
Regression Verification using Impact Summaries

John Backes1, Suzette Person2, Neha Rungta3, and Oksana Tkachuk3

1 University of Minnesota
back0145@umn.edu

2 NASA Langley Research Center
suzette.person@nasa.gov

3 NASA Ames Research Center
neha.s.rungta,oksana.tkachuk@nasa.gov

Abstract. Regression verification techniques are used to prove equiva-
lence of closely related program versions. Existing regression verification
techniques leverage the similarities between program versions to help im-
prove analysis scalability by using abstraction and decomposition tech-
niques. These techniques are sound but not complete. In this work, we
propose an alternative technique to improve scalability of regression ver-
ification that leverages change impact information to partition program
execution behaviors. Program behaviors in each version are partitioned
into (a) behaviors impacted by the changes and (b) behaviors not im-
pacted (unimpacted) by the changes. Our approach uses a combination of
static analysis and symbolic execution to generate summaries of program
behaviors impacted by the differences. We show in this work that check-
ing equivalence of behaviors in two program versions reduces to checking
equivalence of just the impacted behaviors. We prove that our approach
is both sound and complete for sequential programs, with respect to the
depth bound of symbolic execution; furthermore, our approach can be
used with existing approaches to better leverage the similarities between
program versions and improve analysis scalability. We evaluate our tech-
nique on a set of sequential C artifacts and present preliminary results.

1 Introduction

Various reduction, abstraction, and compositional techniques have been devel-
oped to help scale software verification techniques to industrial-sized systems.
Although such techniques have greatly increased the size and complexity of sys-
tems that can be checked, analysis of large software systems remains costly.
Regression analysis techniques, e.g., regression testing [16], regression model
checking [22], and regression verification [19], restrict the scope of the analy-
sis by leveraging the differences between program versions. These techniques are
based on the idea that if code is checked early in development, then subsequent
versions can be checked against a prior (checked) version, leveraging the results
of the previous analysis to reduce analysis cost of the current version.

Regression verification addresses the problem of proving equivalence of closely
related program versions [19]. These techniques compare two programs with a



large degree of syntactic similarity to prove that portions of one program version
are equivalent to the other. Regression verification can be used for guaranteeing
backward compatibility, and for showing behavioral equivalence in programs
with syntactic differences, e.g., when a program is refactored to improve its
performance, maintainability, or readability.

Existing regression verification techniques leverage similarities between pro-
gram versions by using abstraction and decomposition techniques to improve
scalability of the analysis [10, 12, 19]. The abstraction- and decomposition-based
techniques, e.g., summaries of unchanged code [12] or semantically equivalent
methods [19], compute an over-approximation of the program behaviors. The
equivalence checking results of these techniques are sound but not complete—
they may characterize programs as not functionally equivalent when, in fact,
they are equivalent.

In this work we describe a novel approach that leverages the impact of the
differences between two programs for scaling regression verification. We par-
tition program behaviors of each version into (a) behaviors impacted by the
changes and (b) behaviors not impacted (unimpacted) by the changes. Only
the impacted program behaviors are used during equivalence checking. We then
prove that checking equivalence of the impacted program behaviors is equiva-
lent to checking equivalence of all program behaviors for a given depth bound.
In this work we use symbolic execution to generate the program behaviors and
leverage control- and data-dependence information to facilitate the partitioning
of program behaviors. The impacted program behaviors are termed as impact
summaries. The dependence analyses that facilitate the generation of the im-
pact summaries, we believe, could be used in conjunction with other abstraction
and decomposition based approaches, [10, 12], as a complementary reduction
technique. An evaluation of our regression verification technique shows that our
approach is capable of leveraging similarities between program versions to reduce
the size of the queries and the time required to check for logical equivalence.

The main contributions of this work are:

– A regression verification technique to generate impact summaries that can be
checked for functional equivalence using an off-the-shelf decision procedure.

– A proof that our approach is sound and complete with respect to the depth
bound of symbolic execution.

– An implementation of our technique using the LLVM compiler infrastructure,
the klee Symbolic Virtual Machine [4], and a variety of Satisfiability Modulo
Theory (SMT) solvers, e.g., STP [7] and Z3 [6].

– An empirical evaluation on a set of C artifacts which shows that the use of
impact summaries can reduce the cost of regression verification.

2 Motivation and Background

2.1 Checking Functional Equivalence

In this work, we focus on functional equivalence [12]. Two programs, P0 and P1,
are functionally equivalent iff for all possible input values to the programs, they



1: int func(unsigned int val) {

2: if((val & 0x03) == 0) { //divisible by 4

3: val = val + 4; // change to val = val + 2;

4: return mod2(val)

5: } else return 0;

6: }

7: int mod2(unsigned int x) {

8: return ((x & 0x01) == 0); // divisible by 2

9: }

Fig. 1. Program behavior is unchanged when the constant value in line 3 is even.

both produce the same output, i.e., they return the same value and result in the
same global state. In general, proving functional equivalence is undecidable, so
we prove functional equivalence with respect to a user-specified depth-bound for
loops and recursive functions. Note that this notion of equivalence is similar to
the k-equivalence defined in [19].

Equivalence checking techniques that use uninterpreted functions as a mech-
anism for abstraction and decomposition [10, 12, 19] produce sound but not com-
plete results. The example in Figure 1 demonstrates how the use of uninterpreted
functions can lead to false negatives. The input to methods func and mod2 is an
unsigned integer. If the input to func, val , is divisible by four, then in version
V0 of func, four is added to val and method mod2 is invoked with the updated
variable, val . Next, mod2 returns true if its input, x, is divisible by two; other-
wise it returns false. Suppose, a change is made to line 3 in V1 of fun and two is
added to val in lieu of four. Both versions of func are functionally equivalent,
i.e., for all possible inputs to func, the output is the same in both versions.

