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Recently a new optimal control modification has been introduced that can achieve robust adaptation with a
large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adap-
tive control. This modification is based on an optimal control formulation to minimize the L2 norm of the
tracking error. The optimal control modification adaptive l aw results in a stable adaptation in the presence of
a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a
system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation
analysis is performed to derive a modification to the adaptive law by transforming the original system into a
reduced-order system in slow time. The model matching conditions in the transformed time coordinate results
in increase in the feedback gain and modification of the adaptive law.

I. Introduction

In recent years, adaptive control has been receiving a significant amount of attention. There has been a steady
increase in the number of adaptive control applications in awide range of settings such as aerospace, robotics, process
control, etc.1,2 The ability to accommodate system uncertainties and to improve fault tolerance of a control system
is a major advantage of adaptive control. Nonetheless, adaptive control still faces significant challenges in providing
robustness in the presence of unmodeled dynamics and parametric uncertainties.3 The ability for an adaptive control
algorithm to modify a pre-existing control design is considered a strength and at the same time a weakness. The
crash of the X-15 aircraft in 19674 serves as a reminder that adaptive control is still viewed with some misgivings
despite enormous advances ever since. Over the past severalyears, various model-reference adaptive control (MRAC)
methods have been investigated.5–9

In the conventional MRAC framework, the tracking error is generally inversely proportional to the magnitude of
the adaptive gain. However, a large adaptive gain can lead tohigh-frequency oscillations which can excite unmodeled
dynamics that could adversely affect the stability of an MRAC law.10 Various modifications were developed to increase
robustness of MRAC by adding damping to the adaptive law to reduce high-frequency oscillations. Two well-known
modifications in adaptive control are theσ -modification11 andε1- modification.12 These modifications have been
used extensively in adaptive control. Recently, a new modification has been introduced that is based on an optimal
control formulation to minimize theL2-norm of the tracking error.13 The optimality condition results in a damping
term in the adaptive law proportional to persistent excitation. The optimal control modification has been shown to be
able to achieve fast adaptation with a large adaptive gain without compromising stability robustness while preserving
tracking performance. This study extends the development of the optimal control modification adaptive law to the case
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when there exists a time-scale separation between a fast plant and a slow actuator which prevents the plant to follow
a reference model even in the presence of adaptive control. Asingular perturbation approach is used to separate the
time scales of the plant and actuators and then modify the optimal control modification adaptive law to account for
the slow actuator in the singularly perturbed system. The singular perturbation approach transform the original system
into a reduced-order system in slow time. The model matchingcondition is applied to the reduced-order system
and the reference model in the transformed slow time coordinate that results in changes in the actuator command to
accommodate the slow actuator dynamics. The resulting control signal can then track the reference model better than
if the actuator command is not modified.

II. Singularly Perturbed Systems with Slow Actuators

A direct MRAC problem is posed as follows:
Given a nonlinear plant as

ẋ = Ax+B
[

u+ Θ∗>Φ(x)+v(t)
]

(1)

wherex(t) : [0,∞) → R
n is a state vector,u(t) : [0,∞) → R

n is a control vector,A∈ R
n×n andB∈ R

n×n are known
matrices such that the pair(A,B) is controllable and furthermoreA is Hurwitz, Θ∗ ∈ R

p×n is an unknown constant
weight matrix, andΦ(x) : R

n → R
p is a known bounded bounded basis function and is at least piecewise smooth inx,

andv(t) : [0,∞) → R
n is a small unknown bounded disturbance and is differentiable with‖v(t)‖ ≤ v0 ∈ R for all t.

The controlleru(t) is subject to linear dynamics

u̇ = εΛ(u−uc) (2)

whereuc(t) : [0,∞) → R
n is an actuator command vector,ε is a positive constant, andΛ ∈ R

n×n is a known Hurwitz
matrix.

The objective is to design the controlleru(t) that enables the plant to follow a reference model

ẋm = Amxm+Bmr (3)

whereAm∈ R
n×n is Hurwitz and known,Bm ∈ R

n×n is also known, andr (t) : [0,∞)→ R
n ∈ L∞ is a command vector

with ṙ ∈ L∞.
If the actuator dynamics are sufficiently fast relative to the reference model dynamics, that is,ε ‖Λ‖� ‖Am‖, then

the effect of actuator dynamics may be negligible. Then we design a controlleru(t) to follow an actuator command as

uc = Kxx+Krr −uad (4)

whereKx ∈ R
n×n andKr ∈ R

n×n are known nominal gain matrices, anduad ∈ R
n is a direct adaptive signal.

Defining the tracking error ase= xm−x, then the tracking error equation becomes

ė= ẋm− ẋ = Amxm+Bmr −Amx+Amx−Ax−BKxx−BKrr +B
[

uad−Θ>Φ(x)− δ (t)
]

(5)

Assuming the gain matricesKx andKr can be chosen to satisfy the model matching conditionsA+BKx = Am and
BKr = Bm, and the adaptive signaluad chosen as

uad = Θ>Φ(x) (6)

whereΘ is an estimated weight matrix and̃Θ = Θ−Θ∗ is a a weight variation, then

ė= Ame+B
[

Θ̃>Φ(x)−v(t)
]

(7)

The unknown weight matrixΘ can be estimated by a standardσ -modification model-reference adaptive control as

Θ̇ = −Γ
(

Φe>PB+ σΘ
)

(8)

In this study, we are interested in the case of slow actuator dynamics whenε � 1 is a small parameter and
ε ‖Λ‖ � ‖A‖. Thenx(t) is a fast state andu(t) is a slow state. To decouple the fast and slow states, we perform
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a time-scale separation by applying the singular perturbation method. Toward that end, we consider a slow time
transformation

