
Formal Requirements Elicitation with FRET

Dimitra Giannakopoulou1, Anastasia Mavridou2, Thomas Pressburger1, Julian
Rhein2, Johann Schumann2, and Nija Shi2

1 NASA Ames Research Center, CA, USA
{dimitra.giannakopoulou,tom.pressburger}@nasa.gov

2 SGT, NASA Ames Research Center, CA, USA
{anastasia.mavridou, johann.m.schumann, nija.shi}@nasa.gov

Abstract. FRET is a tool for writing, understanding, formalizing and analyz-
ing requirements. Users write requirements in an intuitive, restricted natural lan-
guage, called FRETISH, with precise, unambiguous meaning. For a FRETISH re-
quirement, FRET: 1) produces natural language and diagrammatic explanations
of its exact meaning, 2) formalizes the requirement in logics, and 3) supports
interactive simulation of produced logic formulas to ensure that they capture us-
er intentions. FRET connects to analysis tools by facilitating the mapping be-
tween requirements and models/code, and by generating verification code. FRET

is available open source at https://github.com/NASA-SW-VnV/fret; a video can
be accessed at : https://tinyurl.com/fretForREFSQ.

1 Introduction
Requirements engineering is a central step in the development of safety-critical systems.
The vision for NASA Ames’ Formal Requirements Elicitation Tool (FRET) is 1) to
make the writing, understanding, and debugging of formal requirements as natural and
intuitive as possible, 2) to seamlessly connect to powerful external tools for analysis,
and 3) to support the correction of requirements suggested by analysis results. FRET
users have been limited to teams within NASA Ames and external collaborators, but
with FRET’s recent open sourcing, we hope to obtain feedback and contributions from
the wider research community. This paper presents the features of the first FRET release,
which form a solid basis for extensions and further development.

In practice, requirements are typically written in natural language, which is am-
biguous and consequently not amenable to formal analysis. Since formal, mathemat-
ical notations are unintuitive, requirements in FRET are entered in a restricted natural
language named FRETISH. FRET helps users write FRETISH requirements both by pro-
viding grammar information and examples during editing, but also through English
and diagrammatic explanations to clarify subtle semantic issues. For each requirement,
FRET automatically produces formulas that can be used by analysis tools at all phases of
the software lifecycle. An extensive verification framework ensures that the generated
formulas conform to the semantics of the FRETISH language [8]. Moreover, FRET sup-
ports the mapping of high-level requirements to the signals or variables that appear in
software models or code. FRET then exports verification code that can be used directly
by a variety of analysis tools.
Novelty. FRET incorporates ideas from several existing approaches to requirements en-
gineering. The structure of FRETISH requirements includes features from the Specifica-



2 D. Giannakopoulou et al.

tion Pattern System (SPS) [4], and the Easy Approach to Requirements Syntax (EARS,
[12]), implemented in tools like Prospec [7], SPIDER [10], SpeAR [6], and EARS-
CTRL [11]. In the commercial tool STIMULUS [9], requirements are built by dragging
and dropping phrases. The ASSERTTM [3] tool uses the constrained natural language
SADL for formalizing domain ontologies, and a requirements language SRL that can
express conditions, including temporal conditions, on monitored variables, and con-
straints on controlled variables. The uniqueness of FRET lies in its main goal: to be an
open source, extensible requirements platform that can connect to external requirements
analysis tools. As such, the FRETISH language and the formalization capabilities aim
at being inclusive, and for this reason are modular, and extensible. For example, FRET
produces formalizations in both future- and past-time metric temporal logics. Since we
plan on using FRET in safety-critical contexts, ensuring correctness of the supported
formalizations is key.