Symdiff is a technique which uses uninterpreted functions during equivalence
checking [10]. It modularly checks equivalence of each pair of procedures in
two versions of the program. To check the equivalence of the func method, it
replaces the call to mod2 at line 4 with an uninterpreted function. The inputs to
the uninterpreted function are parameters and global values read by the method.
In V0 of func the uninterpreted function for the call to mod2 is f mod2 (val +
4) while in V1 it is f mod2 (val + 2). The procedures are then transformed to
a single logical formula whose validity is checked using verification condition
generation. Symdiff will report V0 and V1 of func as not equivalent due to
the different input values to the uninterpreted function: f mod2. The use of
uninterpreted functions results in an over-approximation because equality logic
with uninterpreted functions (EUF) relies on functional congruence (consistency)
—a conservative approach to judging functional equivalence which assumes that
instances of the same function return the same value if given equal arguments [9].
Other equivalence checking techniques that rely on uninterpreted functions will
report similar false negatives.



1: int a, b;
2: void test(int x, int y){
3: if(x > 0) a = a + 1; else a = a + 2; //change x <= 0
4: if(y > 0) b = b + 1; else b = b + 2;
5: }

Fig. 2. An example where equivalence cannot be naively checked using DiSE.

2.2 Symbolic Execution

Symbolic execution uses symbolic values in lieu of concrete values for program
inputs and builds a path condition for each execution path it explores. A path
condition contains (a) a conjunction of constraints over the symbolic input values
and constants such that they represent the semantics of the statements executed
on a given path p and (b) the conjunction of constraints that represent the effects
of executing p—the return value and the final global state. The disjunction of all
the path conditions generated during symbolic execution is a symbolic summary
of the program behaviors. Version V0 of the test method in Figure 2 has two
integer inputs x and y whose values determine the updates made to the global
variables a and b. There are four path conditions for V0 generated by symbolic
execution:

1. x > 0 ∧ y > 0 ∧ a0 = a + 1 ∧ b0 = b + 1

2. ¬(x > 0) ∧ y > 0 ∧ a1 = a + 2 ∧ b0 = b + 1

3. x > 0 ∧ ¬(y > 0) ∧ a0 = a + 1 ∧ b1 = b + 2

4. ¬(x > 0) ∧ ¬(y > 0) ∧ a1 = a + 2 ∧ b1 = b + 2.

Each path condition has constraints on the inputs x and y that lead to the
update of global variables a and b. The variables a0, a1, b0, and b1 are temporary
variables that represent the final assignments to global variables a and b.

2.3 Change Impact Analysis

The DiSE framework, in our previous work, implements a symbolic execution
based change impact analysis for a given software maintenance task [13, 17]. DiSE
uses the results of static change impact analyses to direct symbolic execution
toward the parts of the code that may be impacted by the changes. The output
of DiSE is a set of impacted path conditions, i.e., path conditions along program
locations impacted by differences in programs.

The inputs to DiSE are two program versions and a target client analysis.
DiSE first computes a syntactic diff of the program versions to identify locations
in the source code that are modified. Then DiSE uses program slicing-based tech-
niques to detect impacted program locations, i.e., locations that have control-
and data-dependencies on the modified program locations. The set of impacted
program locations is used to direct symbolic execution to explore execution paths



containing impacted locations. In the parts of the program composed of loca-
tions not impacted by the change, DiSE explores a subset of the feasible paths
through that section.

The dependence analyses and pruning within the DiSE framework are config-
urable based on the needs of the client analysis. To illustrate how DiSE computes
path conditions for generating test inputs to cover impacted branch statements,
consider the example in Figure 2. Suppose a change is made to line 3 where
the condition x > 0 in V0 of test is changed to x <= 0 in V1. Due to this
change, the conditional statement and assignments to global variable a on line 3
are marked as impacted in both versions. The goal of the symbolic execution in
DiSE is to generate path conditions that cover both true and false branches of
the conditional branch statement, x <= 0, and explore any one of the branches
of the conditional branch statement, y > 0. The path conditions for program
version, V0, that may be generated by DiSE are:

1. x > 0 ∧ y > 0 ∧ a0 = a + 1 ∧ b0 = b + 1
2. ¬(x > 0) ∧ y > 0 ∧ a1 = a + 2 ∧ b0 = b + 1;

Here both branches of the x ≤ 0 are explored while the true branch of the y > 0
is explored. Similarly the path conditions for version V1 that may be generated
by DiSE are:

1. x ≤ 0 ∧ ¬(y > 0) ∧ a0 = a + 1 ∧ b1 = b + 2
2. ¬(x ≤ 0) ∧ ¬(y > 0) ∧ a1 = a + 2 ∧ b1 = b + 2.

In version, V1 both branches of x ≤ 0 are still explored but the false branch of the
y > 0 is explored. Note this is because DiSE does not enforce a specific branch
to be explored for an unimpacted conditional statement. These path conditions
can be solved to generate test inputs that drive execution along the paths that
contain impacted locations.

The path conditions generated for regression testing, related to impacted
branch coverage, in the DiSE framework under-approximate the program be-
haviors. The constraints on the variable y in the path conditions generated by
DiSE, shown above, can be different in V0 from those generated in V1—the path
conditions represent different under-approximations of the program behaviors.
This under-approximation does not allow the path conditions to be used for
equivalence checking. Furthermore the dependence analysis is also tailored to
suit the needs of the client analyses. The client analyses that are currently sup-
ported in DiSE are related to regression testing (test inputs to satisfy different
coverage criteria) and improving DARWIN based delta debugging.