τ = εt (9)

whereτ is a slow time variable.
Then, the plant and actuator models are transformed into a singularly perturbed system as

ε
dx
dτ

= Ax+B
[

u+ Θ∗>Φ(x)+v(t)
]

(10)

du
dτ

= Λ(u−uc) (11)

The Tikhonov’s theorem can be used to approximate the solution of the singularly perturbed system with the
solution of a “reduced-order” system by settingε = 0.14 Then,x(u,ε) is on a fast manifold. Thus, the reduced-order
system is given by

B−1Ax0 +u0+ Θ∗>Φ(x0)+v
(τ

ε

)

= u0 +v
(τ

ε

)

+ f (x0) = 0 (12)

du0

dτ
= Λ(u0−uc) (13)

wherex0 andu0 are the “outer” solution of the singularly perturbed system.
The term “outer” is in connection with the concept of “boundary layer” or “inner” and “outer” solutions which

have the origin in boundary layer theory due to Prandtl. The “boundary layer” solution for the singularly perturbed
system is defined by

ẋi = A(x0 +xi)+B
[

(u0 +ui)+ Θ∗>Φ(x0 +xi)+v
(τ

ε

)]

−Ax0−B
[

u0 + Θ∗>Φ(x0)+v
(τ

ε

)]

= Axi +B
[

ui + Θ∗>Φ(x0 +xi)−Θ∗>Φ(x0)
]

(14)

u̇i = εΛ(u0 +ui −uc)− εΛu0 = εΛ(ui −uc) (15)

The solution of the original system can be obtained by a matched asymptotic expansion method applied to both
the inner and outer solutions.15 The outer solution is in fact the asymptotic solution of the original system ast → ∞.

The algebraic solution of Eq. (12) can be expressed in general as

x0 = g
(

u0 +v
(τ

ε

))

= − f−1
(

u0 +v
(τ

ε

))

(16)

assumingf−1 exists.
Differentiating Eq. (16) with respect to the slow time variable and then substituting the actuator model into the

result yield
dx0

dτ
=

∂g
∂u0

du0

dτ
+

∂g
∂δ

dδ
dτ

=
∂g
∂u0

Λ(u0−uc)+
∂g
∂v

dv
dτ

(17)

From Eq. (12), we have

u0 = −B−1Ax0−Θ∗>Φ(x0)−v
(τ

ε

)

(18)

Hence, we obtain the following reduced-order plant model constrained by the slow actuator dynamics

dx0

dτ
=

∂g
∂u0

Λ
[

−B−1Ax0−Θ∗>Φ(x0)−v
(τ

ε

)

−uc

]

+
∂g
∂v

dv
dτ

(19)

From Eq. (12), we also have
[

B−1A+ Θ∗>dΦ(x0)

dx0

]

∂x0

∂u0
= −I (20)

[

B−1A+ Θ∗>dΦ(x0)

dx0

]

∂x0

∂v
= −I (21)

Thus
∂x0

∂u0
=

∂g
∂u0

= −
[

B−1A+ Θ∗>dΦ(x0)

dx0

]−1

(22)
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∂x0

∂v
=

∂g
∂v

= −
[

B−1A+ Θ∗>dΦ(x0)

dx0

]−1

(23)

Therefore
∂g
∂u0

=
∂g
∂v

(24)

Let
As = B−1AΛB−1A (25)

and if As is Hurwitz, then the Tikhonov’s theorem guarantees that thereduced solution withε > 0 converge to the
solution of the original system withε = 0 asε → 0.14

Note that Eq. (19) satisfies the outer solution of the nonlinear plant model and the actuator dynamics. Because of
the slow actuators, the time scale of the response of the plant cannot exceed that of the actuators. Thus, if the reference
model is faster than the actuator model, the tracking error cannot be guaranteed to be small even with adaptive control
due to the model mismatch. A possible solution is to revise the reference model to match the actuator-constrained
plant model, or alternatively to re-design the actuator command to reduce the tracking error.

In this study, we will consider asymptotic solution of the singularly perturbed system. In effect, the inner solution
is neglected so that

x≈ x0 (26)

u≈ u0 (27)

In slow time, the reference model is expressed as

dxm

dτ
=

1
ε

(Amxm+Bmr) (28)

Note that since∂g/∂u0 contains the uncertainty, the control design is quite complicated. In order to simplified the
solution, we make an assumption that the uncertainty term issmall. That is

∥

∥

∥

∥

Θ∗>dΦ(x)
dx

∥

∥

∥

∥

�
∥

∥B−1A
∥

∥ (29)

Then, using the matrix inversion lemma, we obtain

[

B−1A+ Θ∗>dΦ(x)
dx

]−1

= A−1B−A−1B

[

(

Θ∗>dΦ(x)
dx

)−1

+
(

B−1A
)−1

]−1

A−1B

≈ A−1B−A−1BΘ∗>dΦ(x)
dx

A−1B (30)

Then, we make the following choice for the actuator command signal

uc = Kxx+Krr −uad (31)

where

Kx = Λ−1B−1A
1
ε

Am−B−1A (32)

Kr = Λ−1B−1A
1
ε

Bm (33)

Comparing this controller with the controller when actuator dynamics are fast, the increase in the control gain is
estimated as

‖Kx‖
‖K∗

x‖
=

‖A‖
ε ‖Λ‖ (34)

whereK∗
x is the control gain for fast actuator dynamics.

