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Abstract 

Formal proofs provide detailed justification for the validity of 

claims and are widely used in formal software development 

methods. However, they are often complex and difficult to 

understand, because the formalism in which they are con-

structed and encoded is usually machine-oriented, and they 

may also be based on assumptions that are not justified. This 

causes concerns about the trustworthiness of using formal 

proofs as arguments in safety-critical applications. Here, we 

present an approach to develop safety cases that correspond to 

formal proofs found by automated theorem provers and reveal 

the underlying argumentation structure and top-level assump-

tions. We concentrate on natural deduction style proofs, 

which are closer to human reasoning than resolution proofs, 

and show how to construct the safety cases by covering the 

natural deduction proof tree with corresponding safety case 

fragments.  We also abstract away logical book-keeping steps, 

which reduces the size of the constructed safety cases. We 

show how the approach can be applied to the proofs found by 

the Muscadet prover.   

1 Introduction 

Demonstrating the safety of large and complex software-

intensive systems requires marshalling large amounts of di-

verse information, including models, code, specifications, 

mathematical equations and formulas, and tables of engineer-

ing constants. Obviously tools supported by automated analy-

ses are needed to tackle this problem. For the highest 

assurance levels, these tools need to produce a traceable 

safety argument that shows in particular where the code and 

the argument itself depend on any external assumptions. 

 

However, many tools commonly applied to ensure software 

safety rely on techniques such as static analysis [20] or model 

checking [7] that do not produce enough usable evidence (i.e., 

justification for the validity of their claims) and can thus not 

provide any further insights or arguments. In contrast, in for-

mal software safety certification [8], as in other formal soft-

ware development methods [3, 5], formal proofs are available 

as evidence. However, these proofs are typically constructed 

by automated theorem provers (ATPs) based on machine-

oriented calculi such as resolution [21]. They are thus often 

too complex and too difficult to understand, because the for-

malisms spell out too many low-level details. Moreover, the 

proofs may still be based on assumptions that are not valid, or 

may contain steps that are not justified. As consequence, con-

cerns remain about using these proofs as arguments rather 

than just evidence in safety-critical applications. In this paper 

we address these concerns by systematically constructing 

safety cases that correspond to formal proofs found by ATPs 

and explicitly highlight the use of assumptions. 

 

The approach presented here combines abstraction and visu-

alization to reveal and present the proof’s underlying argu-

mentation structure and top-level assumptions. We work with 

natural deduction (ND) style proofs, which are goal-directed 

and thus closer to human reasoning than resolution proofs, 

and we show how the approach can be applied to the proofs 

found by the Muscadet ATP [19]. We explain how to con-

struct the safety cases by covering the ND proof tree with 

corresponding safety case fragments. The argument is built in 

the same top-down way as the proof: it starts with the original 

theorem to be proved as the top goal and follows the deduc-

tive reasoning into subgoals, using the applied inference rules 

as strategies to derive the goals. However, we abstract away 

the ATP’s book-keeping steps, which reduce the size of the 

constructed safety cases. The safety cases thus provide a 

“structured reading guide” for the proofs that allows users to 

understand the claims without having to understand all the 

technical details of the formal proof machinery. This paper is 

a continuation of our previous work to construct safety cases 

from information collected during the formal verification of 

the code [4], but here we concentrate on the certification 

components, i.e., the domain theory and the ATP used to sup-

port the software safety assurance process. 

2 Formal Software Safety Certification 

Our work is set in the context of formal software safety certi-

fication [8], where we use formal source code analysis tech-

niques based on program logics to show that the program 

does not violate certain conditions during its execution. A 

safety property is an exact characterization of these condi-

tions, based on the operational semantics of the programming 

language. Each safety property thus describes a class of haz-



ards. In our framework, the safety property is enforced by a 

safety policy, i.e., a set of verification rules that derived from 

initial set of safety requirements that formally represent the 

specific hazards identified by a safety engineer, and derive a 

number of logical proof obligations. Showing the safety of a 

program is thus reduced to formally showing the validity of 

these proof obligations: a program is considered safe wrt. a 

given safety property if proofs for the corresponding safety 

proof obligations can be found. Formally, this amounts to 

showing 

D ∪ A ⊧ P ⇒ C    (1) 