In this work we add support for performing equivalence checking within the
DiSE framework. For this we define a set of static change impact rules that
allow us to precisely characterize the program statements as impacted or unim-
pacted such that checking equivalence of behaviors of two programs reduces to
the problem of checking equivalence of the behaviors encoded by the impacted
statements.



Constraints

Stmts

V0 V1Stmts
Changed

2. Static Change
Impact Analysis

Y es
5. Is Equiv? No

3. Symbolic Execution

1. Source-level Diff
sum1 =

∨m
i=1(I1i ∧ U1

i )

sum0 =
∨n

i=1(I0i ∧ U0
i )

isum1 =
∨m

i=1(I1i )

isum0 =
∨n

i=1(I0i )

4. Prune Unimpacted

Impacted

Fig. 3. Overview of regression verification using impact summaries.

3 Regression Verification using Impact Summaries

An overview of our regression verification technique is shown in Figure 3. Steps
1–3 in Figure 3 represent a static change impact analysis that is performed on
V0 and V1. The change impact analysis marks the program statements that are
impacted by the differences between V0 and V1. The outputs from Step 3 are
the program behavior summaries (full summaries) for program versions V0 and
V1. Each symbolic summary consists of the path conditions representing the
program execution behaviors.

In order to facilitate the characterization of the program behaviors as im-
pacted or unimpacted, we first define a mechanism to distinguish between dif-
ferent behaviors encoded within a given path condition. For the example shown
in Figure 2 each path condition encodes two program behaviors; the first pro-
gram behavior is related to the input variable x and global variable a; while the
second program behavior is related to the input variable y and global variable
b. We can make this distinction because the operations on variables x and a are
completely disjoint from the operations on variables y and b. The constraints
on x and a represent one set of program behaviors for the example in Figure 2
while the constraints on y and b represent another set of behaviors. Based on
this distinction a path condition can contain num behaviors such that the set of
constraints encoding each behavior are completely disjoint from the constraints
encoding the other behaviors.

In this work, we partition the constraints in each path condition generated
by the change impact analysis as either impacted or unimpacted. An impacted
(unimpacted) constraint Ii (Ui) is a constraint that is added to the path condition
as a result of executing an impacted (unimpacted) program statement during
symbolic execution. The conjunction of the impacted constraints, Ii, in a path
condition represents impacted program behaviors, while the conjunction of the
unimpacted constraints, Ui in a path condition, represents unimpacted program
behaviors.



(1) if Si ∈ I and Sj is control dependent on Si then I ∪ {Sj}
(2) if Si ∈ I and Sj uses (reads) the value of a variable defined (written) at Si

then I ∪ {Sj}
(3) if Si ∈ I an Si is control dependent on Sj then I ∪ {Sj}
(4) if Si ∈ I and Sj defines (writes) a variable whose value is used (read) at Si

then I ∪ {Sj}
Table 1. Control and data dependence rules for computing impacted statements.

Definition 1. A full summary is a disjunction of the impacted constraints Ii
and the unimpacted constraints Ui for a program with n paths: sum =

∨n
i=1(Ii ∧

Ui).

For example, the full summary for V0 containing n paths is given by sum0 =∨n
i=1(I0i ∧U0

i ). The full summaries are post-processed in Step 4, as shown in Fig-
ure 3 to remove the unimpacted constraints and generate impact summaries.

Definition 2. An impact summary consists of a disjunction of the impacted
constraints Ii for a program with n paths: isum =

∨n
i=1(Ii).

The resulting impact summaries are then checked for functional equiva-
lence [12] in Step 5, by using an off-the-shelf SMT solver, e.g., STP [7] or Z3 [6]
to check for logical equivalence. In Section 4 we prove that the full summaries
for two programs are functionally equivalent iff their impact summaries are func-
tionally equivalent. Formally, we demonstrate that for a program V0 with n paths
and a program V1 with m paths, Formula 1 is a tautology.

[(

n∨
i=1

I0i )↔ (

m∨
i=1

I1i )]↔ [

n∨
i=1

(I0i ∧ U0
i )↔

m∨
i=1

(I1i ∧ U1
i )] (1)

3.1 Computing Impacted Program Statements and Behaviors

In this section we present the set of rules that are necessary to conservatively
compute, for sequential programs, the set of program statements that may be
impacted by added or deleted program statements. We then briefly discuss how
the set of impacted statements can be used to compute impacted program be-
haviors. The static analysis in this work uses standard control- and data-flow
analysis to compute the set of impacted statements. The rules for the forward
and backward flow analysis are shown in Table 1. Given the conservative nature
of the analysis, it may mark certain unimpacted statements as impacted. The
analysis, however, is guaranteed to find all impacted statements. We present a
high-level description of how the rules are applied in the steps below:

Step 1 A source-level syntactic diff is performed to generate the change sets
for the related program versions V0 and V1. The change set for V0 is C0. It
contains the set of statements in V0 that are removed in V1. The change set for
V1 is C1 which contains statements in V1 that are added with respect to V0. Note



that all edited statements can be treated as removed in one version and added
in another.

Step 2 The impact set for program version V0 is initialized with statements
in the change set of V0: I0 := C0.

Step 3 To account for forward control- and data-flow dependence, rules (1)
and (2) in Table 1 are iteratively applied to I0 until they reach a fixpoint.

Step 4 The impact set for program version V1 is initialized to the change
set of V1: I1 := C1.

Step 5 For all statements in the impact set of V0, ∀Si ∈ I0, if there exists
a corresponding statement S′

i ∈ V1 such that Si ∼ S′
i—then it is added to the

impact set of V1, I1 := I1∪{S′
i}. This step is performed to account for the impact

of the statements removed in V0.
Step 6 To compute the impact of the changes using forward control- and

data-flow dependences, rules (1) and (2) in Table 1 are iteratively applied to I1
until a fixpoint is reached. Rule (3) is applied once to I1 to account for backward
control-flow dependence. Finally, Rule (4) is applied to I1 transitively to compute
the reaching definitions.