The closed-loop singularly perturbed system now becomes

dx
dτ

=

[

B−1A+ Θ∗>dΦ(x)
dx

]−1

B−1A
1
ε

(Amx+Bmr)−
[

B−1A+ Θ∗>dΦ(x)
dx

]−1

Λ
[

uad−Θ∗>Φ(x)
]

+
∂g
∂v

[

dv
dτ

−Λv
(τ

ε

)

]

(35)
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Using the result of the matrix inversion lemma, we get

dx
dτ

=

[

I −A−1BΘ∗>dΦ(x)
dx

]

1
ε

(Amx+Bmr)−
[

B−1A+ Θ∗>dΦ(x)
dx

]−1

Λ
[

uad−Θ∗>Φ(x)
]

+
∂g
∂v

[

dv
dτ

−Λv
(τ

ε

)

]

(36)

Then, the adaptive signaluad can be designed to keep the following expression small by a judicious choice of new
basis functionΦ1 (x, r) that spans the unknown parameter spaceΘ∗

1 such that

−A−1BΘ∗>dΦ(x)
dx

1
ε

(Amx+Bmr)−
[

B−1A+ Θ∗>dΦ(x)
dx

]−1

Λ
[

uad−Θ∗>Φ(x)
]

= −A−1BΛΘ̃>
1 Φ1 (x, r)+ ϕ (x, r)

(37)
whereϕ (x, r) is an approximation error which is to be kept small by a suitable choice of basis functions.

Solving foruad, we get

uad = −Λ−1
[

B−1A+ Θ∗>dΦ(x)
dx

]

A−1BΘ∗>dΦ(x)
dx

1
ε

(Amx+Bmr)+Θ∗>Φ(x)−A−1BΛΘ̃>
1 Φ1 (x, r)+ϕ (x, r) (38)

From the assumption in Eq. (29), we can neglect the term
(

Θ∗> dΦ(x)
dx

)2
. Then, one possible choice for the new

basis function could be

Φ1 (x, r) =
[

Φ(x) dΦ(x)
dx x dΦ(x)

dx r
]>

(39)

Alternatively, we can use the universal approximation theorem to approximate the uncertainty with a suitable
choice of basis functions such as radial basis functions or sigmoidal basis functions16

dx
dτ

=
1
ε

(Amx+Bmr)− 1
ε

B1Θ̃>
1 Φ1 (x)+

1
ε

B1δ
(

x,
τ
ε

)

(40)

whereB1 = εA−1BΛ andδ
(

x, τ
ε
)

= Λ−1B−1A
{

ϕ
(

x, r
( τ

ε
))

+ ∂g
∂v

[

dv
dτ −Λv

( τ
ε
)]

}

.

SinceAm is Hurwitz and ifΘ̃>
1 is bounded, then the Tikhonov’s theorem guarantees that thereduced solution with

ε > 0 converge to the solution of the original system withε = 0 asε → 0.

III. Optimal Control Modification Adaptive Law

The tracking error equation in slow time is obtained as

de
dτ

=
dxm

dτ
− dx

dτ
=

1
ε

Ame+
1
ε

B1

[

Θ̃>
1 Φ1 (x,t)− δ

(

x,
τ
ε

)]

(41)

We are interested in seeking an update law forΘ that minimizes the following cost function in slow time

J = lim
τ f→∞

1
2ε

ˆ τ f

0
(e−∆)>Q(e−∆)dτ (42)

subject to Eq. (41) where∆ represents the unknown theoretical lower bound of the tracking error andQ = Q> > 0∈
R

n×n.
This optimal control problem can be formulated by the Pontryagin’s Maximum Principle. Defining a Hamiltonian

H
(

e,Θ̃>
1 Φ1

)

=
1
2ε

(e−∆)>Q(e−∆)+
1
ε

p>
(

Ame+B1Θ̃>
1 Φ1−B1δ

)

(43)

wherep(τ) : [0,∞) → R
n is an adjoint variable, then the necessary condition is obtained as

dp
dτ

= −∇H>
e = −1

ε
Q(e−∆)− 1

ε
A>

mp (44)
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with the transversality conditionp
(

τ f
)

= 0 sincee(0) is known. TreatngΘ̃>
1 Φ1 as a control variable, then the

optimality condition is obtained by

∇HΘ̃>
1 Φ1

=
1
ε

p>B1 (45)

The adaptive law which provides an optimal control solutioncan be formulated as a gradient update law as

dΘ̃1

dτ
= −Γ∇HΘ̃>

1
= −ΓΦ1∇HΘ̃>

1 Φ1
= −1

ε
ΓΦ1p>B1 (46)

whereΓ = Γ> > 0∈ R
n×n is an adaptive gain matrix.

The solution ofp can be obtained using a “sweeping” method17 by lettingp = Pe+SΘ>
1 Φ1, whereP = P> > 0∈

R
n×n andS∈ R

n×n. Substituting into the necessary condition yields

dP
dτ

e+
1
ε

P
(

Ame+BΘ̃>
1 Φ1−B1δ

)

+
dS
dτ

Θ>
1 Φ1 +S

d
(

Θ>
1 Φ1

)

dτ
= −1

ε
Q(e−∆)− 1

ε
A>

m

(

Pe+SΘ>
1 Φ1

)

(47)

This results in the following equations obtained by a methodof separation of variables

dP
dτ

+
1
ε

(

PAm+A>
mP

)

+
1
ε

Q = 0 (48)

dS
dτ

+
1
ε

(

A>
mS+PB1

)

= 0 (49)