for each obligation, i.e., the formalization of the underlying 

domain theory D and a set of formal certification assumptions 

A entail a conjecture, which consists of a set of preconditions 

P that have to imply the safety condition C. The domain the-

ory formalizes the extra-logical operations that occur in the 

obligations; it includes arithmetic functions and relations, 

programming language operations such as array indexing as 

well as application-specific operations such as matrix inver-

sion. Assumptions typically specify global properties required 

by the component (e.g., the physical units of the input sig-

nals), while preconditions and safety conditions refer to prop-

erties at intermediate locations in the code. 

 

The different elements of these proof obligations have differ-

ent origins, and thus different levels of trustworthiness, and a 

safety case should reflect this. The premises and the safety 

condition are inferred from the program by a trusted software 

component implementing the safety policy, and their con-

struction can already be explained in a safety case [4]. In con-

trast, both the domain theory and the assumptions are 

manually constructed artifacts that require particular care. The 

main hazard that we address in the safety cases here, by mak-

ing explicit the use of hypotheses, is the unintended introduc-

tion of logical inconsistencies that can be exploited by the 

ATPs to construct logically correct but vacuous proofs.  

 

The necessary analysis is hampered by the fact that the prover 

does not work on the obligations in the form as given in (1) 

but uses the form  

 ⊧ ∧ (D ∪ A) ∧ P ⇒ C   (2) 

which is logically equivalent but blurs the distinction between 

domain theory, assumptions, and preconditions, and lumps 

them all together as logical premises. However, proofs typi-

cally use only a subset of these premises as hypotheses, and 

the safety case should make explicit those that are actually 

used. In particular, it needs to highlight the use of assump-

tions. These have been formulated in isolation by the safety 

engineer and may not necessarily be justified, and the possi-

bility of a logical inconsistency with the domain theory is 

substantially higher. Moreover, fragments of the domain the-

ory and the assumptions may be used in different contexts, so 

the safety case must reflect which of them are available at 

each context. By elucidating the reasoning behind the certifi-

cation process and drawing attention to potential certification 

problems, there is less of a need to trust the certification tools, 

and in particular, the manually constructed artifacts. 

3 Converting ND Proofs into Safety Cases 

3.1 Natural Deduction 

Natural deduction [13, 16] is a form of proof that attempts to 

provide a foundational yet intuitive system to construct for-

mal proofs. It consists of a collection of proof rules that ma-

nipulate logical formulas and transform premises into 

conclusions. A conjecture is proven from a set of assumptions 

if a repeated application of the rules can establish it as con-

clusion. The proof rules can be divided into basic rules, de-

rived rules (which can be seen as proof “macros” that group 

together multiple inference steps) and replacement rules 

(which are derived rules for equivalence and equality han-

dling). Here, we focus on some of the basic rules; a full expo-

sition of natural deduction can be found in the literature [16]. 

 

Natural deduction uses two sets of rules for each logical con-

nective or quantifier (∧,∨,…,∀, …), where one introduces the 

symbol, while the other eliminates it. In the introduction 

rules, the connective or quantifier is used as the top-level op-

erator symbol of the unique conclusion, while it occurs in the 

elimination rules in the same role in one of the premises. 

3.2 Conversion Process 

Natural deduction proofs are simply trees that start with the 

conjecture to be proven as root, and have given axioms or 

assumed hypotheses at each leaf. Each non-leaf node is recur-

sively justified by the proofs that start with its children as new 

conjectures. The edges between a node and all of its children 

correspond to the inference rule applied in this proof step. 

The proof tree structure is thus a representation of the under-

lying argumentation structure. We can use this interpretation 

to present the proofs as safety cases [17], which are structured 

arguments as well and represent the linkage between evidence 

(i.e., the deductive reasoning of the proofs from the assump-

tions to the derived conclusions) and claims (i.e., the original 

theorem to be proved). The general idea of the conversion 

from ND proofs to safety cases is thus fairly straightforward. 