Step 7 Statements from the impact set of V1 are mapped to the impact set of
V0: ∀Si ∈ I1, if there exists a corresponding statement in S′

i ∈ V0, Si ∼ S′
i—then

it is added to the impact set of V0, I0 := I0 ∪ {S′
i}. This step accounts for the

impact of statements added to V1.
The constraints generated by symbolic execution at impacted program state-

ments on path i are added to the impact summary, Ii while the unimpacted con-
straints are added to Ui. We can check functional equivalence of two programs
using their impact summaries.

The static analysis rules presented in this section compute the set of im-
pacted program statements within a method, i.e., the analysis is intraprocedu-
ral. In [17] we present an interprocedural change impact analysis. The algorithm
in [17] statically computes the impacted program statements (impact set) for
all the methods disregarding the flow of impact through different method in-
vocations. During symbolic execution these impact sets are then dynamically
refined based on the calling context, propagating the impact of changes between
methods through method arguments, global variables and method return values.
Due to space limitations we present only the intraprocedural version of the im-
pact analysis in this paper. Our empirical evaluation of regression verification,
however, is performed using the interprocedural version of the algorithm. Next
we present an example to illustrate how impact summaries are computed for an
interprocedural program.

3.2 Example

Figure 4 shows two versions of the C function Init Data that invoke the same
function Set Struct (shown in Figure 4 (c)). Note that even though the analysis
is performed on the single static assignment form of the program, to enable better
readability we describe it in terms of the source. The Init Data function first
initializes two arrays, Data0 and Data1, and the pointer to a data structure,



1: #define Len0 512
2: #define Len1 512
3: int Data0 [Len0 ], Data1 [Len1 ];
4: struct A∗ StructA;
5: int Init Data(int capacity)
6: for(int i = 0; i < capacity∧i < Len0 ; i++)
7: Data0 [i] = 0;
8: for(int i = 0; i < capacity∧i < Len1 ; i++)
9: Data1 [i] = 0;

10: StructA = Set Struct(StructA)
11: if(capacity > Len0 )
12: return 0;
13: if(capacity > Len1 )
14: return 0;
15: return 1;

(a) V0

1: #define Len0 512
2: int Data0 [Len0 ], Data1 [Len0 ];
3: struct A∗ StructA;
4: int Init Data(int capacity)
5: for(int i = 0; i < capacity∧i < Len0 ; i++)
6: Data0 [i] = 0;
7: Data1 [i] = 0;
8: StructA = Set Struct(StructA)
9: if(capacity > Len0 )

10: return 0;
11: return 1;

(b) V1

1: struct A ∗ Set Struct(struct A ∗ st)
2: if(st == NULL)
3: return newStructA();
4: else
5: return ClearContents(st);

(c) the Set Struct function

Fig. 4. Two related versions of Init Data that are functionally equivalent.

StructA. Then, if the value of capacity is greater than the constant length
defined for arrays Data0 or Data1, the function returns zero; otherwise, it returns
one. V1 is a refactored version of V0. In V1, a single value specifies the length of
both arrays, Data0 and Data1. The refactoring also moves the initialization of
Data1 into the upper for loop. The two versions of Init Data in Figure 4 are
functionally equivalent; given same value of capacity, both implementations
produce the same output, i.e., return the same value, and Data0, Data1, and
StructA will point to the same initialized memory4.

The edits to the refactored program version in Figure 4 are related to state-
ments that access and edit the array Data1 and the constant Len1. These edits,
however, do not impact the program statements that reference the data struc-
ture StructA and Data0. First, let us consider the accesses to StructA (via
st in function Set Struct); these are completely disjoint from the operations
related to Data1 and Len1. Hence, the program behaviors related to the oper-
ations on st in this context are not impacted by the changes. The constraints
related to StructA and st generated at line 10 in V0 and line 8 in V1 of function
Init Data and at lines 2 − 5 in function Set Struct are unimpacted and can
safely be discarded from the full summaries before checking equivalence. Now,
consider the accesses to Data0 and its interactions with accesses to Data1. Al-
though the assignments to both Data0 and Data1 are control dependent on the
for loop at line 6, in the context of V0, the assignment to Data0 is not impacted
by the changes. Consequently, the constraints on Data0 at line 7 can also be
discarded before checking equivalence. Moreover, functional equivalence of V0

4 We make no claims about the initialized memory’s location (the value of the point-
ers), only the contents of the memory.



(i0 = 0) ∧ (i0 < capacity) ∧ (i0 < 512) ∧ (Data0 [i0] = 0) ∧ (Data1 [i0] = 0)∧
(i1 = 1) ∧ (i1 < capacity) ∧ (i1 < 512) ∧ (Data0 [i1] = 0) ∧ (Data1 [i1] = 0)∧
. . .
(i511 = 511) ∧ (i511 < capacity) ∧ (i511 < 512) ∧ (Data0 [i511 ] = 0) ∧ (Data1 [i511] = 0)∧
st = 0 ∧ st = objRef ∧
StructA = st ∧ capacity <= 512 ∧ ret = 1

(a)

(i0 = 0) ∧ (i0 < capacity) ∧ (i0 < 512) ∧ (Data1 [i0] = 0) ∧
(i1 = 1) ∧ (i1 < capacity) ∧ (i1 < 512) ∧ (Data1 [i1] = 0) ∧
. . .
(i511 = 511) ∧ (i511 < capacity) ∧ (i511 < 512) ∧ (Data1 [i511 ] = 0) ∧
capacity <= 512 ∧ ret = 1

(b)

Fig. 5. (a) A conjunction of an unimpacted and impacted constraints along path i in
V1: I1i

∧
U1

i . (b) An impacted constraint along path i in V1: I1i .

and V1 in Figure 4 can be proven using impact summaries that do not contain
constraints over Data0, StructA, or st.

