
1

Avoiding Overfitting in Automated Program Repair
using Formal Methods

Amirfarhad Nilizadeh∗, Gary T. Leavens∗, Xuan-Bach D. Le†, Corina S. Păsăreanu‡, and David R. Cok§

Abstract—Automated Program Repair (APR) is used for de-
tecting bug locations in a program and repairing them by creating
patches. Most current APR tools are dynamic in the sense
that they use a test suite for both detecting buggy statements
and validating the correctness of the generated patch. A major
problem with such dynamic APR tools is that the patches they
generate are sometimes incorrect; that is, the patches are only
good enough to pass the tests used for generating the repair but
do not generalize beyond those tests. Because such “overfitting”
is possible, current practice resorts to manual human judgment
about the correctness of patches, which makes the process only
semi-automatic, not reusable for future patch verification, and
more importantly, subject to human biases. To alleviate these
issues, we propose to use formal methods to describe the behavior
of a program and automatically verify the correctness of patches.
The novelty of this approach is twofold: (1) correctness of patches
is automatically guaranteed, and (2) the effort is reusable, as
specifications can be written once and reused in the future.
We demonstrate this approach by experiments using JML-based
specification and verification on patches generated by several
open source and well-known APR tools. Our results show that by
using formal methods it is possible to completely avoid overfitting
with only a small number of false negatives. Our experiments also
point out two new problems that can afflict APR tools: changes
to the time complexity of programs and numeric problems.

Index Terms—Automated Program Repair (APR), Overfitting,
Verification, Formal Methods, JML, Kelinci

I. INTRODUCTION

Bugs exist even in critical software; for example, bugs have
been famously found in protocol and security applications,
such as blockchain systems [1] and the well-known Heart-
bleed bug [2]. In addition to developer mistakes, changing
requirements of a program can introduce bugs into a previously
correct program. However, finding and fixing bugs is expen-
sive. Studies show that about half of the cost of developing
a software system is related to testing and debugging [3]–[5].
Also, billion of dollars are spent on debugging annually [6].
Software Fail Watch reported that $1.1 and $1.7 trillion were
lost because of software failures in 2016 and 2017, respec-
tively [7], [8]. Thus, detecting and fixing bugs is important
for saving costs in software development.

Due to the importance of this problem, researchers have
devoted much effort to speeding up the process of debugging
by making it automatic and more reliable. Debugging a system

∗Dept. of Computer Science, University of Central Florida, Or-
lando, Florida 30816-2362, USA Email: af.nilizadeh@knights.ucf.edu, Leav-
ens@ucf.edu †University of Melbourne, Melbourne, Australia Email:
bach.le@unimelb.edu.au ‡Carnegie Mellon University and NASA Ames
Research Center, NASA Ames Research Center, USA Email: Co-
rina.S.Pasareanu@nasa.gov §Safer Software Consulting, LLC, Rochester,
New York, Email: david.r.cok@gmail.com

has two general steps. The first step is to detect bugs and find
their likely cause, which is known as bug localization [9], [10].
The second step is to repair the bugs, by patching the program
statements that were found to be faulty [3]. Localizing bugs
automatically has a longer history than repairing them and
localization is already used in industry. However, in recent
years research about repairing bugs automatically has received
much attention.

Automated program repair (APR) is an area that attempts
to make the whole process of debugging automatic. A variety
of techniques have been published that are based on symbolic
execution [11], genetic algorithms [12], [13], random muta-
tions [14], formal methods [15]–[17], machine learning [18],
and other special-purpose techniques. Current APR tools have
shown great promise but they still have some limitations.
In a 2017 study Martinez et al. [19] investigated how well
three APR tools (jGenProg [20], jKali [20], and Nopol [21])
performed on a subset of the defects4J dataset [22]; these
tools only generated patches for 21% of bugs in the study.
Furthermore, only about 4% of the bugs in the defects4J
dataset were patched correctly and the study’s authors were
unsure about the correctness of another 5% of the patches.

Current APR tools sometimes generate patches that pass all
tests but are incorrect, a problem known as overfitting (see
section III). Current practice follows either of the following
methods to validate patch correctness: (1) patches are automat-
ically validated by an independent test suite, or (2) humans
manually examine the patches and label their correctness.
While the former is automatic, it is incomplete because of the
reliance on a test suite. The latter requires extensive manual
effort and domain knowledge to make reliable correctness
judgements, and more importantly is not reusable for future
patch verification. To alleviate these issues, the main idea of
our work is to avoid generating incorrect patches by using
formal methods. We propose using formal specifications with
existing APR tools; in particular our experiments focus on
Java and use JML specifications and APR tools that target
Java programs. Furthermore, we aim to prove the correctness
of repaired programs automatically using static verification.
By doing so, we can automatically and objectively verify the
correctness of patches while making the patch verification
process reusable, as specifications can be written once and
reused in the future.

The contributions of this paper are:
1) Formalizing APR, including its comparison with pro-

gram verification and program synthesis.
2) Preventing APR tools that use a test suite from creating

patches that overfit to the test suite by using formal

methods to reject patches that are not correct.
3) Using a fuzzing tool for generating a test suite, instead

of using a test suite written by the developer, and
experimentally evaluating its effectiveness. [23].

4) Creating a dataset of Java programs with JML speci-
fications for which OpenJML can prove their correct-
ness [24]. This dataset is the largest open source dataset
of Java+JML programs that are statically verified by
OpenJML.

5) Creating a dataset of buggy Java programs with their
JML specifications [25]. These buggy programs have
exactly one bug and OpenJML correctly identifies their
invalidity. This dataset can be used by researchers to
automatically and objectively evaluate the effectiveness
of their APR tools.

6) Experimentally evaluating the reliability of current APR
tools for generating a correct patch.

7) Evaluating the effectiveness of OpenJML’s extended
static checker for classifying overfitting and correct
patches.

8) Discovery of two new problems that arise in programs
repaired with current APR tools: a) generated patches
can increase the time complexity dramatically and b) a
generated patch can create an integer overflow. (We dis-
cuss the latter and other more general numeric problems
in subsection VII-B.)

II. BACKGROUND

This section introduces terminology related to APR systems.
After that, APR is formalized and compared with program
verification and program synthesis. Then, five test-based APR
tools for Java are introduced: Cardumen, jGenProg, jkali,
jMutRepair and Nopol. These tools are used in section VI
(Experimental Results) of this paper. Then, formal behavioral
specification, the Java Modeling Language (JML) and Open-
JML are presented.

A. Automated Program Repair

In general an APR system has two inputs: a buggy program
and a description of the expected behavior of the program. This
behavioral description is used for localizing bugs in a program
and validating (or verifying) generated patches. In most current
APR research, this behavioral description is a test suite [26],
[27]. However, in some research, a formal specification is
used [17], [28], [29]. All open source APR tools that are
created by researchers are collected in a website [30] and
almost all of them use a test suite as a behavioral description.
An APR system, like a debugging system, has two main steps:
(1) fault localization and (2) patch generation. Faulty locations
are determined by using fault localization techniques, most
notably spectrum-based fault localization such as Ochiai [31].
Given the localized faulty elements as input, patch generation
involves two phases: (a) generating candidate patches and
(b) validating or verifying the correctness of the candidate
patches. The process of patch generation and validation (or
verification) will continue until it reaches one of the following
outputs: either a repaired program that satisfies the behavioral

Program 1. Buggy Program Absolute
public class Absolute {

public int absolute(int num){
if(0 <= num)

return num;
else

return num;
}

}

Program 2. Test Suite
import org.junit.Test;
import static org.junit.Assert.assertEquals;
public class JUnitAbsolute {

@Test
public void test() {

Absolute a = new Absolute();
assertEquals(10, a.absolute(10));

}
@Test
public void test1() {

Absolute a = new Absolute();
assertEquals(10, a.absolute(-10));

}
}

description or a “Not Successful” message indicating that the
APR system cannot repair the buggy program. A repair system
may be unsuccessful for two reasons. The first reason is a time
out, which shows that the process of finding a patch has taken
longer than is expected or that a user is willing to wait. The
second reason is that all of the possible patches in the space
of repairs of the APR technique have been tested and none of
them could satisfy the behavioral description given.

An example of inputs and output of an APR system for a
small program is discussed in the following. In programs 1
and 2 a buggy Absolute Java program for integer numbers
and its JUnit test suite are shown, respectively. This program
and its test suite are the inputs of an APR system. Program 1
has a semantic error for computing the absolute value of an
integer number; it does not return a positive value when the
input argument of the “absolute” method is a negative integer
number. In program 2, two inputs “10” and “-10” describe the
behavior of the system; they represent tests with positive and
negative integers in Java, respectively. A possible generated
patch with an APR system is shown in program 3; it passes
both tests successfully.1 In the generated patch (Program 3) “-
return num; %line6” means remove “return num;” (in line 6),
and also “+ return -num; %line6” means add “return -num;”
(also as line 6 of the “Absolute” class).