We consider the conclusion as a goal to be met and the prem-

ise(s) as a subgoal(s); we further consider the applied infer-

ence rule as the strategy that shows how the conclusion is 

met. For each inference rule, we define a safety case template 

that represents the same argumentation. The underlying simi-

larity of proofs and safety cases has already been indicated in 

[17] but as far as we know, this idea has never been fully ex-

plored or even been applied to machine-generated proofs. 

 

The conversion we present here preserves the inferences and 

formulas of the original proof, but avoids overloading the 

constructed arguments with trivial proof steps. We identify 

semantically related or repeated identical inferences that can 

be abstracted away in order to construct a more concise ar-

gument. In the following we describe the safety case tem-

plates for the base rules of the calculus. We use the Goal 

Structuring Notation [17] to explicitly represent the logical 

flow of the proof’s argumentation structure.  



3.3 Conjunctions 

The rules for conjunction introduction and elimination shown 

in Figure 1 directly represent the intuitive interpretation of 

conjunctions: if A is true and B is true, then evidently A∧B is 

true as well (∧-i), and if A∧B is true, then both A and B must 

be as well (∧-e1 resp. ∧-e2). The hypotheses that are available 

to show A∧B true are also available to show A (resp. B) true 

as well.  Similarly in the case of ∧-e1 (resp. ∧-e2) where the 

available hypotheses to show each conjunct true are also 

available to show A∧B true.  

 

  

 

 

 

 

 

Figure 1: Safety Case Templates for ∧-Rules. 

 

The ∧-rules can be directly converted into safety cases. In the 

case of ∧-introduction, the satisfaction of the conclusion (i.e., 

goal of the safety case) is implied by the satisfaction of the 

two premises (i.e., subgoals of the safety case) based on the 

strategy of ∧-introduction rule. For the ∧-elimination rule, the 

strategy shows a logically stronger goal we can conclude A 

(resp.B) if we have a proof of A∧B. Figure 1 shows the safety 

case fragments for the conjunction rules. 

3.4 Disjunctions 

A disjunction can be introduced as long as one of the dis-

juncts is already known i.e., if A (resp. B) is true, then evi-

dently A∨B is true as well. In the safety case, a goal A∨B is 

constructed, which is justified by the subgoal A (resp. B) via 

the strategy (∨-i1) (resp. ∨-i2). The hypotheses that are avail-

able to show A∨B true are also available to show subgoal A 

(resp. B) true. 

 

   

 

 

 

 

 

 

 

 

Figure 2: Safety Case Templates for ∨-Rules. 

 

In contrast, in disjunction elimination, we only know that 

A∨B holds, but not which of A or B is true, so that we need to 

reason by cases to conclude C from A∨B, i.e., separately con-

sider each of the two cases for the disjunction to be true. In 

the first case we thus assume A together with the available 

hypotheses and try to derive C, in the second case we assume 

B together with the available hypotheses and try to derive C. 

If both cases succeed, we can conclude C. The safety case 

fragment makes this argument explicit, and, in particular, 

explicitly justifies the use of the respective assumptions in the 

two cases. Figure 2 shows the safety case fragments for the 

disjunction rules. 

3.5 Implications 

The implication elimination follows the standard pattern but 

in the introduction rule we again temporarily assume A as 

hypothesis together with the list of other available hypothe-

ses, rather than deriving a proof for it. We then proceed to 

derive B, and discharge the hypothesis by the introduction of 

the implication. The hypothesis A can be used in the proof of 

B, but the conclusion A=>B no longer depends on the hy-

pothesis A after B has been proved. 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3: Safety Case Templates for =>-Rules. 

 

In the safety case fragment (see Figure 3), we use a justifica-

tion to record the use of the hypothesis A, and thus to make 

sure that the introduced hypotheses are tracked properly.  

3.6 Universal Quantifiers 

The natural deduction calculus can also be used for proofs in 

predicate logic. The proof rules focus on the replacement of 

the bound variables with objects and vice versa. For example, 

in the elimination rule for universal quantifiers, we can con-

clude the validity of the formula for any chosen domain ele-

ment tx.  

 

 

  

 

 

 

 

 

 

 

Figure 4: Safety Case Templates for ∀-Rules. 