The arrays Data0 and Data1, the pointer to StructA, and the input variable
capacity are defined as symbolic in this example. In Figure 5(a) we show a
summary for the path in program V1 shown in Figure 4(b) that contains both
impacted and unimpacted constraints. There are 512 iterations of the for loop
that are encoded in the path using the loop index i, and there are constraints
over StructA, st, and capacity as well. In contrast, Figure 5(b) contains only
the set of impacted constraints from the same path. From this example, we can
see that discarding unimpacted constraints can dramatically reduce the size of
the summaries used in regression verification.

4 Correctness Proofs

In this section we compare two program versions V0 and V1. We eventually show
that the equivalence of their respective summaries, sum0 and sum1, can be
implied by proving the equivalence of isum0 and isum1. Likewise, we show that
if isum0 and isum1 are not equivalent, then sum0 and sum1 are not equivalent.

To simplify the presentation of our work, we discuss the correctness of the
equivalence checking using the intraprocedural change impact analysis. The same
correctness argument holds for an interprocedural analysis that dynamically
tracks the flow of impact through method parameters and global variables. The
change impact analysis described in Section 3 is conservative for sequential pro-
grams; it adds every statement that may be impacted by a change to the impact
sets I0 and I1. We argue that the statements that are considered unimpacted by
the analysis are not relevant to a proof of equivalence of the program versions.



Lemma 1. Given closely related program versions V0 and V1, if a program state-
ment is common to both versions, then it is either impacted in both versions or
unimpacted in both versions.

Proof. This follows from Steps 5 and 7 of the static impact analysis shown in Ta-
ble 1 (Section 3). Step 5 assigns I1 to be equal to I0 after performing the data-
and control-flow analysis on V0 (except for statements that are removed in V1 or
added in V0). Then Step 7 adds statements from I1 to I0 after performing the
data-flow, control-flow, backward control-flow, and reaching definition analysis
on V1 (except for statements added to V1 or removed from V0). Therefore, the
only statements that differ between I0 and I1 are those that have been added or
removed.

Next we argue that for every path i in V0, there exists a path j in V1 such that
i and j contain the same set of unimpacted statements and, similarly, for every
path j in V1, there exists a path i in V0 such that i and j contain the same set
of unimpacted statements.

Lemma 2. Given closely related program versions V0 and V1, for every path
(I0i ∧ U0

i ) there exists a path (I1j ∧ U1
j ) such that U0

i ≡ U1
j . Likewise, for every

path (I1j ∧ U1
j ) there exists a path (I0i ∧ U0

i ) such that U1
j ≡ U0

i

Proof. By contradiction. Assume there is some path containing a certain se-
quence of unimpacted instructions in one program version but not the other.
This implies that the result of some conditional statement Sc differs between
the two versions and that the set of unimpacted instructions is control depen-
dent on Sc. Clearly the predicate in Sc uses the result of an impacted write
statement or Sc is control dependent on another impacted conditional state-
ment. According to Rules (1) – (4) in Table 1, Sc is impacted. Furthermore,
because the unimpacted statements are control dependent on Sc, they are also
impacted.

Corollary 1. The set of unique unimpacted constraints in V0 is the same as the
set of unique unimpacted constraints in V1. This implies Formula 2

(

n∨
i=1

U0
i )↔ (

m∨
i=1

U1
i ) (2)

As defined in Section 3, a program’s symbolic summary consists of the dis-
junction of the constraints along each possible execution path in the program.
Each path consists of a set of impacted and unimpacted constraints. In Theo-
rem 1 we show that the unimpacted and impacted constraints can be effectively
de-coupled from each other in a program’s summary.

Theorem 1. Given a program version V0 with n paths, Formula 3 is valid.

n∨
i=1

(I0i ∧ U0
i )↔ [(

n∨
i=1

I0i ) ∧ (

n∨
i=1

U0
i )] (3)



Proof. See extended technical report for this proof [1].

In Theorem 2 we consider the overlap between the space of assignments to
program variables that satisfy impacted constraints and the space of assignments
to program variables that satisfy unimpacted constraints. Specifically, we claim
that for some path in a program summary, if there is some concrete assignment
to the program variables that satisfies the impacted constraints, then there is
a concrete assignment to the remaining variables (those only present in the
unimpacted constraints) that satisfies the unimpacted constraints.

Theorem 2. Consider a program version V0 with n paths and a closely related
program version V1 with m paths. Let u1, u2, . . . uk be program variables present
in the unimpacted statements of V0 (V1). Let AU be the set of possible concrete
assignments to these variables. Let AI0 (AI1) be the set of possible concrete
assignments to all other variables in V0 (V1). For any assignment x ∈ AI0
(x ∈ AI1) that satisfies the impacted constraints, there exists an assignment
y ∈ AU that satisfies the unimpacted constraints. Formally, Formulas 4 and 5
are valid.

∀x∈AI0∃y∈AU (I0i [x]→ U0
i [y]) (4)

∀x∈AI1∃y∈AU (I1i [x]→ U1
i [y]) (5)

Proof. Rule (4) in Table 1 dictates that the statements defining the value of
every variable used in an impacted statement are also impacted. Accordingly,
the variables that are common to the impacted and unimpacted statements are
not constrained by the unimpacted statements. I.e., the result of an unimpacted
statement cannot affect the result of an impacted statement. Therefore, if it is
possible to satisfy the constraints of I0i (I1j ), then it is possible to satisfy the

constraints of U0
i (U1

j ).