1None of the five APR tools discussed in this paper can generate a patch
for program 1 using its test suite (program 2).

Program 3. Generated Patch
- return num; %line6
+ return -num; %line6

1) Formalizing APR: APR can be formalized as a function,
APR(P, S, ε), where P denotes a program, S is an input/out-
put specification, and ε is a maximum distance (number of
changes allowed) in the program. The output is either “Yes”
along with a program P ′ that satisfies S and is such that
distance(P, P ′) ≤ ε, or “No” if there is no such program. In
most APR research the distance(P, P ′) is defined as an edit
distance on the abstract syntax trees of P and P ′. A distance of
one might mean, for example, that one token (e.g., an operator)
was changed between P and P ′.

In full generality, APR is an undecidable problem, because
in general the specification S can have an infinite input domain
and thus solving APR exactly is equivalent to solving program
equivalence exactly. Note that APR(P, S, 0) is equivalent to
verifying the correctness of P with respect to the specification
S, which is known as program verification. Also, note that
APR(P, S,∞) is equivalent to program synthesis. Therefore,
APR is a very hard problem.

However, in practice, APR systems do not try to solve the
APR problem exactly; instead, of answering “No” when there
is no program that satisfies the specification, they make no
guarantee when they cannot find a patch (i.e., they can answer
“Sorry” if they do not find a patch). This allows APR systems
to work up to some time out.

A small edit distance corresponds to the competent pro-
grammer hypothesis [32], [33], which says that “Programmers,
however, have one great advantage . . .: they create programs
that are close to being correct!” [32]. If programs are nearly
correct, then only small changes are needed to make them
correct and these changes should correspond to small edit dis-
tances. Some research results have used datasets with hundreds
of thousands of lines of code [3] [34] and demonstrated good
rates of program repair, although the systems involved can
only make small changes to programs.

2) Taxonomy of APR: Different classifications of APR tools
are introduced in survey papers. In Monperrus’s work [35],
automated program repair techniques are classified into two
main classes: behavioral and state repair. Behavioral repair
changes the source or binary code of a selected program and
state repair modifies the state of the program, a technique
more like classical fault tolerance [35], [36]. In Gazzola’s
survey paper [3], APR tools are classified into two different
groups: “generate and validate” and “semantics driven repair”.
The Generate and Validate approach has two steps: generating
a candidate patch based on the repair space of the APR tech-
nique, and then validating the patch by using a test suite as an
oracle. The Semantics Driven approach analyzes the behavior
of the program semantically, by using a test suite or behavioral
specification. Finally, Le Goues’s work [37] classified APR
research into two main classes including “heuristic repair” and
“constraint based repair.” Heuristic Repair uses a generate and
test approach for repairing bugs. Constraint Based Repair uses

symbolic execution, or other approaches, to extract properties
of the program, and then generates a patch that satisfies those
properties. Also, the paper by Le Goues et al. [37] introduces
a new group namely, “learning based repair,” which uses
machine learning or neural networks for generating a patch. In
fact, learning based repair can be used to improve the results
of heuristic repair and constraint based repair.

To recognize more recent approaches, we classify APR
systems in two main classes, “Static APR” and “Dynamic
APR” approaches. The Static APR approach generates a patch
and verifies the correctness of the repaired program statically
by using formal methods. “Static APR” is divided in two
classes: “Model Checking” and “Formal Specification.” The
work of Jobstmann [38] is a Model Checking approach; it uses
LTL specifications to patch finite-state programs. The formal
specification approach is found in the work of Gopinath,
Malik, and Khurshid [15], the Maple system [39], and
AllRepair [40].

The Dynamic APR approach generates a patch and validates
it by using a test suite; typically patches are generated either
based on the repair space of an APR technique like Gen-
Prog [13] and RSRepair [14], or a semantic analysis of the be-
havior of a program, as is done in Angelix [41] and Nopol [21].
These two kinds of techniques for generating patches are noted
in Gazzola’s survey paper [3], which distinguishes between
“generate and validate” and “semantics driven” techniques.
Figure 1 shows these classifications.

B. APR Tools

In this work five APR tools that operate on Java programs
are studied. Four of these tools are selected from Astor [20],
[42], which is an automatic software repair framework. These
four tools are Cardumen, jGenProg, jKali, and jMutRepair.
Also, Nopol is another Java APR tool that is used in our
evaluation. We next introduce these tools.

All of the tools we study (and also some datasets) are
collected in the program repair website [30]. All of the tools
we study use a test suite as a behavioral description, as is
the case for almost all of the tools that are available on the
program repair website.2

1) Cardumen: Cardumen [42], [45] is one of the APR tools
recently introduced by the Astor repair framework for Java. It
repairs 77 bugs of defects4J dataset [22]; eight of these 77 are
not repaired with the other APR tools.

Cardumen uses a spectrum-based fault localization (SBFL)
tool for bug localization, GZoltar [46]. SBFL techniques sta-
tistically analyze the behavior of the software system based on
the failing and passing tests. Then, statements of the program
are ranked based on their likelihood of being faulty [47], [48].
It then uses fine-grained program elements and automatically
mined repair templates to repair a program.

2Only AllRepair [40] uses assertions as a formal specification and Aut-
oFix [43], [44] uses a formal specification as it is based on the Eiffel language.
Even AutoFix uses a test suite; however, that test suite is created from the
program’s formal specification.

Automated Program Repair (APR)

Static APR Dynamic APR

Model Checking Formal Specification Semantics Driven Generate and Validate

Figure 1. Automated Program Repair Classification

2) jGenProg: GenProg [12] is one of the first and best-
known APR algorithms. The Java version of this tool, intro-
duced by the Astor repair framework, is jGenProg [20].

The jGenProg algorithm uses SBFL for bug localization.
Then, it uses three operations (insert, remove and replace)
for repairing a program. The algorithm uses a measure called
“fitness,” which evaluates the generated candidate patches. The
fitness of a patch is the number of tests that pass the repaired
program using that patch, minus twice the number of tests that
fail. The algorithm uses genetic programming for searching
in the repair space of the program; the best two candidates
(those with the highest fitness) are used for crossover, which
generates new candidate patches. If a program with a candidate
patch passes all of the tests, then that patch is considered to
be the repair.

3) jkali: This tool is the Java version of kali [49], which is
for C. The tool just removes the faulty statement [50]. It uses
the SBFL technique [31] for localizing the faulty statements.
For each potentially faulty statement, jkali considers removing
it, and if the program can pass its test suite, then it considers
this change as a repair.

4) jMutRepair: The idea of jMutRepair is to repair a buggy
Java program by mutating if conditions. jMutRepair uses three
different kinds of mutations for if statements and each time
it only makes one change in the if condition. The first is the
relational group that can evaluate the six different relational
operations (<, <=, >, >=, ==, !=). The second is a logical
group that can change “AND” to “OR” or vice versa. The
third is a unary group that can apply arithmetic negation to
expressions. Again, if a program with a candidate patch passes
all the tests in the test suite, then the patch will be considered
to be a repair.

5) Nopol: Nopol [21], [51] is an open source APR tool
for Java that uses a test suite. Nopol can fix bugs in if
conditions and synthesize code to prevent errors in if con-
ditions. Nopol uses SBFL for fault localization, dynamically
gathering information about if-conditions. Then, it transforms
this information into an SMT problem. The solution to this
SMT problem is then translated into a corrected if-condition.

C. Formal Behavioral Specification

Some enterprises that need to provide program correctness
and security are using formal behavioral specifications; ex-
amples include Amazon [52], [53], Facebook [54], Intel [55],
NASA [56], [57], Rockwell Collins [58], and several railway
and subway systems [59]. This indicates the real-world interest
in formal methods as well as the availability of relevant formal
specifications, which could be used in APR tools.

A formal behavioral specification is a mathematical de-
scription of a system at an abstract level. It clarifies the
assumptions and final expected state of the system. It does
not control the details of the implementation [60]. A formal
behavioral specification can be either an executable program or
a logical description, which can use mathematics and quantifier
annotations. Design by Contract (DbC) [61] is a form of ex-
ecutable specification that uses preconditions, postconditions,
and invariants [62]. Many modern systems use DbC notations
and add other logical descriptions that are not necessarily
executable; these include: ACSL (for ANSI C) [63], JML [64]
for Java, Spec# for C# [65], and Dafny [66].

In this work, we use the extended static checker for JML
found in OpenJML. Next we explain the details of JML [67],
[68] and OpenJML [69].

1) Java Modeling Language: The Java Modeling Language
(JML) [70] is a formal behavioral specification language for
Java. JML is based on DbC notations like the Eiffel lan-
guage [62]; these notations provide Hoare-style specification
for Java methods and classes. Preconditions of a method in
JML are defined by “requires” clauses, and postconditions are
defined by “ensures” clauses. Also, JML specifications can be
used at the class level by using “invariant” clauses, and at the
statement level, by using “assert”, “assume” and “maintaining”
clauses.