In the introduction rule, however, we need to show it for an 

arbitrary but fresh object tx (that is, a domain element which 

does not appear elsewhere in H, A, or the domain theory and 

assumptions). If we can derive a proof of A, where x is re-

placed by the object tx, we can then discharge this assumption 

by introduction of the quantifier. The safety case fragments 

(see Figure 4) record this replacement as justification. The 

hypotheses available for the subgoals in the ∀-rules are the 

same as those in the original goals. 

4 Safety Case Generation Process 

To automatically construct the ND proof safety case, we inte-

grate the Muscadet [19] theorem prover with Adelard’s ASCE 

tool [1]. We convert the proofs that are generated by the Mus-

cadet prover into an XML format (i.e., PROOF-XML in Fig-

ure 5). The XML file contains all the relevant information 

that is required for the automatic safety case construction. 

Subsequently, an XSLT program is used to transform the 

proofs into another XML (i.e., file GSN-XML in Figure 5) 

logically representing a safety case, by applying the templates 

that have been defined in Section 3. The file format was de-

signed so that the derived safety cases can be easily be 

adapted to different tools or applications. Finally, to present 

the resulting safety case graphically, we use a Java program 

to layout the logical information which involved some mathe-

matical calculations in positioning the argument and to con-

vert it into the standard Adelard ASCE file format. Figure 5 

summarizes the safety case generation process.  

 

Figure 5: Safety Case Generation Process. 

5 Hypothesis Handling 

An automated prover typically treats the domain theory D and 

the certification assumptions A as premises and tries to derive 

∧ (D ∪ A) ∧ P => C from an empty set of hypotheses. As the 

proof tree grows, these premises will be turned into hypothe-

ses, using the =>-introduction rule (see Figure 3). In all other 

rules, the hypotheses are simply inherited from the goal to the 

subgoals. However, not all premises will actually be used as 

hypotheses in the proof, and the safety case should highlight 

those that are actually used. This is particularly important for 

the certification assumptions. We can achieve this by modify-

ing the template for the =>-introduction (see Figure 6). We 

distinguish between the hypotheses that are actually used in 

the proof of the conclusion (i.e., A1,...,Ak) and those that are 

vacuously discharged by the =>-introduction (i.e.,  Ak+1,..,An).  

We can thus use two different justifications to mark this dis-

tinction. Note that this is only a simplification of the presenta-

tion and does not change the structure of the underlying 

proof, nor the validity of the original goal. It is thus different 

from using a relevant implication [2] under which A => B is 

only valid if the hypothesis A is actually used.  

 

Figure 6: Hypotheses Handling in =>-Introduction Rule. 

 

In order to minimize the number of hypotheses tracked by the 

safety case, we need to analyze the proof tree from the leafs 

up, and propagate the used hypotheses towards the root. By 

revealing only the used hypotheses as assumptions, the valid-

ity of their use in deriving the proof can be checked more 

easily. In our work, we also highlight the use of the external 

certification assumptions that have been formulated in isola-

tion by the safety engineer. For example in Figure 7, the use 

of the hypothesis has_unit(tptp_float_7_0e_minus_1, 

ang_vel), meaning that a particular floating point variable 

represents an angular velocity, which has been specified as 

external assumption, is tracked properly in the safety case, 

and the validity of its use in deriving the proofs can be 

checked easily. 

 

Figure 7: External Hypothesis. 

6 Application to Muscadet  

We illustrate our approach by converting proofs created by 

the AutoCert certification tool [11], which takes a set of re-

quirements, and a domain theory consisting of logical axioms 

and so-called annotation schemas. These are used to infer 

logical annotations and construct proof tasks which are sent to 

the ATP in order to create proofs that the code complies with 

the requirements. 

 

For these experiments, we used the Muscadet [19] theorem 

prover during the formal certification of the initialization 

safety of a component of an attitude control system. Muscadet 

is based on natural deduction, but to improve performance, it 

implements a variety of derived rules in addition to the basic 

rules of the calculus. This includes rules for dedicated equal-
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ity handling, as well as rules that the system builds from the 

definitions and lemmas, and that correspond to the application 

of the given definitions and lemmas. Figure 8 shows the re-

sulting safety case for a proof found by Muscadet. For some 

of the “book-keeping” rules (e.g., the elimination of function 

applications in the elifun-rule in Figure 8) we have not yet 

defined dedicated safety case templates; these rules are repre-

sented by a generic strategy node. 