2 Interacting with FRET

Fig. 1. FRET dashboard

This section describes a user’s end-to-
end interaction with FRET through an ex-
ample from the publicly-available Lock-
heed Martin Cyber Physical Systems
(LMCPS) challenge [5]. The application
of FRET to LMCPS is, to date, the largest
FRET case study [13]. FRET’s entry point
is a dashboard that summarizes the status
of selected projects, and provides a hier-
archical view of all requirements, as shown in Figure 1 for LMCPS. Requirements can
also be displayed in standard tabular form.
Requirements Elicitation. Figure 2 illustrates FRET’s requirements elicitation inter-
face. FRETISH requirement [AP-002a]:“in roll hold mode RollAutopilot shall always sat-
isfy autopilot engaged & no other lateral mode” expresses the natural language descrip-
tion included in the “Rationale and Comments” field. i.e., that the autopilot should be
engaged and no other lateral mode should be active when the Roll Autopilot is in roll
hold mode. The interface window consists of the editor, on the left, and a help tab on
the right (gray background). The FRETISH grammar, displayed as ”railroad diagrams”,
is accessible from this view by clicking on the question mark.

A FRETISH requirement description is automatically parsed into six sequential fields,
with the FRET editor dynamically coloring the text corresponding to the fields as the
requirement is typed in (Figure 2): scope, condition, component, shall, timing, and re-
sponse. Help and examples on each specific field can be displayed in the help tab by
clicking on the corresponding field bubble. The mandatory component field specifies
the component that the requirement applies to (RollAutopilot). The shall keyword states
that the component behavior must conform to the requirement. The response field cur-
rently is of the form satisfy R, where R is a non-temporal Boolean-valued expression.

Field scope (optional) states that the requirement is only relevant in specific scopes
of the system behavior, for example when the system is “in roll hold mode”. The Boolean



Formal Requirements Elicitation with FRET 3

Fig. 2. FRET editor with formalizations and explanations in the help tab.

expression field condition (optional) states that, within the specified mode, the require-
ment becomes relevant only from the point where the condition becomes true. When, as
in our example, condition is omitted, there is no such restriction. Field timing (optional)
specifies at which points the response must occur, for example “always”, meaning at all
points where the system is “in roll hold mode”. Default timing is eventually.

Fig. 3. Screenshot of require-
ments visualization for AP-
002a (Figure 2)

By clicking SEMANTICS, the help tab displays vari-
ous explanations of the requirement, as well as temporal
formulas. The diagram of Figure 2 illustrates that the re-
quirement is only relevant within the grayed box M (M
represents intervals where the Autopilot is in “roll hold”
mode). The green band states that “autopilot engaged
& no other lateral mode” is required to hold at all time
points within the gray box.

Requirements Visualization. Getting a requirement with
temporal relationships right is a tricky and subtle task. Er-
rors and misunderstandings might creep into the formula-
tion, resulting in a requirement that does not correctly re-
flect the temporal interdependencies of the involved signals. Based upon the graphical
signal representation commonly used in digital electronics, we developed an interactive
requirements visualizer in FRET, available by clicking SIMULATE in the semantics view
of the help tab (see Figure 2). Given a FRET requirement, it shows temporal traces of
each of the signals (variables) involved as well as the valuation of the requirement for
each point in time (see Figure 3). The user can interactively modify the input signals;



4 D. Giannakopoulou et al.

the valuation of the requirement is updated automatically and thus makes it possible for
the user to visually inspect the temporal behavior of the requirement. The valuation is
computed based on the construction of a finite state machine from the input trace, which
is then verified against the LTL formalization of the requirement, using NuSMV [1].
Requirements Analysis. FRET’s main purpose is to facilitate the elicitation of unam-
biguous requirements. For analysis, it allows users to export requirements in formats
that can be digested by external analysis tools. FRET currently connects to the CoCoSim
tool [2] for analysis of Simulink models, and through CoCoSim to the Kind2, Zustre,
and Simulink Design Verifier (SLDV) tools for analysis.