Now we show that the impact summaries for two programs versions V0 and V1

are equivalent if and only if the summaries for V0 and V1 are equivalent. We use
the result of Theorem 1 to prove the forward direction (if the impact summaries
are equivalent, then the summaries are equivalent). Then we use the result of
Theorem 2 to prove the reverse direction (if the summaries are equivalent, then
the impact summaries are equivalent).

Theorem 3. Given program version V0 with n paths and a closely related pro-
gram version V1 with m paths. isum0 and isum1 are equivalent if and only if
sum0 and sum1 are equivalent. This is formally stated in Formula 1 and is also
shown below.

[(

n∨
i=1

I0i )↔ (

m∨
i=1

I1i )]↔ [

n∨
i=1

(I0i ∧ U0
i )↔

m∨
i=1

(I1i ∧ U1
i )]

Proof. (⇒)We begin by assuming Formula 6 is valid



(

n∨
i=1

I0i )↔ (

m∨
i=1

I1i ) (6)

Conjoining the term representing the disjunction of unimpacted constraints
of V0 to the left and right side of Formula 6 yields Formula 7.

(

n∨
i=1

I0i ) ∧ (

n∨
i=1

U0
i )↔ (

m∨
i=1

I1i ) ∧ (

n∨
i=1

U0
i ) (7)

Applying Formula 2 yields Formula 8.

(

n∨
i=1

I0i ) ∧ (

n∨
i=1

U0
i )↔ (

m∨
i=1

I1i ) ∧ (

m∨
i=1

U1
i ) (8)

Applying Formula 3 yields Formula 9.

n∨
i=1

(I0i ∧ U0
i )↔

m∨
i=1

(I1i ∧ U1
i ) (9)

This proves the forward direction, i.e., (isum0 ↔ isum1)→ (sum0 ↔ sum1).
The latter half of the proof, (sum0 ↔ sum1) → (isum0 ↔ isum1), is more
complex than the first half and is available in the technical report [1].

5 Evaluation

To empirically evaluate the regression verification technique described in this
work, we implemented a DiSE framework, Proteus, for analyzing C programs.
Note that the earlier DiSE framework implementation was an extension of the
Java PathFinder, [21], toolkit to analyze Java programs [13, 17]. A large number
of safety critical systems are developed in C; Proteus was developed at NASA
to assist in the analysis of these systems.

In Proteus, we use the GNU DiffUtils5 to compute the initial change set con-
taining the actual source level differences between program versions. The static
analysis is implemented as a customized LLVM optimization pass [11]. The out-
put of the static analysis is the set of impacted program statements. The parti-
tioning of constraints during symbolic execution is implemented as an extension
to the klee symbolic execution engine [4]. As an optimization for discarding
unimpacted constraints, we employ the directed search in the DiSE algorithm to
prune execution of paths that differ only in unimpacted constraints [13, 17]. The
final post-processing of the symbolic summaries is performed using a custom ap-
plication that iterates over the impacted path conditions, removing constraints
that are not impacted by the differences. We use the Z3 constraint solver to
check for logical equivalence of impact summaries [6].

5 http://www.gnu.org/software/diffutils



Example Versions Equiv Paths Constraints Time Symbc (s) Time Solver (s)
Full iDiSE Full iDiSE iSum Full iDiSE Full iDiSE iSum

Init Data V0V1 yes 400 400 103400 103400 82800 51.87 50.67 1.94 1.94 0.76

tcas1 V0V1 yes 118 12 4748 524 332 1.62 0.60 0.09 0.04 0.04
V1V2 yes 118 118 4772 4772 3956 1.64 1.92 0.09 0.09 0.06
V2V3 yes 118 118 4796 4796 2908 1.62 1.91 0.08 0.08 0.05

tcas2 V0V1 no 150 12 6052 520 328 2.21 0.63 0.12 0.06 0.05

replace1 V0V1 yes 18 8 98 68 48 0.31 0.25 0.01 0.03 0.03
V1V2 yes 18 10 98 98 78 0.31 0.32 0.01 0.04 0.04
V2V3 no 18 2 98 8 4 0.31 0.18 0.01 0.03 0.03

replace2 V1V2 yes 604 604 23736 23736 20980 1.14 1.35 0.11 0.11 0.10

wbs1 V0V1 yes 336 190 13416 11478 9158 1.18 1.63 0.10 0.10 0.08
V1V2 yes 336 336 13416 13416 10784 1.25 1.42 0.10 0.10 0.09
V2V3 yes 336 190 13416 11478 10784 1.19 1.34 0.11 0.09 0.08

wbs2 V0V1 no 336 134 13388 5601 4551 1.18 0.83 0.11 0.06 0.06

cornell1 V0V1 yes 10 8 62 48 24 0.10 0.11 0.03 0.03 0.03
cornell2 V0V1 yes 18 10 1864 810 663 0.27 0.29 0.01 0.01 0.01

kernel1 V0V1 yes - 4 - 282 226 - 21.09 - 218 200
V1V2 yes - 4 - 282 226 - 21.32 - 211 208

kernel2 V0V1 yes 4 2 130 114 88 1.56 1.92 0.20 0.13 0.04
kernel3 V0V1 no 4 2 118 58 48 0.67 0.78 0.19 0.12 0.12

Table 2. Equivalence Checking Results

We present the results for the different versions of the six artifacts in Ta-
ble 2. The details of the artifacts and their versions are described in further
detail in the technical report [1]. The experiments are run on a 64-bit Linux
machine, with a 2.4GHz processor, and 64GB memory. The Example column
lists the name of the artifact and the Versions column lists the version numbers
of the artifacts compared. The Equiv column shows whether the versions are
equivalent or not. The results contain data from three different configurations:
(1) Full symbolic execution explores all paths, (2) iDiSE prunes paths that only
differ in unimpacted constraints (iDiSE refers to the interprcoedural extension
of the DiSE framework as defined in [17]), and (3) iSum represents the final im-
pact summaries. The Paths column lists the number of paths, the Constraints

column presents the number of constraints in the summaries, and Time Symbc

column lists the time in seconds. The time reported for iDiSE includes the time
to perform the static analysis and incremental symbolic execution. Finally, the
Time Solver column lists the time taken by Z3 to solve the equivalence queries
generated by full symbolic execution, iDiSE, and iSum. The rows marked with
‘-’ indicate that the analysis does not finish within the time bound of one hour.