 

Figure 8: ND Proof Safety Case 

7 Proof Abstraction  

Directly converting the Muscadet-proofs into safety cases is 

unfeasible in most practical cases because the proofs contain 

too many elementary and book-keeping steps. It is thus neces-

sary to abstract the proof. Here, we can apply different ap-

proaches. For example, we can remove some of the book-

keeping rules (e.g., return_proof) that are not central to the 

overall argumentation structure. Similarly, we can collapse 

sequences of identical book-keeping rules into a single node. 

In general, however, we try to restructure the resulting proof 

presentation to help in emphasizing the essential proof steps. 

In particular, we can group sub-proofs that apply only axioms 

and lemmas from certain obvious parts of the domain theory 

(e.g., ground arithmetic or partial order reasoning) and repre-

sent them as a single strategy application. Figure 9 shows an 

example of this. Here, the first abstraction step collapses the 

sequences rooted in G13 and G14, noting the lemmas which 

had been used as strategies as justifications, but keeping the 

branching that is typical for the transitivity. A second step 

then abstracts this away as well. 

8 Related Work 

Other approaches have been used to address concerns with 

using proofs for assurance purposes. Many of them try to 

bring formal proofs into a form closer to human reasoning, to 

aid with their understanding. Proof visualization tools (e.g., 

[22]) present the proof in a graphical form, but quickly get 

overwhelmed by the proof size. Proof verbalization (e.g., [6, 

15]) transforms the proofs into natural language but the ex-

planations are often too detailed. Proof abstraction groups 

multiple low-level steps that represent recurring argumenta-

tion patterns into individual abstract steps and thus accentu-

ates the hierarchical structure of the proof [10] but has so far 

only been applied to interactively constructed proofs. Our 

work combines abstraction, verbalization and visualization to 

reveal and present the proof’s underlying argumentation 

structure and top-level assumptions. 

 

Alternatively, proof checkers [18, 23] have been used to in-

crease trust in formal proofs, by demonstrating that every 

individual step in the proof is correct. However, proof check-

ing does not address the real problem: while errors in the im-

plementations of provers do occur, they are very rare [12]; 

errors and inconsistencies in the formalization of the domain 

theory in contrast are much more common, but these are not 

detected by the standard proof checking techniques. 

9 Conclusions 

We have described an approach to derive safety cases from 

software safety proofs found by ATPs. The safety cases serve 

as a traceable argument that shows validity of the proof. They 

also highlight and properly track hypotheses that are actually 

used in deriving the proof, and thus reveal where the proofs 

depend on top-level assumptions. The safety cases provide a 

“structured reading guide” for the safety proofs and make 

clear the interactions underlying the proofs. Hence, assurance 

is no longer implied by the trust in the ATP but follows from 

an explicitly constructed argument for the proofs. 

 

The work we have described here is still in progress. So far, 

we have automatically derived safety cases for ND proofs 

found by the Muscadet prover [19]. We are currently working 

on safety case templates for the remaining inference rules 

used by Muscadet. We plan to make this technique applicable 

to generally more powerful resolution provers by converting 

the resolution proofs to ND style [14]. The straightforward 

conversion of ND proofs into safety cases is far from satisfac-

tory as they typically contain too many details. In practice, a 

careful use of abstraction is needed [10] and we are working 

on more abstraction techniques. 

 

This work complements our previous work [4] where we used 

the high-level structure of annotation inference to explicate 

the top-level structure of such software safety cases. We con-

sider the safety cases as a first step towards a fully-fledged 

software certificate management system [9] which will pro-

vide storage and reporting capabilities for all artifacts. We 

also believe that the result of our research will be a compre-

hensive safety case (i.e., for the program being certified, as 

well as the safety logic and the certification system) that will 

clearly communicate the safety claims, key safety require-

ments, and evidence required to trust the software. 



 

 

 

 

 

 

 

 

 

Figure 9: Abstraction of Safety Cases 
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