−1
ε

PB1

(

Θ∗>
1 Φ+ δ

)

+S
d

(

Θ>
1 Φ

)

dτ
− 1

ε
Q∆ = 0 (50)

For an infinite time-horizon problem whenτ f → ∞, thenP(τ)→P(0) andS(τ)→S(0) for all t ∈ [0,∞). So, both
P andScan be approximated by their constant solutions where

PAm+A>
mP = −Q (51)

S= −A−>
m PB1 (52)

Without loss of generality, a weighting constantν > 0∈ R is introduced to allow for adjustments of the modifica-
tion term in the adaptive law. Then,ν = 1 gives an optimal solution. Thus

S= −νA−>
m PB1 (53)

Then, the adjointp is now expressed as

p = Pe−νA−>
m PB1Θ>

1 Φ1 (54)

Substituting Eq. (54) into the gradient-based adaptive lawyields the adaptive law in slow time

dΘ1

dτ
=

dΘ̃1

dτ
= −1

ε
Γ

(

Φ1e>PB1−νΦ1Φ>
1 Θ1B>

1 PA−1
m B1

)

(55)

Converting to regular time by multiplyingε through Eq. (55) results in the optimal control modificationadaptive
law

Θ̇1 = −Γ
(

Φ1e>PB1−νΦ1Φ>
1 Θ1B>

1 PA−1
m B1

)

(56)

A. Stability Proof

We now prove that the optimal control modification adaptive law (56) is stable and results in uniformly bounded
tracking error. Toward that end, choose a Lyapunov candidate function

V = e>Pe+ trace
(

Θ̃>
1 Γ−1Θ̃1

)

(57)

EvaluatingdV/dτ in slow time yields

dV
dτ

=
1
ε

e>
(

PAm+A>
mP

)

e+
2
ε

e>PB1

(

Θ̃>
1 Φ1− δ

)

− 2
ε

trace
(

Θ̃>
1 Φ1e>PB1−νΘ̃>

1 Φ1Φ>
1 Θ1B>

1 PA−1
m B1

)

(58)
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By the trace property

trace
(

X>Y
)

= YX> (59)

whereX,Y ∈ R
N, then

dV
dτ

= −1
ε

e>Qe+
2
ε

e>PB1Θ̃>
1 Φ− 2

ε
e>PB1δ − 2

ε
e>PBΘ̃>

1 Φ1 +
2
ε

νΦ>
1 Θ̃1B>

1 PA−1
m BΘ̃>

1 Φ1

+
2
ε

νΦ>
1 Θ∗

1B>
1 PA−1

m BΘ̃>
1 Φ1 (60)

PA−1
m can be decomposed into a symmetric partM = 1

2

(

PA−1
m +A−>

m P
)

=− 1
2A−>

m QA−1
m < 0 and an anti-symmetric

partN = 1
2

(

PA−1
m −A−>

m P
)

. Then,PA−1
m = M +N. By the property of a symmetric matrix, if the symmetric partof a

matrix is negative definite, then the matrix is also negativedefinite. SinceM < 0, thereforePA−1
m < 0. Thus

dV
dτ

= −1
ε

e>Qe− 2
ε

e>PB1δ +
2
ε

νΦ>
1 Θ̃1B>

1

(

−1
2

A−>
m QA−1

m +N

)

B1Θ̃>
1 Φ1 +

2
ε

νΦ>
1 Θ∗

1B>
1 PA−1

m B1Θ̃>
1 Φ1 (61)

Using the property of an anti-symmetric matrixy>Ny= 0, dV/dτ becomes

dV
dτ

= −1
ε

e>Qe− 2
ε

e>PB1δ − 1
ε

νΦ>
1 Θ̃1B>

1 A−>
m QA−1

m B1Θ̃>
1 Φ1 +

2
ε

νΦ>
1 Θ∗

1B>
1 PA−1

m B1Θ̃>
1 Φ1 (62)

dV/dτ is then bounded by

dV
dτ

≤−1
ε

λmin(Q)‖e‖2 +
2
ε

λmax(P)‖e‖‖B1‖δ0−
1
ε

νλmin

(

B>
1 A−>

m QA−1
m B1

)

∥

∥Θ̃1
∥

∥

2‖Φ1‖2

+
2
ε

νσmax

(

B>
1 PA−1

m B1

)

Θ∗
0

∥

∥Θ̃
∥

∥‖Φ‖2 (63)

whereδ0 = supt ‖δ‖, Θ∗
0 = supt ‖Θ∗

1‖, andλ andσ denote the eigenvalue and singular value, respectively.
dV/dτ can also be expressed as

dV
dτ

≤−1
ε

λmin(Q)‖e‖ [‖e‖−2λmax(P)‖B1‖δ0]

− 1
ε

νλmin

(

B>
1 A−>

m QA−1
m B1

)

∥

∥Θ̃1
∥

∥‖Φ1‖2
[

∥

∥Θ̃1
∥

∥−2νσmax

(

B>
1 PA−1

m B1

)

Θ∗
0

]

(64)

To show that the tracking erroreand the weight variatioñΘ are bounded, we requiredV/dτ < 0. Thus, it follows
that

‖e‖ >
2λmax(P)‖e‖‖B1‖δ0

λmin(Q)
(65)

∥

∥Θ̃1
∥

∥ >
2σmax

(

B>
1 PA−1

m B1
)

Θ∗
0

λmin

(

B>
1 A−>

m QA−1
m B1

) (66)

Hence, there exists a compact setC where

C =







(

e,Θ̃
)