To analyze requirements against an implementation as model or code, one needs
to associate the requirement variables, which are at a high level, with variables in the
model or code (signals in the case of Simulink). Moreover, FRET needs to generate
verification code that can be understood by the target analysis tool. To connect with
CoCoSim, FRET transforms requirements into CoCoSpec code. In this process, FRET
supports importing Simulink model information provided by Cocosim, and association
of high-level requirements with target model signals and components (see Figure 4).

Fig. 4. Associating FRETISH requirements with Simulink models.

3 FRET architecture

FRET is implemented mainly in JavaScript as an Electron JS app. Electron JS3 is a
framework for creating desktop-suite applications by using web development program-
ming languages. Electron JS uses two main technologies: the Node.js runtime and the
Chromium web browser. Its file system provided through the Node.js API is compatible
with Linux, Mac OS, and Windows. FRET’s interactive interface was developed with the
React JavaScript library4. FRET uses PouchDB5as an in-browser database that also runs
in Node.js. FRET’s architecture is illustrated in Figure 5. This section reviews the main
modules in the architecture.
Offline Formalization. This component of the FRET architecture is described in de-
tail in [8]. Formalization of FRETISH requirements is performed by the FORMALIZER

3 https://electronjs.org/ 4 https://reactjs.org/ 5 https://pouchdb.com/learn.html



Formal Requirements Elicitation with FRET 5

component. Formalization is performed based on semantic template keys, which are
valuations of the fields that make up each FRETISH requirement. For example, the tem-
plate key for requirement [AP-002a] is [in, null, always], meaning that the scope is “in
mode”, condition is omitted, and timing is “always”. For each template key, the FOR-
MALIZER generates a variety of mathematical formulas, as well as English language
explanations and diagrams, which are all saved in a cache. Note that all these artefacts
are templates that contain variables. These variables get instantiated by FRET to capture
the details of specific requirements, as will be described later.

FORMALIZATION VERIFIER is a modular, extensible framework, which provides
assurance that formulas generated by the FORMALIZER capture the intended semantics.
It implements 1) a module that generates traces, i.e., example executions over which
to interpret formulas; 2) a module that, given a trace and a template key, generates an
expected value of true or false based on the semantics of the FRETISH language, 3) a
module which interprets formulas over traces and compares the outcome to expected
values and 4) a module that compares future and past-time formulas generated for the
same template key, for equivalence.

simulator

visualizer

formula translator

requirements-model
mapper

analysis portal

verification code + traceability data

architectural
data

formalizer

formula

diagram

explanation
requirement fields

FRETISH

(explanation + diagram + formulas)
formalized requirement

instantiator

template key

parser

editor/elicitor LTL formulas

cache

trace
generator

oracle

semantics
evaluator

equivalence
checker

te
m

pl
at

e
ke

ys

T
R

U
E

/F
A

L
S

E formalization verifier

Fig. 5. Architecture of FRET

Requirements Elicitation. The bulk of the work in formalizing FRETISH requirements
is performed offline and cached. When users write a requirement, the PARSER identifies
the corresponding template key, and the values of the requirement fields, which instanti-
ate the template key. The INSTANTIATOR uses the template key to fetch correct artefacts
from the cache, and uses the requirement fields to appropriately instantiate them. The
produced LTL formulas can be explored interactively through the SIMULATOR.
Analysis Portal. This component connects FRET with analysis tools. The user needs
to define mappings between FRETISH variables and model variables, as well as addi-
tional information such as variable types, which is not relevant at a high level. Module
REQUIREMENTS-MODEL MAPPER supports this process and stores the provided infor-
mation in a database. It is also able to import architectural data about model components
and signals, when available, to facilitate this task. Module FORMULA TRANSLATOR
currently uses information from the mapper, and the past-time LTL formalization of a
requirement, to generate Cocospec code, as well as traceability data. The latter is used
to report analysis results in the context of FRETISH requirements. This component could
also be used in the context of other tools, and is described in detail in [14].

