy method as an importance
sampling baseline. We also perform Monte Carlo sampling
over the routes in the navigational database as another base-
line. Algorithm 6 describes the direct Monte Carlo simulation
approach for n episodes, starting at an initial state s0, with
a rollout depth d. Note the rollout function does not use the
action feeding procedure described in Section III-B.

Algorithm 6 Direct Monte Carlo simulation.
function DIRECTMONTECARLO(s0, n, d)

for 1→ n
INITIALIZE(S̄)
ROLLOUT(s0, d) . without action feeding

The cross-entropy method (CEM) is a probabilistic opti-
mization technique that iteratively fits an initial distribution
to elite samples [31], [32]. The method uses importance
sampling, which introduces a proposal distribution over rare
events to sample from then re-weights the posterior likelihood
by the likelihood ratio of the true distribution (w in our
case) over the proposal distribution. The idea is to artificially
make failure events less rare under the newly fit proposal
distribution. We set the proposal distribution to be the same as
the true distribution w, with the exception that the waypoint
distance was reduced to µ = 1 nmi and σ = 3 nmi to
encourage smaller distances between the waypoints.

For the experiments, the San Francisco International Airport
(KSFO) was used as an origin airport and the Los Ange-
les International Airport (KLAX) was used as a destination
airport. Comparisons were run to assess the effectiveness of
AST against CEM and direct MC in finding high-likely severe
failure events. Metrics include the number of failure events
found NE , iteration of first failure iFF , and statistics about
the miss distance. We also report the mean log-likelihood of
failures found by each algorithm relative to the mean log-

TABLE II
ALGORITHM HYPERPARAMETERS

Hyperparameter Value

episodes * 5000
maximum tree depth dmax (i.e. number of waypoints) * 12
rollout depth d † 12
exploration constant c 10
progressive widening k 10
progressive widening α 0.3

* Used by all algorithms.
† Used by MCTS and direct Monte Carlo.

likelihood of failures found by the direct MC approach. For a
given algorithm, this is computed as:

rel-log(p) =
log(palg)

log(pMC)
(6)

Values larger than one indicate a higher relative likelihood.
All experiments were run with the MCTS hyperparameters

listed in Table II. Sensitivity analysis of the various hyperpa-
rameter values has been omitted from this paper for brevity.
When controlling the parameters for progressive widening, to
encourage widening let k → ∞ and α → 1. To discourage
widening, let k → 1 and α→ 0.

A. Results and Analysis

We first look at the performance of each approach over all
episodes. An initial seed is set across each experiment and
we run each algorithm for 5000 episodes. For each of these
approaches, the number of episodes also corresponds to the
number of SUT evaluation calls.

The first two plots in Figure 7 show the running mean
and minimum miss distance over each episode. Notice that
the direct Monte Carlo approach applied to the navigational
database baseline converges quickly to a minimum miss dis-
tance that remains above the rest, and a running mean that
only outperforms the CEM approach. Evident from Figure 7
is the initial behavior that MCTS and direct Monte Carlo share.
Recall that MCTS balances exploration and exploitation, and
initially acts similar to direct Monte Carlo. This similarity is
based on the choice of exploration hyperparameters and the
miss distance in the reward function. This behavior suggests
that the miss distance for this problem is a noisy measurement
of the actual distance to a failure event. At about episode 500,
the MCTS approach starts to exploit found failures which can
be seen as the descent of the running mean passing the origin
(i.e. the event horizon).

One goal of the AST approach using MCTS is to exploit
known failures to maximize their likelihood. The bottom plot
in Figure 7 shows the cumulative number of failure events
which highlights this behavior. Notice that each approach
finds failures relatively early in the search, suggesting that
failure events may be common given the choice of simulation
environment.

We are also interested in the distribution of the miss
distances collected from each approach. Recall that the miss
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Fig. 7. Running miss distance mean, minimum miss distance, and log-scaled
cumulative number of failure events across episodes. One standard deviation
is reported in the shaded regions.

distance d is a transformation of the arc length discrepancy
relative to a threshold, detailed in Equation (4). Thus, the value
for d is unitless and non-positive values indicate an event. The
top plot of Figure 8 shows the miss distance distributions,
indicating the event horizon at the origin. The miss distance
distribution from the navigational database is used as a proxy
for miss distance distributions we would expect in the real-
world. The CEM approach converges to a local minima and
stays there, which is evident in the concentration of the CEM
miss distance distribution. MCTS and the direct MC approach
share similar distributions to the left of the event horizon
(indicating non-failure events), further suggesting that the miss
distance is a noisy measurement of the true distance to a
failure. The spike to the right of the origin is the distribution
of failure events found by our AST approach using MCTS.
The bottom plot in Figure 8 shows the distribution of log-
likelihoods filtered for the failure events, suggesting that AST
finds failures with higher likelihood than the CEM approach.