A JML annotation is written after “//@” on a line or
between “/*@” and “@*/” in a Java program. Thus, the
Java compiler considers these annotations as comments. Tools
based on JML can compile both JML and Java.

Many tools have been created that use JML notations for
type-checking, generating tests, run-time assertion checking,
static analysis, and verification [68], [71]. Two static verifica-
tion tools based on JML are OpenJML [72] and KeY [73]. The
extended static checker of OpenJML is automatic and does not

Program 4. Unsatisfied absolute
public class Absolute{

//@ requires 0 <= num;
//@ ensures \result == num;
//@ also
//@ requires num < 0;
//@ ensures \result == -num;
public /*@ pure @*/int absolute(int num){

if(0 <= num)
return num;

else
return -num;

}
}

support direct user interaction, whereas KeY is designed to be
a more interactive verifier [74]. In this paper we use OpenJML,
as it is more automatic; OpenJML has been used in Amazon
Web Services (AWS) for verifying their software [52].

2) OpenJML: The OpenJML tool [69] supports both static
verification and run-time assertion checking [75]. The two
inputs of OpenJML are Java code and its JML behavioral
specification. Static checking in OpenJML can prove the
correctness of a program for all possible inputs.

In the static verification process of OpenJML, the Java
code and JML specification are translated into first order logic
verification conditions for an SMT solver.3 Then the SMT
solver is applied to the verification conditions [79].

In program 4, the repaired Absolute class for integer
numbers is shown with JML annotations after applying the
generated patch (program 3). The Java code returns the un-
changed input argument if the input is greater or equal to
zero. Otherwise, if the input value is less than zero, then the
method returns the negated input value. The JML specification
in program 4 has the same behavior; it has two different
scenarios for the possible input values, which are separated
by the also annotation. The specification above the also
describes the case when the input is positive; in this case,
the return value (which is written \result), must be equal
to the input value. In the second case (following also), the
input value is less than zero in Java. In this case, based on the
postcondition the return value must be equal to the negation
of the input.

However, running OpenJML’s static verifier on the repaired
Absolute program generates the following warning.

Absolute.java:13: warning: The prover cannot
establish an assertion (ArithmeticOperationRange)
in method absolute: (int negation)

return -num;
1 warning

This shows that the Java method does not satisfy its
contract, because Java represents the int type using two’s
complement notation, and thus it cannot represent the negation

3The SMT solver which is used by default in OpenJML is Z3 [76], but
also CVC4 [77] and Yices [78] can be used.

Program 5. Satisfied absolute
public class Absolute{

//@ requires 0 <= num;
//@ ensures \result == num;
//@ also
/*@ requires Integer.MIN_VALUE < num

&& num < 0; @*/
//@ ensures \result == -num;
public /*@ pure @*/int absolute(int num){

if(0 <= num)
return num;

else
return -num;

}
}

of “Integer.MIN_VALUE” as a positive “int.”4 Note
that the arithmetic in the specification is evaluated using
mathematical integers, while the Java program uses the wrap-
around semantics of Java’s fixed-bit-width integers.

To have a correct program it is thus necessary to limit
the domain of the program with a precondition that does not
allow Integer.MIN_VALUE as an argument; that version
is shown in program 5. The only change compared to pro-
gram 4 is revising the second precondition, which says that
the argument cannot be equal to Integer.MIN_VALUE. The
correctness of this program can then be verified statically with
OpenJML, which is important for safety critical systems.

III. THE OVERFITTING PROBLEM IN DYNAMIC APR

A test suite is usually not a complete specification, because
a program may have an infinite domain. Therefore, when
an APR tool uses a test suite for validation it may not
verify the correctness of a program for the program’s entire
domain. Thus, the generated patches may not be reliable and
using them automatically without evaluating the correctness
of the patch is unwise, especially in safety critical systems.
Overfitting means that the generated repair patch can pass
the test suite but still not be a correct patch based on the
requirements of the program.5

Evidence for the problem of overfitting comes from the
work of Martinez et al. [19]. That work used the defects4J
dataset [22], which is a public Java dataset with 438 real
world buggy programs and their test suites. Martinez et al.
used a subset of defects4J with 224 real bugs to evaluate
three APR tools in Java including: jGenProg [20], jKali [20]
and Nopol [21]. Their results showed that these three APR
tools were not very successful on these real world bugs.
Also, most of the patches were not correct, because of the
overfitting problem. These tools generated patches for 47 bugs
(21% of the bugs). However, only 9 generated patches were
correct (about 4%) and Martinez et al. were unsure about the

4In Java, the negation of “Integer.MIN_VALUE” is itself, which is still
negative.

5The term “overfitting” [80] is borrowed from machine learning, and long
before that from statistics. It applies to all APR techniques that are using the
dynamic APR approach (see Figure 1).

correctness of 11 further patches (about 5%). The other 27
generated patches (about 12% of the total number of programs)
could pass the unit tests, but were overfit patches.

Another empirical evaluation, by Le et al. [81], on the
“Semantic Driven” approach showed that even APR studies,
which were using the behavior of the program (when running
the test suite) for generating the patches, suffered from the
overfitting problem.

A better test suite can describe the behavior of a system
more completely. Thus, tools that can generate more complete
test suites can help solve the overfitting problem. For example,
the symbolic execution tool KLEE [82] is used by Smith et
al. [80] to generate a test suite that they call a “white-box”
test suite. Developers generate a test suite that they call a
“black-box” test suite. Smith et al. then evaluate GenProg [13]
and RSRepair [14] by using these two different kinds of test
suites: black-box and white-box. Their results show that most
of the generated patches that are created with the black-box
test suite do not pass the white-box test suite. In their work the
generated patches that are created by using symbolic execution
are more reliable. Also, Yang et al. [83] create a framework
named Opad (Overfitted PAtch Detection) that increases the
number of tests in a test suite by generating new test cases,
using American Fuzzy Lop (AFL) [84]. Their results show that
this tool could filter more than 75% of generated overfitting
patches with their new test cases compared to their initial test
cases. In another study, Xiong et al. [85] show that APR
tools become more reliable and they generate less overfitting
patches by increasing the number of test cases. Their work
could filter more than 56% of generated overfitting patches.

These results show that even increasing the number of
tests does not solve the overfitting problem in the dynamic
APR approach. Thus, generated patches are not reliable and
a developer has to manually evaluate the correctness of each
generated patch. That is, the developer makes a decision about
accepting or discarding the generated repair patch. Thus, in
dynamic APR techniques the whole process of APR is not
completely automatic. Also, evaluating the correctness of a
patch is difficult and time- consuming. Without a specification,
only the developer will have enough information about the
program to evaluate correctness. For example, in the Martinez
et al. work [19] the authors, who were not the program’s
developers, were unsure about the correctness of 11 out of
47 patches.

However, by increasing the number of test cases the perfor-
mance of APR will be degraded. Running tests is the most
expensive operation in dynamic APR tools [3], [14], [86].
There is a trade off between the number of tests in a test
suite and the performance and reliability of an APR system.
Le Goues [87] shows that 64% of the time of the GenProg
process for detecting bugs and generating a repair patch is
related to running the tests. Thus there is a dilemma between
reliability and performance in dynamic APR.

IV. APPROACH TO AVOIDING OVERFITTING

While testing a program is a necessary part of validation, a
formal specification is necessary for verifying correctness [88].

Recall that a test suite as used in dynamic APR for validation,
but testing does not usually provide verification. This leads to
the overfitting problem that was discussed in section III. Due
to overfitting, a developer must manually check the correctness
of patches.

In dynamic APR systems there is no realistic approach for
completely solving the overfitting problem. The only test suite
that can verify the correct behavior of a system completely is
a test suite with all possible inputs. Only such a test suite can
guarantee the correctness of a program. However, having a
complete test suite is unrealistic for most real-world programs.

The approach of this paper for solving the overfitting
problem is to use a formal behavioral specification. A formal
behavioral specification with pre- and postconditions and
invariants can be used to automatically make a decision about
the correctness of a repaired program. In the first step of this
approach, a dynamic APR tool using a test suite generates a
candidate patch for a buggy program. Then the candidate patch
is validated by using its test suite. If the generated candidate
patch cannot pass the test suite, then it backtracks to generate
another candidate patch. This process will continue until it
generates a candidate patch that is validated by its test suite,
or it times out or runs out of potential repairs. If it generates
a patch, then the validated, repaired program and its formal
behavioral specification are passed to the verification process
as inputs. In the verification process, the repaired program
and its specification are evaluated with a static analyzer. If the
static analyzer verifies the correctness of the repaired program,
then the correctness of the repaired program is guaranteed.
Otherwise the tool will tell the user that no correct patch
could be found. (In future work, we plan to have the tool
backtrack and attempt to generate another patch.) By using
validation and verification, overfitting cannot happen. This
would allow APR to be used for safety critical systems. Also,
by using a static analyzer instead of a human for deciding the
correctness of candidate patches, the whole process of APR
becomes automatic. Figure 2 shows our proposed validation
and verification approach.