: ‖e‖ ≤ 2λmax(P)‖e‖‖B1‖δ0

λmin(Q)
,
∥

∥Θ̃1
∥

∥ ≤ 2σmax
(

B>
1 PA−1

m B1
)

Θ∗
0

λmin

(

B>
1 A−>

m QA−1
m B1

)







(67)

that contains the origine= 0 andΘ̃1 = 0.
ThendV/dτ < 0 outside the compact setC . Thus, any trajectorye andΘ̃1 starting inC will remain in C for all

t.18 Therefore, the compact setC is an invariant set.10 Also , any trajectorye andΘ̃1 starting outside the compact set
C will approach the largest invariant setC ast → ∞.18 It follows by the LaSalle’s Invariance Principle thate andΘ̃1

are uniformly bounded. Thus, the optimal control modification adaptive law is stable.
From the Lyapunov stability analysis, it is noted that in theabsence of persistent excitation, i.e.,Φ1Φ>

1 = 0 for all t
and ifδ0 = 0, then it can be shown by the Barbalat’s lemma thatdV/dτ is uniformly continuous ande→ 0 ast → ∞.19
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In contrast with theσ -modification adaptive law, even when the persistent excitation is removed, the tracking error
does not tend to the origin.20

Sincee andΘ̃1 are bounded, the unknown theoretical lower bound of the tracking error∆ at t = t f → ∞ is also
bounded by

‖∆‖ ≤ λmax(P)‖B1‖
λmin(Q)

[

β + δ0+
ενη

σmin(Am)

]

(68)

where
∥

∥Θ∗>Φ
∥

∥ ≤ β ∈ R and

∥

∥

∥

∥

d(Θ>Φ)
dτ

∥

∥

∥

∥

≤ η ∈ R for all t.

One unique feature of the optimal control modification is that as the adaptive gain increases and forν = 1, the
system is guaranteed to be bounded. To show this, the optimalcontrol modification adaptive law can be written as

Θ̇1 = −ΓΦ1

(

e>P−νΦ>
1 Θ1B>

1 PA−1
m

)

B1 (69)

Then
Θ̇>

1 Φ1 = −B>
1

(

Pe−νA−1
m PB1Θ>

1 Φ1

)

Φ>
1 ΓΦ1 (70)

Note thatΦ>
1 ΓΦ1 ∈ R, so for largeΦ>

1 ΓΦ1

lim
Φ>

1 ΓΦ1→∞

Θ̇>
1 Φ1

Φ>
1 ΓΦ1

= −B>
1

(

Pe−νA−>
m PB1Θ>

1 Φ1

)

= 0 (71)

the adaptive signalΘ>
1 Φ1 remains bounded and tends to

B1Θ>
1 Φ1 →

1
ν

P−1A>
mPe (72)

The tracking error then becomes

ė→
(

Am+
1
ν

P−1A>
mP

)

e−B1Θ∗>
1 Φ1 (x,t)−B1δ (x,t) (73)

which can be written as

ė→−P−1
[(

1+ ν
2ν

)

Q−
(

1−ν
2ν

)

S

]

e−B
(

Θ∗>
1 Φ1 (x,t)+ δ (x,t)

)

(74)

whereS= A>
mP−PAm.

In a special case whenδ (x, t) = 0 andΦ1 (x)= x, the system tends to a linear system asΦ>
1 ΓΦ1 →∞. Furthermore,

if ν = 1, then
e(s) →−H (s)BΘ∗>

1 x(s) (75)

where system transfer function matrixH (s)=
(

sI+P−1Q
)−1

is strictly positive real (SPR) sinceH ( jω)+H> (− jω)>

0 as a result ofP−1Q > 0. For a SISO system, the Nyquist plot of a strictly stable transfer function for a SISO system
is strictly in the right half plane with a phase shift less than or equal toπ

2 ,19 corresponding to a phase margin of at least
π
2 . Thus, one can deduce that the optimal control modification adaptive law is robustly stable with a large adaptive
gain.

B. Example

Consider the following simple scalar system

ẋ = ax+bu+ θ ∗x+v(t) (76)

with actuator dynamics
u̇ = ελ (u−uc) (77)

wherea < 0, λ < 0, ε > 0, |ελ | < |a|, andv(t) is a disturbance signal.
The reference model is

ẋm = amxm+bmr (78)
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wheream < 0.
The actuator command is designed as

uc =
a
b

( am

ελ
−1

)

x+
a
b

bm

ελ
r −Θ>Φ(x, r) (79)

whereΦ(x, r) =
[

x r
]>

.

Note that if actuator dynamics are fast then the actuator command is

uc =
a
b

(am

a
−1

)

x+
bm

b
r −θx (80)

The optimal control modification update law for slow actuator system is

Θ̇ = −Γ
(

Φepb1−νΦΦ>Θ1b2
1

p
am

)

= −εΓ
(

Φep
bλ
a

− ενΦΦ>Θ1
b2λ 2

a2

p
am

)

(81)

whereb1 = bελ
a andp = − 1

am
, and for fast actuator system is

θ̇ = −Γ
(

xepb−νx2θb2 p
am

)

(82)

If a andλ are nominally in the same order of magnitude, then we note that for the slow actuator system, the
effective adaptive gain is also reduced byε for a similar performance as that for the fast actuator.