Overall, the results in Table 2 indicate that reducing the size of the queries
reduces the time to check equivalence. In the tcas2 example, full symbolic ex-
ecution generates 150 paths while iDiSE only generates 12 paths and we can
see corresponding reductions in the number of constraints and time taken to
check equivalence. The iDiSE overhead for the set of artifacts is quite small,



Example Modular (s) Non-modular (s) Example Modular (s) Non-modular (s)

tcas1V0V1 12.9 17.4 tcas1V2V3 13.6 15

tcas1V1V2 13.6 15 tcas2V0V1 14.3 18.2

wbs1V0V1 13.8 13.8 wbs1V2V3 13.7 14.1

wbs1V0V2 13.8 13.8 wbs2V0V1 14.6 14.4

replace2 V1V2 31.9 29:53.2
Table 3. Evaulation of artifacts using SymDiff

and the total analysis time (Symbc + Solver) can be considerably less for iDiSE
combined with constraint pruning over full symbolic execution. In the two ver-
sions of the kernel1 example, full symbolic execution is unable to complete the
analysis within the time bound of one hour, while only four paths are gener-
ated by iDiSE. There is a loop in kernel1 that does not contain any impacted
statements; iDiSE is able to ignore paths through the loop and quickly generate
the impact summaries. For this example, we can see how leveraging program
similarities can dramatically improve the performance of regression verification.
Although the time taken for equivalence checking for the other examples is rel-
atively small – just a few seconds – the artifacts themselves are relatively small.
We believe that the reductions will be applicable to larger examples as well. For
the replace example, the solver time for the summaries without pruning is much
faster than those with pruning. The tool we used to translate the CVC formula
generated by klee into SMTLIB format (to be interpreted by Z3) parsed the
CVC query into a trivial SMTLIB query for these examples. It is unclear to us
why this occurred with the full summaries but not the impact summaries.

Limitations The regression verification technique presented in this work
currently supports checking equivalence between two sequential programs with-
out exceptional flow. The equivalence checking reports generated by Proteus are
sound and complete for programs that do not have runtime errors or make calls
to unsupported libraries. For examples that have runtime errors or make calls
to unsupported libraries, the tool reports warnings and continues execution; the
equivalence result are reported as inconclusive in the presence of such warnings.
The sound and complete reasoning about the equivalence is with respect to a
loop bound. It is possible to leverage automatic loop invariant generation and
loop summarization techniques in the context of symbolic execution to reason
about equivalent programs without a depth bound.

6 Discussion

Revisiting Table 2, the data in the Full columns can be considered representative
of results in UC-KLEE [15]. The results demonstrate that UC-KLEE can benefit
from using our reduction techniques, when analyzing related program versions.

In order to evaluate how other tools perform equivalence checking, we ran
SymDiff [10]. We set up the experiments for SymDiff and ran them on a Windows
7 machine with a 1.8 GHz processor and 6 GB of RAM. We experimented with



two SymDiff configurations (a) modular, where the methods are summarized
as uninterpreted functions, and (b) non-modular, where the invocations to the
different methods are inlined. The non-modular approach is sound and complete
with respect to a depth-bound as well. The kernel and the cornell examples
contain constructs that are not currently supported by the C front-end in the
current version of SymDiff, so we report on experiments for the rest of the
examples. Table 3 shows the total wall clock time in seconds. In the modular
approach, SymDiff does not report any false negatives for the examples shown
in Table 3. We used a loop bound of four for the replace example, the same as
the one used in Table 2. We also used the flag in Symdiff to analyze only callers
and callees that are reachable from the changed methods to ensure that the set
of methods analyzed by SymDiff and Proteus is the same. SymDiff runs on a
Windows platform while Proteus runs on a Unix-based platform; we had to run
the experiments on different machines and it is not possible to make empirical
comparative claims between the two in terms of time. Furthermore, SymDiff and
Proteus encode the program behaviors differently, therefore, it is not possible to
compare the approaches in terms of the size of the generated formulas. SymDiff
does not use any slicing techniques based on change impact analysis, and we
believe that it can be beneficial to add such a reduction technique to SymDiff.

Abstract Syntax Tree To calculate the precise initial change sets we can
use standard algorithms to match Abstract Syntax Trees (ASTs), [14], and dis-
card differences due to variable renaming and simple re-ordering before we per-
form the data and control flow analysis. The syntatic differences based on the
ASTs are more precise compared to those generated by the GNU DiffUtils. We
have support for the AST based syntatic diff in the Java implementation of the
DiSE framework and we are currently working on adding it to Proteus.

Static Encoding vs. Bounded Unrolled Program Encoding The cor-
rectness of Eq. (1) does not rely on any specific encoding of constraints. We
choose, however, to encode the program behaviors generated by symbolic exe-
cution (bounded unrolled programs) as constraints rather than use a static en-
coding for the constraints because (a) the static constraints on heap and array
operations are often harder to solve than those generated by symbolic execution
and (b) scalable static slicing techniques for interprocedural programs often ig-
nore calling context and are imprecise; we leverage work in [17] to dynamically
compute impact information for interprocedural programs.