This approach to solving the overfitting problem for dy-
namic APR can be formalized as two uses of the APR function,
APR(APR(P, S, ε), S′, 0). The inner APR call is the validation
process and the outer APR call is the verification process. In
the inner APR call, P denotes a program, S is a test suite for
validation6 and ε is a maximum edit distance in the program
(number of changes allowed) as discussed in section II-A.
In the outer APR call the first argument, APR(P, S, ε), is
a validated repaired program, the second argument, S′, is a
formal behavioral specification and “0” denotes the maximum
edit distance in the program. Recall from section II-A that
an APR system with zero edit distance performs program
verification.

The output of the inner call to APR can be either a
program P ′ that satisfies S (test suite) and is such that
distance(P, P ′) ≤ ε, or a “Not Successful” message. If the
answer is a program, then the output of the outer call to

6The test suite, S, should correspond to the formal specification in the sense
that each input-output pair in the test suite should be correct according to S′.

Generate and
Validate Patches

Test Suite

Buggy Program Validated Repaired
Program

Not Successful

Verify Repaired
Program

Specification

Repaired Program

A Dynamic APR System

A Static Analyzer

Verified Repaired
Program

Not Verified
Repaired Program

Figure 2. An Abstract Diagram of using Validation and Verification for Avoiding Overfitting

APR can be either the program (APR(P, S, ε)), which is thus
verified to satisfy S′ (the formal behavioral specification),
or “Not Verified”, which means APR(P, S, ε) is an overfit
program. Also, the output of “Not Successful” from the inner
APR call means that the APR system cannot generate a patch
satisfying S. The verified program output from outer APR call
means that the repaired program is both validated by S and
verified by S′.

V. CREATING DATASETS

To carry out our experiments, we created two datasets. The
first is a Java+JML set of verified programs. The second is a
buggy Java program dataset, which is derived from the first.

The Java+JML verified programs are a set of 20 Java
programs that are all verified using OpenJML’s static analyzer
to be correct with respect to their JML specifications.

The buggy Java program dataset is based on the Java+JML
verified programs. For each verified program P there is a test
suite for P and several buggy variants of P . Each variant was
created by mutating P to inject exactly one bug into it. This
buggy Java program dataset has 190 buggy variant programs
overall.

To avoid bias in the evaluation and experimental results,
the process of generating each test suite and injecting bugs
was automated by using a fuzzing tool and a mutation tool,
respectively.

A. Creating a Java+JML Dataset

Existing examples of Java+JML programs, like the KOA
voting system [89], cannot be verified by the static checker of
OpenJML [69], [79]. There are two reasons for this: (1) the
static checker in OpenJML has some limitations at present,
such as not supporting Java’s double and float types, and (2)
the specifications for these existing programs were designed
for run time assertion checking and are not entirely suitable
for static checking.

Currently Amazon is using OpenJML for proving correct-
ness for AWS [52], but their libraries are not open source. Thus
there was previously no open source Java+JML dataset aimed
at static verification. Only seven small programs are available
in the OpenJML website [90], and six of them are used in the
Java+JML verified program dataset. Also, 14 more Java+JML
programs were created for this research and added to the
verified program dataset. These 14 Java programs are small
programs that are mostly used for teaching Java to beginners,
such as factorial, bubble sort, linear search, leap year, and
prime numbers. The new Java+JML dataset contains small
programs, but the programs are well-known. It makes sense
to begin evaluation of APR tools with such small programs
before moving on to larger programs, because the small
programs will help developers and researchers understand the
process we are proposing, including the formal specifications
and the evaluation of the correctness of the repaired programs.

This Java+JML verified program dataset is available on a
GitHub website [24].

B. Creating Test Suites

Dynamic APR tools take as input a test suite. There is an
assumption in work on dynamic APR that at least one of the
tests in a buggy program’s test suite must trigger the bug in
the program.7 Past research shows that test suite quality is
important for dynamic APR tools, and a stronger test suite
can repair more buggy programs with less overfitting (see
Section III). To avoid bias in the evaluation and comparison
of APR tools, we automate the process of creating the test
suite. For this purpose we use an off-the-shelf fuzzing tool,
Kelinci [91], [92].

Kelinci is a fuzzing tool for Java, based on American
Fuzzy Lop (AFL) [84]. Kelinci automatically generates files
(sequences of bytes) in an attempt to cover all the paths of
the program being tested. The user must provide a driver that

7This assumption is reasonable, as bugs are only identified through testing.

converts the sequence of bytes generated by Kelinci into the
program’s arguments. The driver is written by considering the
JML precondition of each program (drawn from the dataset
of Java+JML verified programs). In this paper we run Kelinci
five times for each program in the dataset of verified programs;
each run of Kelinci was used to generate at least one JUnit
test, each of which is based on a sequence of bytes that
Kelinci discovered as covering some path in the program. Test
suites are formed from these tests by removing tests that are
equivalent to other tests. Thus there is one test suite for each
verified program.

The JUnit test suites generated in this way are available on
GitHub [93].

C. Creating a Buggy Program Dataset

To avoid bias in the evaluation and comparison of APR
tools, the process of creating the buggy program dataset is
also automated. Since most of the dynamic APR tools can
only fix a buggy program with one bug, we wanted to create
a buggy dataset in which each program has exactly one
bug. PITest, [94]–[96], a well-known mutation tool for Java
programs, is used for injecting a single bug into each verified
Java program. This process generated the buggy mutants that
were added to our dataset of buggy Java programs.

In our work the inputs for PITest are all of the verified
programs in the Java+JML verified program dataset (along
with each program’s JUnit test suite).

In total PITest created 197 unique buggy variants of our
Java+JML dataset programs; each of these 197 buggy pro-
grams has exactly one bug. At first PITest created more than
197 mutants, but some of them were either semantically equal
to other generated buggy programs or to the corresponding
verified program; these equivalent programs were discarded.
Also, OpenJML’s static analyzer was able to find at least one
warning for each of these 197 buggy programs (based on
the specification of the correct version of the program in the
Java+JML dataset of verified programs). These 197 unique
buggy programs are available on GitHub [23], [25].

Among these 197 buggy programs, three of the bugs were
not triggered with the test suite for the correct program that
was created by Kelinci; these were: “PrimeNumbers bug3,”
“GCD bug7,” and “GCD bug8.” Recall there is an assumption
in dynamic APR that at least one of the tests in the test
suite must trigger the bug. Thus, these three buggy programs
were not used in our experimental evaluation. Also, four
other buggy programs go into an infinite loop when running
their test suite: “BinarySearch bug3,” “BinarySearch bug7,”
“BinarySearch bug8,” and “PrimeNumbers bug9.” Going into
an infinite loop is not acceptable for dynamic APR tools when
running their test suite, as the tools will time out. In total, these
results show that Kelinci was successful in generating suitable
test suites for dynamic APR. It generates a suitable test suite
for 190 out of 197 buggy programs (about 96%).

In sum, 190 buggy programs are available in the buggy
program dataset, each program has only one bug, and the
injected bug can be triggered with at least one of the JUnit
tests; furthermore, these buggy programs do not go into an

infinite loop when running their test suite. Also, a JML
specification is available for each program that can evaluate a
program’s correctness after a repair.

VI. EXPERIMENTAL RESULTS

In this section our approach to avoiding overfitting is
evaluated. The first part of our assessment is an evaluation of
five APR tools for Java (those introduced in section II-B). Then
the validated programs are evaluated for correctness by using
the OpenJML program verifier. We also discuss the possibility
of false negatives and false positives that may result from the
use of OpenJML to verify repaired programs.

The discussion of OpenJML also points out two new prob-
lems that other APR research does not consider: changing the
expected time complexity of programs and numeric problems.
These are discussed in section VII.

A. Validation using Dynamic APR Tools

In this section we evaluate the first phase of our approach
to avoiding overfitting in existing APR tools. Five open source
dynamic APR tools are used for this evaluation: Cardumen,
jGenProg, jKali, jMutRepair, and Nopol. We applied each of
these tools to each buggy program in our buggy program
dataset; Table I shows the results. Generated patches in this
step are validated by their test suites. Recall that test suites
are generated by Kelinci.

Table I
VALIDATION RESULTS FOR APR TOOLS

APR Tools Not Repaired Validated

Cardumen 164 26
jGenProg 171 19
jKali 184 6
jMutRepair 170 20
Nopol 174 16

The data in Table I shows that each of these dynamic APR
tools could not repair most of the buggy programs. In total
these tools generated 87 patches. In some cases several APR
tools generated a patch for one buggy program, for example
all five tools generated a patch for program “BinarySearch
bug13,” although their generated patches were different from
each other. Also, in some cases only one of the tools generated
a patch, for example program “Calculator bug6” was repaired
only with the Cardumen tool.

In total these five APR tools together generated a validated
patch for 46 individual buggy programs in our dataset, which
is about 24%.

B. Verification Results using OpenJML

To detect overfitting, we verified the validated repaired
programs using OpenJML and the JML specifications that
were created for our Java+JML verified program dataset (see
section V-A).