For the numerical example,a = −1, b = 1, θ ∗ = 0.1, λ = −1, ε = 0.1, am = −5, bm = 1, r (t) = sint, v(t) =
0.05sin10t. The responses due to the standard MRAC adaptive law and optimal control modification adaptive law
with the singular perturbation approach are plotted in Fig.1. The response for the standard MRAC exhibits more
initial transient than that for optimal control modification using the same adaptive gain.
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Opt. Cont. Mod. Γ=1000, ν=0.5
Reference Model

Fig. 1 - Responses due to MRAC and Optimal Control Modification

Figure 2 is a plot of the control input and actuator command with the singular perturbation approach. As can be
seen, the actuator command signal is quite large relative tothe control input. This is due to the fact that the actuator
dynamics are slow so a large actuator command does not translate into the same amount of control input for a finite
time. The effectiveness of the optimal control modificationis demonstrated by reducing the amplitude of oscillation
in the control input significantly over that due to the standard MRAC.
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Fig. 2 - Control and Actuator Command due to MRAC and Optimal Control Modification

Figure shows the responses due to the unmodified actuator command for fast actuator dynamics. As can be seen,
the control input is insufficient to allow the plant to followthe reference model even with adaptive control.
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Fig. 3 - Responses due to Un-modified Actuator Command for Slow Dynamics

IV. Flight Control Application

Consider the following inner loop adaptive flight control architecture as shown in Fig. 1. The control architecture
comprises: 1) a reference model that translates rate commands into desired acceleration commands, 2) a proportional-
integral (PI) feedback control for rate stabilization and tracking, 3) a dynamic inversion controller that computes
actuator commands using desired acceleration commands, 4)an adaptive controller with the conventional MRAC
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law and with or without the optimal control modification adaptive law, and 5) a parameter estimator for actuator
dynamics as relative to its nominal dynamics via the parameter ε. The adaptive controller is designed to increase
performance of the nominal dynamic inversion controller under adverse flight conditions such as upsets and damage.
Under nominal fast actuator dynamics, both the dynamic inversion control and the adaptive law are computed without
any differentiation between actuator commands and controlinputs. As actuator dynamics degrade based on the value
of ε, both the dynamic inversion controller and the adaptive controller are modified accordingly to increase the actuator
command signals.

Fig. 4 - Adaptive Flight Control Architecture

The linearized equations of motion are expressed as

ẋ = A11x+A12z+B1u+ f1(x,z) (83)

ż= A21x+A22z+B2u+ f2(x,z) (84)

whereAi j andBi , i = 1,2 are known,x =
[

p q r
]>

is a vector of roll, pitch, and yaw rates;

z=
[

∆φ ∆α ∆β ∆V ∆h ∆θ
]>

is a vector of perturbation in the bank angle∆φ , angle of attack∆α, sideslip

angle∆β , airspeed∆V, altitude∆h, and pitch angle∆θ ; u =
[

∆δa ∆δe ∆δr

]>
is a vector of additional aileron,

elevator, and rudder deflections; andfi (x,z), i = 1,2 are parametric uncertainties which can be expressed as

fi (x,z) = Θ∗>
i Φ(x,z)+ δi (x,z) (85)

whereδ (x,z) is an approximation error which is assumed to be small by a suitable choice of basis functions,Φ =
[

C1 C2 C3 C4

]>
is a basis function for a sigma-pi neural network withCi , i = 1, . . . ,4, as inputs consisting of

control commands, sensor feedback, and bias terms; defined as follows:

C1 =
1
2

ρ (h)V2
[

x> αx> βx>
]

(86)

C2 =
1
2

ρ (h)V2
[

1 φ θ α β α2 β 2 αβ
]

(87)

C3 =
1
2

ρ (h)V2
[

u(x,z)> αu(x,z)> βu(x,z)>
]

(88)

C4 =
1
2

ρ (h)V2
[

px> qx> rx>
]

(89)

whereφ = φ̄ + ∆φ , α = ᾱ + ∆α, β = β̄ + ∆β , V = V̄ + ∆V, h = h̄+ ∆h, andθ = θ̄ + ∆θ ; and the overbar symbol
denotes a trim state.
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These inputs are designed to model the parametric uncertainty that exists in the damaged aircraft plant dynamics.
For example, the aerodynamic force in thex-axis for an aircraft is given by

Fx = T +
1
2

q̄S

(

CL0 +CLα α +CLβ β +CLp

pb
2V

+CLq

qc̄
2V

+CLr

rb
2V

+CLδa
δa +CLδe

δe+CLδr
δr

)

α

− 1
2

q̄S

(

CD0 +CDα α +CDp

pb
2V

+CDq

qc̄
2V

+CDr

rb
2V

+CDδa
δa +CDδe

δe+CDδr
δr

)

(90)

Thus,C1, C2, andC3 are designed to model the product terms ofx, z, andu in the aerodynamic forces and moments
equations; andC4 models the gyroscopic cross-coupling terms ofx in the moment equations.

The inner loop rate feedback control is designed to improve aircraft rate response characteristics such as the short
period mode and the dutch roll mode. A second-order reference model is specified to provide desired handling qualities
with good damping and natural frequency characteristics asfollows:

(

s2 +2ζpωps+ ω2
p

)

φm = gpδlat (91)

(

s2 +2ζqωqs+ ω2
q

)

θm = gqδlon (92)
(

s2 +2ζrωrs+ ω2
r

)

βm = −grδrud (93)

whereφm, θm, andψm are reference bank, pitch, and sideslip angles;ωp, ωq, andωr are the natural frequencies for
desired handling qualities in the roll, pitch, and yaw axes;ζp, ζq, andζr are the desired damping ratios;δlat , δlon, and
δrud are the lateral stick input, longitudinal stick input, and rudder pedal input; andgp, gq, andgr are input gains.