7 Related Work

Several techniques have been developed for checking equivalence. Differential
Symbolic Execution (DSE) uses uninterpreted functions to represent unchanged
blocks of code [12]. SymDiff [10] summarizes methods as uninterpreted func-
tions, and uses verification conditions to summarize observable behavioral dif-
ferences. Regression verification techniques by Strichman et al. [8, 19] use the
Context-Bounded Model Checker (CBMC) to check equivalence of closely related
C programs. It establishes partial equivalence of functions using a bottom-up de-



composition algorithm. Another approach [18] performs an increment upgrade
checking in a bottom-up manner similar to regression verification, using func-
tion summaries computed by means of Craig interpolation. These techniques
are sound but not complete. Techniques from [18] are used in the PINCETTE
project [5]. To curb over-approximations, the PINCETTE project also employs
dynamic techniques (e.g., concolic testing) to generate regression tests for sys-
tem upgrades. There is also ongoing work to support program slicing based on
the program differences in CBMC.

Similar to our work, UC-KLEE [15] is built on top of KLEE. UC-KLEE is
designed to run two functions under test with the same input values and check
if they produce the same outputs. As an optimization, UC-KLEE is able to skip
unchanged instructions. However, it neither produces nor leverages the impacted
behavior information. Partition-based regression verification, [3], computes par-
titions on-the-fly using concolic execution and dynamic slicing techniques. Each
partition contains behaviors generated from a subset of the input space common
to two program versions. The goal of the technique is to find test cases that
depict semantic differences rather than prove equivalence.

Approaches that cache or reuse constraints to speed up performance (e.g.,
Green [20]) are orthogonal to our reduction technique. Such techniques are com-
plementary to this work and can be leveraged to achieve higher reduction factors.

8 Conclusions & Future Work

In this work on regression verification we leverage control- and data-flow in-
formation to partition the program behavior summaries as either impacted or
unimpacted based on the differences between two program versions. We then
prove that the impacted constraints of two closely related programs are function-
ally equivalent iff their entire program behavior summarizations are functionally
equivalent. An empirical evaluation on a set of sequential C artifacts shows that
reducing the size of the summaries helps reduce the cost of equivalence checking.

In future work, we plan to study the effects of other more compact program
summarization encoding schemes such as large-block encoding [2] in combination
with the work proposed here. Another avenue of future work is to develop an
abstraction-refinement technique using uninterpreted functions to abstract large
parts of the program as done in [12, 19], but, use the information about the
impacted parts of the code to refine the abstraction when required. We believe
such techniques can further improve checking equivalence of large programs.

Acknowlegements We thank Shuvendu Lahiri at Microsoft Research for his
help with SymDiff.

References

1. J. Backes, S. Person, N. Rungta, and O. Tkachuk. Regression ver-
ification using impact summaries Extended version available online.
http://ti.arc.nasa.gov/profile/nrungta/pubs/, 2013.



2. D. Beyer, A. Cimatti, A. Griggio, M. Keremoglu, and R. Sebastiani. Software
model checking via large-block encoding. In FMCAD, pages 25–32, Nov. 2009.

3. M. Boehme, B. C. d. S. Oliveira, and A. Roychoudhury. Partition-based regression
verification. In ICSE, 2013.

4. C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In OSDI, pages 209–224,
2008.

5. H. Chockler, G. Denaro, M. Ling, G. Fedyukovich, A. E. J. Hyvrinen, L. Mariani,
A. Muhammad, M. Oriol, A. Rajan, O. Sery, N. Sharygina, and M. Tautschnig.
Pincette validating changes and upgrades in networked software. In CSMR, 2013.

6. L. M. de Moura and N. Bjørner. Z3: An efficient smt solver. In TACAS, pages
337–340, 2008.

7. V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and arrays. In
CAV, pages 519–531, 2007.

8. B. Godlin and O. Strichman. Regression verification. In DAC, 2009.
9. D. Kroening and O. Strichman. Decision Procedures: An Algorithmic Point of

View. Springer Publishing Company, Incorporated, 2008.
10. S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo. Symdiff: a language-

agnostic semantic diff tool for imperative programs. In CAV, pages 712–717, 2012.
11. C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program

Analysis & Transformation. In CGO, 2004.
12. S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pǎsǎreanu. Differential symbolic

execution. In FSE, pages 226–237, 2008.
13. S. Person, G. Yang, N. Rungta, and S. Khurshid. Directed incremental symbolic

execution. In PLDI, pages 504–515, 2011.
14. S. Raghavan, R. Rohana, D. Leon, A. Podgurski, and V. Augustine. Dex: a

semantic-graph differencing tool for studying changes in large code bases. In ICSM,
pages 188–197, 2004.

15. D. A. Ramos and D. R. Engler. Practical, low-effort equivalence verification of real
code. In CAV, pages 669–685, 2011.

16. G. Rothermel and M. J. Harrold. A safe, efficient regression test selection technique.
ACM TOSEM, pages 173–210, 1997.

17. N. Rungta, S. Person, and J. Branchaud. A change impact analysis to characterize
evolving program behaviors. In ICSM, 2012.

18. O. Sery, G. Fedyukovich, and N. Sharygina. Incremental upgrade checking by
means of interpolation-based function summaries. In FMCAD, UK, 2012.

19. O. Strichman and B. Godlin. Regression Verification - A Practical Way to Verify
Programs. Springer-Verlag, Berlin, Heidelberg, 2008.

20. W. Visser, J. Geldenhuys, and M. B. Dwyer. Green: reducing, reusing and recycling
constraints in program analysis. In SIGSOFT FSE, page 58, 2012.

21. W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda. Model checking
programs. ASE, 10(2):203–232, 2003.

22. G. Yang, M. B. Dwyer, and G. Rothermel. Regression model checking. In ICSM,
pages 115–124, 2009.