Table II shows the results using OpenJML’s static analyzer
to verify the correctness of the repaired programs from each
APR tool. (Recall that in this evaluation, if the validated

repaired program cannot be verified with OpenJML’s static
analyzer, then the process does not backtrack to ask the APR
tool for another patch.)

Table II
VERIFICATION OF VALIDATED PATCHES USING OPENJML

APR Tools Validated Verified Not Verified

Cardumen 26 18 8
jGenProg 19 10 9
jKali 6 5 1
jMutRepair 20 20 0
Nopol 16 15 1

The results shown in Table II show that most of the validated
repaired programs were correct, which is a tribute to both the
APR tools and the effectiveness of the test suites created with
Kelinci. Based on the results, 68 out of 87 validated repaired
programs were verified with respect to their formal behavioral
specification, which is about 78%; thus 19 repaired programs
(about 22%) were not verified and identified as overfitted.

With our validation and verification approach the correct-
ness of 38 individual repaired programs verified by using
these 68 validated and verified repaired programs, because
in some cases different APR tools repaired the same buggy
program. However, in some cases only one of the validated
repaired programs was verified by OpenJML’s static analyzer.
For example three APR tools (jGenProg, jkali and jMutRepair)
generated individual repaired programs for program “Smallest
bug1” in our buggy dataset. However, the validated repaired
programs of jGenProg and jkali were not verified, and only
jMutRepair’s output was verified with OpenJML.

In total, among the 190 buggy programs in the dataset, 38 of
them were repaired correctly by at least one APR tool. Thus,
these five APR tools together generated at least one validated
and verified patch for 20% of the buggy programs.

C. Evaluating OpenJML’s Precision and Recall

It is important to evaluate the extent to which OpenJML
correctly classifies patches as “Verified” and “Not Verified”.
OpenJML is sound, so it will not verify a repaired program
that is not correct, thus there are no false positives; we
manually checked the “Verified” repaired programs, mentioned
in Table II, and found that all of them were in fact correct.

However, evaluating the “Not Verified” repaired programs is
more complicated and shows some interesting results. Table III
shows the result of evaluating the “Not Verified” repaired
programs from Table II.

Table III
RESULTS FOR OPENJML’S VERIFICATION ATTEMPTS

APR Tools Not Verified Overfitting Not Overfitting
(True Negatives) (False Negatives)

Cardumen 8 5 3
jGenProg 9 5 4

jKali 1 1 0
jMutRepair 0 0 0

Nopol 1 1 0

In Table III, 19 repaired programs are in the “Not Verified”
class. After our evaluation 12 of them are absolutely overfit-
ting: they do not work correctly for all input domain values
based on their behavioral specification from the Java+JML
dataset. However, the other 7 patches are correct for all inputs
allowed by the program’s input domain, and are not overfitting.
On the other hand, 5 of these seven need more discussion,
although they correctly realize the specified relation between
inputs and outputs. In two repaired programs the order of
time complexity is changed dramatically compared to the
original version of programs in Java+JML dataset (see subsec-
tion VII-A). Also, integer overflow can happen in three of the
repaired programs, which prevents OpenJML from verifying
these programs (see subsection VII-B).

Two other repaired programs were not verified by Open-
JML, but not for the reasons mentioned above. Instead they
are not verified because the structure of the programs was
changed by the APR tools and JML would require added
loop invariants. These programs, “Factorial bug2” and “Bi-
narySearch bug2” are repaired with jGenProg and Cardumen,
respectively. Program 6 is the buggy program of “Factorial
bug2”. Modifying the condition of ”for loop” from “<” to
“<=” is the simplest patch in program 6. However, the jGen-
Prog tool repaired this buggy program by adding a new “for
loop” as a patch, as shown in program 7. The repaired program
looks strange, but it is correct for its entire domain, which is
the integers between 0 and 20 (to avoid overflowing the result).
Also in the second example, the generated repaired program
of “BinarySearch bug2” with Cardumen was not verified by
OpenJML. In this case, the modification before entering the
loop increased the time complexity by a constant, but it did
not change the order of the time complexity.

The false negatives that result in changing the time com-
plexity of the program could conceivably be addressed by
writing specifications that address the time complexity of the
programs, but such a fix is not easy for JML and is likely
to remain a source of incompleteness for that specification
language. The false negatives that result from integer overflows
are due to the verification logic that JML uses, which considers
such overflows to be bugs, although as in these three programs
the code was actually correct. This incompleteness in JML is
likely to remain because the designers of JML believe that
overflow is more likely to be a sign of a bug than to be
used correctly.8 The issue of overflow and underflow (loss
of precision) needs to be further addressed for floating point
numbers in JML, and thus it is likely that numerical problems
will continue to be a source of false negatives, due to the
verifier’s incompleteness.

In summary, based on our results the presented valida-
tion+verification approach for avoiding overfitting is sound,
but not complete. Thus there are no false positives, but some
false negatives that result from using a verifier to check for
overfitting. For the reasons mentioned above, it would be

8JML specifications can indicate that integer overflow is permitted and
can reason correctly about such program logic, but this does require explicit
specification by the programmer that such behavior is intended.

Program 6. Program “Factorial Bug2”
public class Factorial {

public long Facto(int n)
{

int c;
long fact = 1;
if (n == 0) {

return fact;
}

for (c = 1; c < n; c++){
fact = fact*c;

}
return fact;

}
}

Program 7. Repaired Program by jGenProg
public class Factorial {

public long Facto(int n)
{

int c;
long fact = 1;
if (n == 0) {

return fact;
}

for (c = 1; c < n; c++){
for (c = 1; c < n; c++){

fact = fact*c;
}
fact = fact*c;

}
return fact;

}
}

difficult to eliminate these false negatives.9

VII. NEW PROBLEMS FOR DYNAMIC APR

We are not aware of any research on dynamic APR about the
possible negative effects resulting from an APR tool changing
the time complexity of the repaired program or introducing
potential numerical problems. These issues occurred in our
experiments, but to our surprise they were not detected by the
programs’ test suites. We will discuss them in detail in the
following subsections.

A. Time Complexity

Our results show that time complexity can change and
increase dramatically by using current dynamic APR tools (at
least by using Cardumen). Increasing the time complexity is
not an overfitting problem, because the expected behavior is
still correct. However, it could be a significant issue.

The time complexity changed from O(log(n)) to O(n/2)
in two generated repaired programs by using Cardumen:

9In theory, since Hoare logic is inherently incomplete [97], [98], it will be
impossible to eliminate all potential false negatives.

Program 8. Binary method of “BinarySearch bug9” program
public static int Binary(int[] arr, int key){

if (arr.length == 0) {
return -1;

} else {
int low = 0;
int high = arr.length;
int mid = high / 2;
while(low < high && arr[mid] != key){

if (arr[mid] < key) {
low = mid + 1;

} else {
high = mid;

}
mid = low + (high - low) * 2;

}
if (low >= high){

return -1;
}
return mid;

}
}

“BinarySearch bug9,” and “BinarySearch bug10” programs
in our buggy dataset. These two repaired programs pass
all of the tests and they are even correct for all pos-
sible inputs. However, in reality changing the order of
time complexity of “Binary Search” from O(log(n)) to
O(n/2) changes the character of the program from binary
search to a linear search. Program 8 shows the “Binary”
method of “BinarySearch bug9” program. Here the simplest
patch is “mid = low + (high - low) / 2;” instead
of “mid = low + (high - low) * 2;” in the pro-
gram. Also, the “Binary” method of program 9 is the repaired
program by Cardumen tool; its time complexity is O(n/2).
The static analyzer of OpenJML does not prove the correctness
of the program, because the changes in the loop invalidate the
program’s loop invariant when the order of time complexity is
changed. Thus, to prove their correctness it would be necessary
to update the loop invariant in the “repaired” program.10

B. Numeric Problems

There are several potential numeric problems with programs
that are hard to test, because they may only occur in a
small number of cases. These include integer wrap-around and
floating point underflow, overflow and loss of precision.

1) Integer Overflow: OpenJML considers an integer over-
flow as a potential bug, even if it is actually harmless. Thus if
APR tools generate repaired programs with integer overflows,
then these repairs cannot be verified as correct by OpenJML,
unless specifically specified to be an intended overflow.

Therefore, it may be important that APR tools only generate
repairs that do not cause integer overflow, because sometimes
such overflow can be harmful [99], [100].

10Future tools that infer loop invariants from the program would mitigate
this problem.

Program 9. Repaired Program by Cardumen
public static int Binary(int[] arr, int key){

if (arr.length == 0) {
return -1;

} else {
int low = 0;
int high = arr.length;
int mid = high / 2;
while(low < high && arr[mid] != key){

if (arr[mid] < key) {
low = mid + 1;

} else {
high = mid;

}
mid = low + (low - low) * 2;

}
if (low >= high){

return -1;
}
return mid;

}
}

In the three programs repaired by jGenProg in our dataset
integer overflow can happen in some scenarios, including
repaired version of “AddLoop bug2,” “AddLoop bug7,” and
“‘BinarySearch bug2.” However, these integer overflow prob-
lems are harmless and they have no effect on the final results.
Thus, we cannot consider them as an incorrect patches. How-
ever, not all integer overflows are benign and harmless, they
may cause bugs (or overfitting). This shows that a dynamic
APR tool could create a repaired program with an integer
overflow (as jGenProg does).