Let pm = φ̇m, qm = θ̇m, andrm = −β̇m be the reference roll, pitch, and yaw rates. Then the reference model can be
described as

ẋm = −Kpxm−Ki

ˆ t

0
xmdτ +Gr (94)

wherexm =
[

pm qm rm

]>
, Kp = diag(2ζpωp,2ζqωq,2ζrωr), Ki = diag

(

ω2
p,ω2

q ,ω2
r

)

, G = diag(gp,gq,gr), and

r =
[

δlat δlon δrud

]>
.

Suppose, the elevator actuator is a slow actuator where

δ̇e = ελe(δe− δec) (95)

whereλe < 0 is the original elevator actuator rate,δec is the elevator deflection command, andε > 0 is unknown
but can be estimated by a suitable parameter estimation technique such as the recursive least-squares method if the
control signalu(t)and its derivative ˙u(t) is available by estimation, in which caseu(t) is replaced by ˆu(t), or by direct
measurement. A recursive least-squares algorithm can be used to estimateε as follows:

ε̇ = R∆u
(

˙̂u>−∆u>Λ>ε
)

(96)

Ṙ= −R∆u∆u>R (97)

where∆u = û−uc.
Assuming the pair(A11,B1) is controllable andz is stabilizable, the reduced-order equation for the pitch rate is

0 = E2B−1
1 A11x+E2B

−1
1 A12z+E2u+E2B

−1
1 f1 (98)

whereE1 =
[

1 0 0
]

, E2 =
[

0 1 0
]

, andE3 =
[

0 0 1
]

are basis vectors.

Note thatE2u = δe andE2uc = δec, then differentiating the reduced-order equation gives

E2B−1
1 A11ẋ+E2B−1

1 A12ż= ελe
(

E2B−1
1 A11x+E2B

−1
1 A12z+E2B−1

1 f1 +E2uc
)

(99)

Settingẋ = −
(

Kp + Ki
s

)

x+Gr, then the actuator commands can be computed as follows

uc =







E1B−1
1

1
ελe

E2B−1
1 A11

E3B−1
1







3×3

[

−
(

Kp +
Ki

s

)

x+Gr

]

+







0
1

ελe
E2B−1

1 A12

0







3×3

ż−B−1
(

A11x+A12z+ Θ>
1 Φ

)

(100)
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whereuc =
[

∆δac ∆δec ∆δrc

]>
.

The closed-loop angular rate dynamics are then given by

ẋ = −
(

Kp +
Ki

s

)

x+Gr−







E1

ελeE2A−1
11

E3







3×3

(

Θ̃>
1 Φ− δ1

)

(101)

Let e=
[

´ t
0 (xm−x)dτ xm−x

]>
be the tracking error, then the tracking error equation is given by

ė= Ame+B
(

Θ̃>
1 Φ− δ1

)

(102)

where

Am =

[

0 I

−Ki −Kp

]

(103)

B =

[

0

E

]

(104)

E =







E1

ελeE2A−1
11

E3







3×3

(105)

Let Q = 2I , then the solution of Eq. (51) yields

P =

[

K−1
i Kp +K−1

p (Ki + I) K−1
i

K−1
i K−1

p

(

I +K−1
i

)

]

> 0 (106)

A−1
m is computed to be

A−1
m =

[

−K−1
i Kp −K−1

i

I 0

]

(107)

Evaluating the termB>PA−1
m B yields

B>PA−1
m B = −E>K−2

i E < 0 (108)

Applying the adaptive optimal control modification (56), the weight update law is then given by

Θ̇1 = −ΓΦ
(

e>PB+ νΦ>Θ1E>K−2
i E

)

(109)

A. Simulation Results

A simulation study was conducted using a generic transport model (GTM) which represents a notational twin-engine
transport aircraft as shown in Fig. 5.21 An aerodynamic model of the damaged aircraft is created using a vortex lattice
method to estimate aerodynamic coefficients, and stabilityand control derivatives. For the simulation, a damage
configuration is modeled corresponding to a 28% loss of the left wing. The damage causes an estimated C.G. shift
mostly along the pitch axis with∆y = 0.0388c̄ and an estimated mass loss of 1.2%. The principal moment of inertia
about the roll axis is reduced by 12%, while changes in the inertia values in the other two axes are not as significant.
Since the damaged aircraft is asymmetric, the inertia tensor has all six non-zero elements. This means that all the
three roll, pitch, and yaw axes are coupled together throughout the flight regime. In addition, the elevator actuator is
simulated as an impaired flight control actuator with a much smaller bandwidth than that for a healthy actuator.
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Fig. 5 - Left Wing Damaged Generic Transport Model

A level flight condition of Mach 0.6 at 15,000 ft is selected. Upon damage, the aircraft is re-trimmed withT =
13,951 lb, ᾱ = 5.86o, φ̄ = −3.16o, δ̄a = 27.32o, δ̄e = −0.53o, δ̄r = −1.26o. The remaining right aileron is the
only roll control effector available. In practice, some aircraft can control a roll motion with spoilers, which are not
modeled in this study. The reference model is specified byωp = 2.0 rad/sec,ωq = 1.5 rad/sec,ωr = 1.0 rad/sec, and
ζp = ζq = ζr = 1/

√
2. The simulations also include a random signal to representsensor noise.

The actuator dynamics are modeled withλa = λe = λr = 50 /sec with position limits of±35o for the aileron and
elevator and±10o for the rudder. Theεparameter for the elevator is set to 0.01.