4 Applications and Future Work

As mentioned, the LMCPS case study is the largest FRET case study to date. FRET
is currently being used by a mission within the NASA Ames Research Center. We are



6 D. Giannakopoulou et al.

working closely with mission developers to help them with but also monitor their use
of the tool. We have noticed, for example, that developers initially need help from us to
capture requirements in FRETISH and understand the semantic nuances of the fields that
are supported. However, their requirements fall into recurring patterns, so they become
effective with the use of FRETISH quite fast. For this reason, we are considering ways of
supporting new FRETISH users, by, for example, displaying typical requirement patterns
within a domain or project, and allowing users to import patterns within the editor and
customize as needed. More generally, now that FRET has its basic features established,
we are focusing on improving the interaction with users both in editing and correcting
requirements. Similarly, we are working on additional analysis tools/algorithms to inte-
grate with FRET; for example, we have been working on providing support for checking
requirements realizability.

References

1. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic model checker.
International Journal on Software Tools for Technology Transfer 2(4), 410–425 (Mar 2000).

2. CoCo-team: CoCoSim – automated analysis framework for Simulink. Customized, closed
version based on the open source version. https://github.com/coco-team/cocoSim2

3. Crapo, A., Moitra, A., McMillan, C., Russell, D.: Requirements capture and analysis in AS-
SERT(TM). In: Proc. RE. pp. 283–291, IEEE (2017).

4. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state
verification. In: Proc. 21st ICSE. pp. 411–420. ACM (1999).

5. Elliott, C.: On example models and challenges ahead for the evaluation of complex cyber-
physical systems with state of the art formal methods V&V, Lockheed Martin Skunk
Works. In: Proc. S5 (2015), http://mys5.org/Proceedings/2015/Day_1/2015-S5-Day1_

1405_Elliott.pdf

6. Fifarek, A.W., Wagner, L.G., Hoffman, J.A., Rodes, B.D., Aiello, M.A., Davis, J.A.: SpeAR
V2.0: Formalized past LTL specification and analysis of requirements. In: Proc. NFM 2017,
2017, pp. 420–426 (2017).

7. Gallegos, I., Ochoa, O., Gates, A., Roach, S., Salamah, S., Vela, C.: A property specification
tool for generating formal specifications: Prospec 2.0. In: Proc. SEKE. pp. 273–278 (2008)

8. Giannakopoulou, D., Pressburger, T., Mavridou, A., Schumann, J.: Generation of formal
requirements from structured natural language. In: REFSQ2020 (2020)

9. Jeannet, B., Gaucher, F.: Debugging Embedded Systems Requirements with STIMULUS: an
Automotive Case-Study. In: Proc. ERTS (2016).

10. Konrad, S., Cheng, B.H.C.: Facilitating the construction of specification pattern-based prop-
erties. In: Proc. RE, pp. 329–338. IEEE (2005).

11. Lúcio, L., Rahman, S., Cheng, C.H., Mavin, A.: Just formal enough? Automated analysis of
ears requirements. In: Proc. NFM. pp. 427–434. Springer (2017)

12. Mavin, A.: Listen, then use EARS. IEEE Software 29(2), 17–18 (Mar 2012).
13. Mavridou, A., Bourbouh, H., Garoche, P.L., Hejase, M.: Evaluation of the FRET and Co-

CoSim tools on the ten Lockheed Martin Cyber-Physical Challenge Problems. Tech. Rep.
TM-2019-220374, NASA (2019)

14. Mavridou, A., Bourbouh, H., Garoche, P.L., Giannakopoulou, D., Pressburger, T., Schumann,
J.: Bridging the gap between requirements and simulink model analysis. Under submission,
Posters and Tools Track, REFSQ2020 (2020)

https://github.com/coco-team/cocoSim2
http://mys5.org/Proceedings/2015/Day_1/2015-S5-Day1_1405_Elliott.pdf
http://mys5.org/Proceedings/2015/Day_1/2015-S5-Day1_1405_Elliott.pdf

	Formal Requirements Elicitation with FRET