Program 10 and program 11 show the “AddLoop” method
of “AddLoop bug2” and its repaired version with jGenProg,
respectively. The simplest patch for program 10 is using
“while (n > 0)” instead of “while (n >= 0)”. Inte-
ger overflow in program 11 happens for “sum”, when add of
“x” and “y” is equal to the maximum 32-bit signed integer.

2) Floating Point Problems: Although OpenJML is not
able to verify programs that use floating point arithmetic (at
the time of this writing), floating point arithmetic could cause
similar problems to integer overflow if the verification logic is
conservative. That is, there may be some programs where there
is the possibility of floating point problems, such as underflow
or overflow, but those problems do not actually occur, and thus
the verification logic would generate a false negative. This is
an area of future work for our approach.

VIII. RELATED WORK

Overfitting is one of the main problems of dynamic APR.
Recall that, in dynamic APR, the test suite is used for bug
localization and for validating the generated patches. Thus,
several approaches in related work try to solve the overfitting
problem by creating a better test suite that describes the
behavior of a system more completely.

Program 10. AddLoop method of “AddLoop bug2”
/*@ requires Integer.MIN_VALUE <= x + y &&

x + y <= Integer.MAX_VALUE &&
y != Integer.MIN_VALUE; @*/

//@ ensures \result == x + y;
public static int AddLoop(int x, int y) {

int sum = x;
if (y > 0) {

int n = y;
//@ decreases n;
/*@ maintaining sum == x + y - n &&

0 <= n; @*/
while (n >= 0) {

sum = sum + 1;
n = n - 1;

}
} else {

int n = -y;
/*@ maintaining sum == x + y + n &&

0 <= n; @*/
//@ decreases n;
while (n > 0) {

sum = sum - 1;
n = n - 1;

}
}
return sum;

}

Program 11. Repaired Program by jGenProg
/*@ requires Integer.MIN_VALUE <= x + y &&

x + y <= Integer.MAX_VALUE &&
y != Integer.MIN_VALUE; @*/

//@ ensures \result == x + y;
public static int AddLoop(int x, int y) {

int sum = x;
if (y > 0) {

int n = y;
//@ decreases n;
/*@ maintaining sum == x + y - n &&

0 <= n; @*/
while (n >= 0) {

sum = sum + 1;
n = n - 1;

}
sum = sum - 1;

} else {
int n = -y;
/*@ maintaining sum == x + y + n &&

0 <= n; @*/
//@ decreases n;
while (n > 0) {

sum = sum - 1;
n = n - 1;

}
}
return sum;

}

For instance Yang et al. [83] propose to increase the number
of tests in a test suite by generating more tests using the
AFL fuzzer. In their work they could filter (321/427) overfitted
patches that were generated by GenProg/AE [101], Kali [49],
and SPR [102]. Note that the APR tools and AFL target C.
Yu et al. [103] describe related techniques targeting Java pro-
grams, using the Defects4J dataset; they show that generating
new tests can lead to fewer overfitted repairs, however their
work is not effective in generating correct new patches.

Xiong et al. [85] propose a technique to increase the size
of the test suite without having a test oracle. Their approach
was applied to a dataset with 139 patches that were generated
with jGenProg, Nopol, jKali, ACS [104] and HDRepair [105].
The larger test suite leads to 56.3% fewer overfitted repaired
programs, but their approach does still have some overfitting.

All of the above techniques try to avoid overfitting by
improving the completeness of the test suite; these approaches
lead to less overfitting. However, improving the test suite does
not completely prevent overfitting. Recall that a test suite
cannot be complete unless it covers all possible inputs, which
is unrealistic for most of the programs. In contrast, we show
that by using a formal behavioral specification, we can prevent
overfitting, and can also prove the correctness of the repaired
programs. Thus, this approach could be used in safety critical
systems. Also, a specification is reusable: it can be written
once and reused for any future changes in a program.

IX. CONCLUSION

Dynamic APR uses test suites for validating automatically
generated patches. However, for many real programs (those
with infinite input domains) a test suite cannot be a complete
specification for describing the program’s behavior. Thus,
dynamic APR suffers from overfitting. That is, an APR tool
may generate a repaired program that can pass all of the tests,
but it is not correct based on the program’s requirements.
Existing approaches aim to prevent overfitting by increasing
the number of tests, which makes the test suite a more com-
plete specification of the program’s desired behavior. While
this helps in certain situations, it cannot solve the problem
completely.

We created a dataset of 20 Java programs with their JML
specifications, and we verified their correctness with Open-
JML. Then, we generated a test suite for each program by
using a fuzzer, Kelinci. The use of Kelinci was successful
because about 96% of the tests created by Kelinci satisfied
the assumptions of the APR tools. Using these 20 verified
programs we created a dataset of 190 buggy programs, using
a mutation tool, PITest, such that each buggy program has
exactly one bug and for each buggy program, OpenJML gives
at least one warning. This dataset is the first such dataset
derived from verified programs, and thus the first for which it
is guaranteed that there is exactly one bug per program. Since
the test suites and mutants were created by tools, this dataset
is unbiased towards any APR tool.

The core idea of this paper is that using formal methods
solves the overfitting problem. Furthermore, formal specifica-
tions are reusable. We experimentally validated this idea using
five APR tools and JML specifications.

The five APR tools created 87 validated patches for 46
unique programs (about 24% of the buggy programs). Out of
the 87 validated patches, 19 (about 22%) were overfitted. The
process of verifying the patches with OpenJML completely
avoids overfitting. OpenJML did have a few false negatives
(programs that OpenJML rejected but which were actually
correct); however, some of these false negatives were not com-
pletely correct because the order of their time complexity was
dramatically increased. A few other false negatives resulted
from incompleteness of the verification process in OpenJML.

We pointed out two new problems that can afflict APR
tools: changes to a program’s time complexity and numeric
problems. These are future work for APR tools.

Future work for our approach involves creating a tool that
uses formal specification and verification to automatically
repair programs, and which can backtrack to generate new
patches when verification fails. Another idea is to use informa-
tion from the formal specification to synthesize correct patches
for buggy programs directly, avoiding the need for a test suite.

ACKNOWLEDGMENT

Thanks to Matias Martinez, Martin Monperrus, and Jifeng
Xuan for help with APR tools. Thanks to Elaine Weyuker and
Tom Ostrand for discussions about decidability.

REFERENCES

[1] C. Decker and R. Wattenhofer, “Bitcoin transaction malleability and
mtgox,” in European Symposium on Research in Computer Security.
Springer, 2014, pp. 313–326.

[2] L. Zhang, D. Choffnes, D. Levin, T. Dumitraş, A. Mislove, A. Schul-
man, and C. Wilson, “Analysis of ssl certificate reissues and revocations
in the wake of heartbleed,” in Proceedings of the 2014 Conference on
Internet Measurement Conference. ACM, 2014, pp. 489–502.

[3] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair:
A survey,” IEEE Transactions on Software Engineering, vol. 45, no. 1,
pp. 34–67, 2017.

[4] Z. Gu, E. T. Barr, D. J. Hamilton, and Z. Su, “Has the bug really been
fixed?” in 2010 ACM/IEEE 32nd International Conference on Software
Engineering, vol. 1. IEEE, 2010, pp. 55–64.

[5] T. Britton, L. Jeng, G. Carver, and P. Cheak, “Reversible debugging
software “quantify the time and cost saved using reversible debug-
gers”,” 2013.

[6] G. Tassey, “The economic impacts of inadequate infrastructure for
software testing,” National Institute of Standards and Technology, RTI
Project, vol. 7007, no. 011, pp. 429–489, 2002.

[7] “Software fail watch says 1.1 trillion in assets affected by software bugs
in 2016,” https://www.tricentis.com/news/software-fail-watch-says-1-
1-trillion-in-assets-affected-by-software-bugs-in-2016, accessed: 2019-
07-25.

[8] “White papers software fail watch: 5th edition,”
https://www.tricentis.com/resources/software-fail-watch-5th-edition/,
accessed: 2019-11-17.

[9] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “Sober: statistical
model-based bug localization,” in ACM SIGSOFT Software Engineer-
ing Notes, vol. 30, no. 5. ACM, 2005, pp. 286–295.

[10] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineer-
ing, vol. 42, no. 8, pp. 707–740, 2016.

[11] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser,
“Jfix: Semantics-based repair of java programs via symbolic
pathfinder,” in Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2017. New
York, NY, USA: ACM, 2017, pp. 376–379. [Online]. Available:
http://doi.acm.org/10.1145/3092703.3098225

[12] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in Proceedings of the 31st
International Conference on Software Engineering. IEEE Computer
Society, 2009, pp. 364–374.