The pilot pitch rate command is simulated with a series of ramp input longitudinal stick command doublets,
corresponding to the reference pitch angle±3.81o from trim. At t = 10 sec, a wing damage and elevator actuator
degradation occur. The tracking performance of the baseline flight controller, which is a proportional-integral feedback
type with no adaptation, is compared against the optimal control modification adaptive law with and without the
singular perturbation approach for slow actuators. Both the adaptive laws are implemented as an augmentation to the
baseline controller. An adaptive gain ofΓ = 60 and a weighting factorν = 0.2 are selected.

The aircraft angular rate responses are shown in Figs. 6 to 9.Figure 6 illustrates the pitch rate responses. With
no adaptation, the baseline controller cannot follow the reference pitch rate very well. The pitch rate response clearly
lags the reference model significantly due to the degraded elevator actuator. The optimal control modification with and
without the singular perturbation approach significantly improve the tracking and reduces the lag between the response
and the reference model. The pitch rate is worse without thanwith the singular perturbation approach, as large initial
transients occur at failure. So, the singular perturbationapproach demonstrates an improved response due to the slow
elevator actuator.

Since the damage occurs to one of the wings, the roll axis is most affected. With no adaptation, there is a significant
roll rate as high as 20o/sec as shown in Fig. 7. There is a steady-state oscillation of ±15o/sec in the roll rate. Both the
optimal control modification adaptive laws reduce the oscillation to within±2o/sec. However, there is a large initial
transient of about 20o/sec due to the sudden wing loss.

Figure 8 is the yaw rate response of the damaged aircraft. Theoptimal control modification with the singular
perturbation approach slightly improves the yaw rate response than that without. Both adaptive laws result in a much
lower yaw rate than the baseline controller.

Figure 9 is the plot of the tracking errorL2 norms for the three axes in combination. Not surprisingly, without the
adaptation, the baseline controller suffers a large tracking error.
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Fig. 6 - Pitch Rate
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Fig. 7 - Roll Rate
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Fig. 8 - Yaw Rate
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Fig. 9 - Tracking Error Norm

The control surface deflections are plotted in Figs. 10 to 12.The aileron actuator is a fast acting actuator, so in
all cases, the aileron deflection tracks the command as shownin Fig. 10. With both the optimal control modification
adaptive laws, there is a large aileron command at the instance of failure that causes the aileron to saturate. The spike
in the aileron command is larger without than with the singular perturbation approach.
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Fig. 10 - Aileron Deflection

Figure 11 is a plot of the elevator deflection. Since the aileron actuator is degraded, it is clear that the elevator
command cannot be tracked well by the elevator actuator. Theoptimal control modification adaptive law without the
singular perturbation approach produces a large initial spike in the elevator command of about−25o while the initial
transient in the command is reasonable with the singular perturbation approach.
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Fig. 11 - Elevator Deflection

The rudder deflection is shown in Fig. 12. With no adaptation,the rudder deflection oscillates from about 0o

to −7o. Both the optimal control modification adaptive laws produce very similar rudder deflections, which reduce
steadily from the initial transient to its new trim value of−1o.
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Fig. 12 - Rudder Deflection

The attitude responses of the damaged aircraft are shown in Figs. 13 to 16. When there is no adaptation, the pitch
attitude could not be followed accurately as seen in Fig. 13.With the adaptation on, the tracking is much improved and
the optimal control modification adaptive law performs better with than without the singular perturbation approach.

0 10 20 30 40 50 60
−20

0

20

t, sec

θ,
 d

eg

 

 

0 10 20 30 40 50 60
−20

0

20

t, sec

θ,
 d

eg

 

 

0 10 20 30 40 50 60
−20

0

20

t, sec

θ,
 d

eg

 

 

Baseline Control
Reference Model

Opt. Cont. Mod. w/o Sing. Perturb.
Reference Model

Opt. Cont. Mod. w/ Sing. Perturb.
Reference Model

Fig. 13 - Pitch Angle

Figure 14 is the plot of the bank angle. Without the adaptation, the damaged aircraft exhibits a rather severe roll
behavior with the bank angle ranging from−40o to 20o. With the adaptation on, the roll angle is drastically reduced
from an initial transient of about−30o without and−25o with the singular perturbation approach to almost zero.
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Fig. 14 - Bank Angle

Figure 15 is a plot of the angle of attack. The baseline controller results in a significantly large initial angle of attack
when the damage occurs. The maximum angle of attack is about 12o, which could be close to stall. The maximum
angle of attack is reduced to 6o when the adaptation is on.
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Fig. 15 - Angle of Attack

Figure 16 shows a plot of the sideslip angle.The baseline controller produces a steady oscillation in the sideslip
angle between±2o. With both the optimal control modification adaptive laws, the sideslip angle is reduced to near
zero.
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Fig. 16 - Sideslip Angle

V. Conclusions

This paper presents a singular perturbation approach in connection with an optimal control modification adaptive
law for a time-scale separated system with slow actuator dynamics. The singular perturbation approach transforms
the system into a reduced-order system in a slow time coordinate. The actuator command is obtained by the model
matching condition in the slow time coordinate.The resulting actuator signal in effect is increased by the ratio of
the norm of the plant’s transition matrix to the norm of the slow actuator’s transition matrix. The optimal control
modification adaptive is derived and analyzed for stabilityusing the Lyapunov method. Under fast adaptation when the
adaptive gain is large, the analysis shows that the trackingerror remains bounded and stable. The singular perturbation
approach with the optimal control modification adaptive lawis extended to a flight control application. Simulations of
a flight control performance for a damaged aircraft with an impaired elevator actuator demonstrates the effectiveness
of the method.
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