The collected aggregate results are shown in Table III.
AST finds failures with relative likelihood about an order

TABLE III
EXPERIMENTAL RESULTS

Algorithm* NE iFF X̄d min(d) rel-log(p)†

MCNavDB 0 — 560.21± 75.09 410.98 —
MC 5 128 407.44± 64.85 −1127.7 1.0
CEM 24 249 625.65± 97.80 −1077.3 4.5× 10−161

ASTMCTS 4394 61 −923.49± 497.4 −1147.9 13.1

* Hyperparameters listed in Table II.
†Mean log-likelihood relative to direct Monte Carlo.
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Fig. 8. Distribution of negative miss distances for all episodes (where values
to the right of the origin are events) and distribution of log-likelihoods filtered
by failure events.

of magnitude greater than that of direct Monte Carlo. The
CEM approach finds a small number of failures with very low
relative likelihood. This is because CEM is using importance
sampling and after re-weighting the samples using the true
distribution, we would expect to get these extremely small
likelihood values. AST has the lowest mean miss distance
X̄d, noting the large standard deviation which is a result of
large differences between miss distances from failure and non-
failure events. Each approach finds their first failure early
in the experiment, with AST finding failures the earliest.
The effect of feeding the best action midway through the
rollout accelerates finding these failures. Once found, AST
will exploit the failures to maximize their likelihood. We see
that AST finds failures in about 88% of episodes (i.e. system
executions), where as standard MC and CEM find failures in
about 0.1% and 0.48% of episodes, respectively.

B. Example Failure

Many of the failures are a result of two duplicate waypoints
being generated in sequence. Based on the defined environ-
mental distributions this is possible, but unlikely. However,
certain failures found only by AST have waypoints close in
range to each other—not necessarily identical—which can also
result in arc length failures. Figure 9 shows an example failure
trajectory and Figure 10 zooms in on the specific arc length
failure. Refer to the figure captions for further descriptions.

Due to the nature of exploiting known failures, certain
failure cases may only have minor differences between them.
To assess the impact of the trajectory predictor failures on
broader flight operations, each failure case would have to be
evaluated on the full FMS in simulation. This would include
modeling aircraft dynamics, guidance systems, and control
feedback. Full assessment of the trajectory predictor failures
would help inform the system developers in their decision
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Example Arc Length Failure (Full Trajectory)

Fig. 9. Full trajectory of an example arc length failure originating from KSFO.
Red diamonds indicate the input waypoints selected by MCTS and the yellow
circles indicate the output lateral packets from the SUT. The red box shows
where the failure occurs, shown in more detail in Figure 10.

to mitigate issues before deployment. Further extensions of
this work include searching for other failure events and stress
testing other components of the FMS.

VII. CONCLUSION

Adaptive stress testing was extended for sequential systems
with episodic reward to find likely failures in FMS trajectory
predictors. To improve search performance, we used Monte
Carlo tree search with progressive widening and modified
the rollout with end-of-depth evaluations. We feed the best
action midway through the rollout to encourage exploration of
promising actions, resulting in exploiting failures to maximize
their likelihood. A simulation environment was constructed to
evaluate the trajectory predictor, and a navigational database
was sampled to compare to existing methods of finding fail-
ures during development. Performance of AST using MCTS-
PW was compared against direct Monte Carlo simulations
and the cross-entropy method. Results suggest that the AST
approach finds more failures with both higher severity and
higher relative likelihood. The failure cases are provided to
the system engineers to address unwanted behaviors before
system deployment. In addition to requirements-based tests,
we show that AST can be used for confidence testing during
development.
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Fig. 10. Example arc length failure, zoomed in from Figure 9. Notice two
almost identical red waypoint diamonds, which are separated by about 0.08
nmi or about 486 ft (zoom in further for more detail). The arc length failure
is shown as the extending arc after the center yellow waypoint, which extends
about 3 nmi past its intended end waypoint. This extension is the negative
miss distance.
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