[13] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” Ieee transactions on
software engineering, vol. 38, no. 1, pp. 54–72, 2011.

[14] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of random
search on automated program repair,” in Proceedings of the 36th
International Conference on Software Engineering. ACM, 2014, pp.
254–265.

[15] D. Gopinath, M. Z. Malik, and S. Khurshid, “Specification-based
program repair using sat,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer,
2011, pp. 173–188.

[16] R. Könighofer and R. Bloem, “Repair with on-the-fly program analy-
sis,” in Haifa Verification Conference. Springer, 2012, pp. 56–71.

[17] T.-T. Nguyen, Q.-T. Ta, and W.-N. Chin, “Automatic program repair
using formal verification and expression templates,” in International
Conference on Verification, Model Checking, and Abstract Interpreta-
tion. Springer, 2019, pp. 70–91.

[18] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix: Fixing common
c language errors by deep learning,” in Thirty-First AAAI Conference
on Artificial Intelligence, 2017.

[19] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monperrus,
“Automatic repair of real bugs in java: A large-scale experiment on the
defects4j dataset,” Empirical Software Engineering, vol. 22, no. 4, pp.
1936–1964, 2017.

[20] M. Martinez and M. Monperrus, “Astor: A program repair library for
java,” in Proceedings of the 25th International Symposium on Software
Testing and Analysis. ACM, 2016, pp. 441–444.

[21] J. Xuan, M. Martinez, F. Demarco, M. Clement, S. L. Marcote,
T. Durieux, D. Le Berre, and M. Monperrus, “Nopol: Automatic repair
of conditional statement bugs in java programs,” IEEE Transactions on
Software Engineering, vol. 43, no. 1, pp. 34–55, 2016.

[22] V. Sobreira, T. Durieux, F. Madeiral, M. Monperrus, and
M. de Almeida Maia, “Dissection of a bug dataset: Anatomy of
395 patches from defects4j,” in 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2018, pp. 130–140.

[23] “Java-jml-datasets-apr/not suitable buggy programs,”
https://github.com/Amirfarhad-Nilizadeh/Java-JML-Datasets-
APR/tree/master/Not suitable Bugg Programs, accessed: 2020-01-21.

[24] “Java-jml-datasets-apr/java+jml,” https://github.com/Amirfarhad-
Nilizadeh/Java-JML-Datasets-APR/tree/master/Java%2BJML,
accessed: 2020-01-21.

[25] “Java-jml-datasets-apr/buggy programs pitest,”
https://github.com/Amirfarhad-Nilizadeh/Java-JML-Datasets-
APR/tree/master/Buggy Programs Pitest, accessed: 2020-01-21.

[26] W. Weimer, S. Forrest, C. Le Goues, and T. Nguyen, “Automatic
program repair with evolutionary computation,” Communications of the
ACM, vol. 53, no. 5, pp. 109–116, 2010.

[27] S. H. Tan and A. Roychoudhury, “relifix: Automated repair of software
regressions,” in Proceedings of the 37th International Conference on
Software Engineering-Volume 1. IEEE Press, 2015, pp. 471–482.

[28] Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer, and A. Zeller,
“Automated fixing of programs with contracts,” Ieee transactions on
software engineering, vol. 40, no. 5, pp. 427–449, 2014.

[29] R. Könighofer and R. Bloem, “Automated error localization and
correction for imperative programs,” in Proceedings of the International
Conference on Formal Methods in Computer-Aided Design. FMCAD
Inc, 2011, pp. 91–100.

[30] “Program repair,” http://program-repair.org/index.html, accessed: 2019-
08-20.

[31] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy
of spectrum-based fault localization,” in Testing: Academic and In-
dustrial Conference Practice and Research Techniques-MUTATION
(TAICPART-MUTATION 2007). IEEE, 2007, pp. 89–98.

[32] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, vol. 11,
no. 4, pp. 34–41, 1978.

[33] D. Le, M. A. Alipour, R. Gopinath, and A. Groce, “Mucheck: An ex-
tensible tool for mutation testing of haskell programs,” in Proceedings
of the 2014 international symposium on software testing and analysis.
ACM, 2014, pp. 429–432.

[34] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu,
S. Forrest, and W. Weimer, “The manybugs and introclass benchmarks
for automated repair of c programs,” IEEE Transactions on Software
Engineering, vol. 41, no. 12, pp. 1236–1256, 2015.

[35] M. Monperrus, “Automatic software repair: a bibliography,” ACM
Computing Surveys (CSUR), vol. 51, no. 1, p. 17, 2018.

[36] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,” IEEE
transactions on dependable and secure computing, vol. 1, no. 1, pp.
11–33, 2004.

[37] C. L. Goues, M. Pradel, and A. Roychoudhury, “Automated program
repair,” Communications of the ACM, 2019, to appear.

[38] B. Jobstmann, A. Griesmayer, and R. Bloem, “Program repair as a
game,” in International conference on computer aided verification.
Springer, 2005, pp. 226–238.

[39] T.-T. Nguyen, Q.-T. Ta, and W.-N. Chin, “Automatic program repair
using formal verification and expression templates,” in Verification,
Model Checking, and Abstract Interpretation, C. Enea and R. Piskac,
Eds. Cham: Springer International Publishing, 2019, pp. 70–91.

[40] B.-C. Rothenberg and O. Grumberg, “Sound and complete mutation-
based program repair,” in International Symposium on Formal Methods.
Springer, 2016, pp. 593–611.

[41] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis,” in Proceedings of the
38th international conference on software engineering. ACM, 2016,
pp. 691–701.

[42] M. Martinez and M. Monperrus, “Astor: Exploring the design space
of generate-and-validate program repair beyond genprog,” Journal of
Systems and Software, vol. 151, pp. 65–80, 2019.

[43] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer,
and A. Zeller, “Automated fixing of programs with contracts,” in
Proceedings of the 19th international symposium on Software testing
and analysis. ACM, 2010, pp. 61–72.

[44] Y. Pei, C. A. Furia, M. Nordio, and B. Meyer, “Automated program
repair in an integrated development environment,” in Proceedings of
the 37th International Conference on Software Engineering-Volume 2.
IEEE Press, 2015, pp. 681–684.

[45] M. Martinez and M. Monperrus, “Ultra-large repair search space
with automatically mined templates: the cardumen mode of astor,”
in International Symposium on Search Based Software Engineering.
Springer, 2018, pp. 65–86.

[46] J. Campos, A. Riboira, A. Perez, and R. Abreu, “Gzoltar: an eclipse
plug-in for testing and debugging,” in Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineer-
ing. ACM, 2012, pp. 378–381.

[47] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable
statistical bug isolation,” ACM SIGPLAN Notices, vol. 40, no. 6, pp.
15–26, 2005.

[48] R. Abreu, W. Mayer, M. Stumptner, and A. J. van Gemund, “Refining
spectrum-based fault localization rankings,” in Proceedings of the 2009
ACM symposium on Applied Computing. ACM, 2009, pp. 409–414.

[49] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch generation
systems,” in Proceedings of the 2015 International Symposium on
Software Testing and Analysis. ACM, 2015, pp. 24–36.

[50] F. Long and M. Rinard, “Automatic patch generation by learning
correct code,” ACM SIGPLAN Notices, vol. 51, no. 1, pp. 298–312,
2016.

[51] F. DeMarco, J. Xuan, D. Le Berre, and M. Monperrus, “Automatic
repair of buggy if conditions and missing preconditions with smt,”
in Proceedings of the 6th international workshop on constraints in
software testing, verification, and analysis. ACM, 2014, pp. 30–39.

[52] B. Cook, “Formal reasoning about the security of amazon web ser-
vices,” in International Conference on Computer Aided Verification.
Springer, 2018, pp. 38–47.

[53] B. Cook, K. Khazem, D. Kroening, S. Tasiran, M. Tautschnig, and
M. R. Tuttle, “Model checking boot code from aws data centers,” in
International Conference on Computer Aided Verification. Springer,
2018, pp. 467–486.

[54] P. W. O’Hearn, “Continuous reasoning: Scaling the impact of formal
methods,” in Proceedings of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science. ACM, 2018, pp. 13–25.

[55] C.-J. Seger, R. B. Jones, J. W. O’Leary, T. Melham, M. D. Aagaard,
C. Barrett, and D. Syme, “An industrially effective environment for
formal hardware verification,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 24, no. 9, pp. 1381–
1405, 2005.

[56] A. Narkawicz and C. A. Munoz, “Formal verification of conflict
detection algorithms for arbitrary trajectories.” Reliable Computing,
vol. 17, no. 2, pp. 209–237, 2012.

[57] A. E. Goodloe, C. Muñoz, F. Kirchner, and L. Correnson, “Verification
of numerical programs: From real numbers to floating point numbers,”
in NASA Formal Methods Symposium. Springer, 2013, pp. 441–446.

[58] D. Cofer, A. Gacek, S. Miller, M. W. Whalen, B. LaValley, and L. Sha,
“Compositional verification of architectural models,” in NASA Formal
Methods Symposium. Springer, 2012, pp. 126–140.

[59] “Prover certifier,” https://www.prover.com/software-solutions-rail-
control/prover-certifier/, accessed: 2019-08-21.

[60] G. T. Leavens and Y. Cheon, “Design by contract with jml,” 2006.
[61] B. Meyer, “Applying’design by contract’,” Computer, vol. 25, no. 10,

pp. 40–51, 1992.
[62] ——, “Eiffel: A language and environment for software engineering,”

Journal of Systems and Software, vol. 8, no. 3, pp. 199–246, 1988.
[63] P. Baudin, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Pre-

vosto, “Acsl: Ansi c specification language,” 2008.
[64] G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary design of

jml: A behavioral interface specification language for java,” SIGSOFT
Softw. Eng. Notes, vol. 31, no. 3, pp. 1–38, May 2006. [Online].
Available: http://doi.acm.org/10.1145/1127878.1127884

[65] M. Barnett, K. R. M. Leino, and W. Schulte, “The spec# programming
system: An overview,” in International Workshop on Construction and
Analysis of Safe, Secure, and Interoperable Smart Devices. Springer,
2004, pp. 49–69.

[66] K. R. M. Leino, “Dafny: An automatic program verifier for functional
correctness,” in International Conference on Logic for Programming
Artificial Intelligence and Reasoning. Springer, 2010, pp. 348–370.

[67] G. T. Leavens, A. L. Baker, and C. Ruby, “Jml: A notation for de-
tailed design,” in Behavioral specifications of Businesses and Systems.
Springer, 1999, pp. 175–188.

[68] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll, “An overview of JML tools and
applications,” International journal on software tools for technology
transfer, vol. 7, no. 3, pp. 212–232, 2005.

[69] D. R. Cok, “OpenJML: JML for Java 7 by extending OpenJDK,” in
NASA Formal Methods Symposium. Springer, 2011, pp. 472–479.

[70] G. T. Leavens, A. L. Baker, and C. Ruby, “Jml: a java modeling lan-
guage,” in Formal Underpinnings of Java Workshop (at OOPSLA’98).
Citeseer, 1998, pp. 404–420.

[71] G. T. Leavens, K. R. M. Leino, E. Poll, C. Ruby, and B. Jacobs, “JML:
notations and tools supporting detailed design in Java,” in OOPSLA
2000 Companion, Minneapolis, Minnesota. ACM, Oct. 2000, pp. 105–
106. [Online]. Available: ftp://ftp.cs.iastate.edu/pub/techreports/TR00-
15/TR.ps.gz

[72] J. Sánchez and G. T. Leavens, “Static verification of ptolemyrely
programs using openjml,” in Proceedings of the 13th workshop on
Foundations of aspect-oriented languages. ACM, 2014, pp. 13–18.

[73] W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. H. Schmitt, and
M. Ulbrich, “Deductive software verification–the key book,” Lecture
Notes in Computer Science, vol. 10001, 2016.

[74] J. Boerman, M. Huisman, and S. Joosten, “Reasoning about jml:
Differences between key and openjml,” in International Conference
on Integrated Formal Methods. Springer, 2018, pp. 30–46.

[75] P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll, “Beyond assertions:
Advanced specification and verification with jml and esc/java2,” in
International Symposium on Formal Methods for Components and
Objects. Springer, 2005, pp. 342–363.

[76] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in
International conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2008, pp. 337–340.

[77] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović,
T. King, A. Reynolds, and C. Tinelli, “Cvc4,” in International Confer-
ence on Computer Aided Verification. Springer, 2011, pp. 171–177.

[78] B. Dutertre and L. De Moura, “The yices smt solver,” Tool paper at
http://yices. csl. sri. com/tool-paper. pdf, vol. 2, no. 2, pp. 1–2, 2006.

[79] D. R. Cok, “OpenJML: Software Verification for Java 7 using JML,
OpenJDK, and Eclipse,” Workshop on Formal Integrated Development
Environments. EPTCS 149, 2014.

[80] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun, “Is the cure
worse than the disease? overfitting in automated program repair,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. ACM, 2015, pp. 532–543.

[81] X. B. D. Le, F. Thung, D. Lo, and C. Le Goues, “Overfitting
in semantics-based automated program repair,” Empirical Software
Engineering, vol. 23, no. 5, pp. 3007–3033, 2018.

[82] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: Unassisted and
automatic generation of high-coverage tests for complex systems
programs.” in OSDI, vol. 8, 2008, pp. 209–224.

[83] J. Yang, A. Zhikhartsev, Y. Liu, and L. Tan, “Better test cases for
better automated program repair,” in Proceedings of the 2017 11th

Joint Meeting on Foundations of Software Engineering. ACM, 2017,
pp. 831–841.

[84] “Technical ”whitepaper” for afl-fuzz,”
http://lcamtuf.coredump.cx/afl/technical details.txt, accessed: 2019-
08-20.

[85] Y. Xiong, X. Liu, M. Zeng, L. Zhang, and G. Huang, “Identifying
patch correctness in test-based program repair,” in Proceedings of the
40th International Conference on Software Engineering. ACM, 2018,
pp. 789–799.

[86] X. Kong, L. Zhang, W. E. Wong, and B. Li, “Experience report: how
do techniques, programs, and tests impact automated program repair?”
in 2015 IEEE 26th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2015, pp. 194–204.

[87] C. Le Goues, S. Forrest, and W. Weimer, “Current challenges in
automatic software repair,” Software quality journal, vol. 21, no. 3,
pp. 421–443, 2013.

[88] B. Hailpern and P. Santhanam, “Software debugging, testing, and
verification,” IBM Systems Journal, vol. 41, no. 1, pp. 4–12, 2002.

[89] J. R. Kiniry, A. E. Morkan, D. Cochran, F. Fairmichael, P. Chalin,
M. Oostdijk, and E. Hubbers, “The koa remote voting system: A
summary of work to date,” in International Symposium on Trustworthy
Global Computing. Springer, 2006, pp. 244–262.

[90] “Does your program do what it is supposed to do?”
http://www.openjml.org/, accessed: 2019-11-28.

[91] R. Kersten, K. Luckow, and C. S. Păsăreanu, “Poster: Afl-based fuzzing
for java with kelinci,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2017,
pp. 2511–2513.

[92] S. Nilizadeh, Y. Noller, and C. S. Păsăreanu, “Diffuzz: differential
fuzzing for side-channel analysis,” in Proceedings of the 41st Inter-
national Conference on Software Engineering. IEEE Press, 2019, pp.
176–187.

[93] “Java-jml-datasets-apr/junitdataset,” https://github.com/Amirfarhad-
Nilizadeh/Java-JML-Datasets-APR/tree/master/JUnitDataset, accessed:
2020-01-21.

[94] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque, “Pit:
a practical mutation testing tool for java,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis. ACM,
2016, pp. 449–452.

[95] M. Delahaye and L. Du Bousquet, “A comparison of mutation analysis
tools for java,” in 2013 13th International Conference on Quality
Software. IEEE, 2013, pp. 187–195.

[96] J. Zhang, L. Zhang, M. Harman, D. Hao, Y. Jia, and L. Zhang, “Pre-
dictive mutation testing,” IEEE Transactions on Software Engineering,
2018.

[97] S. A. Cook, “Soundness and completeness of an axiom system for
program verification,” SIAM Journal on Computing, vol. 7, pp. 70–90,
1978.

[98] P. Cousot, “Methods and logics for proving programs,” in Handbook
of Theoretical Computer Science, J. van Leewen, Ed. New York:
MIT Press, 1990, vol. B: Formal Models and Semantics, ch. 15, pp.
841–993.

[99] W. Dietz, P. Li, J. Regehr, and V. Adve, “Understanding integer
overflow in c/c++,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 25, no. 1, p. 2, 2015.

[100] F. Long, S. Sidiroglou-Douskos, D. Kim, and M. Rinard, “Sound input
filter generation for integer overflow errors,” Acm sigplan notices,
vol. 49, no. 1, pp. 439–452, 2014.

[101] W. Weimer, Z. P. Fry, and S. Forrest, “Leveraging program equivalence
for adaptive program repair: Models and first results,” in 2013 28th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2013, pp. 356–366.

[102] F. Long and M. Rinard, “Staged program repair with condition syn-
thesis,” in Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering. Citeseer, 2015, pp. 166–178.

[103] Z. Yu, M. Martinez, B. Danglot, T. Durieux, and M. Monperrus,
“Test case generation for program repair: A study of feasibility and
effectiveness,” arXiv preprint arXiv:1703.00198, 2017.

[104] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang,
“Precise condition synthesis for program repair,” in 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). IEEE,
2017, pp. 416–426.

[105] X. B. D. Le, D. Lo, and C. Le Goues, “History driven program repair,”
in 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), vol. 1. IEEE, 2016, pp. 213–
224.

