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ABSTRACT

Tensegrity structures (built from interconnected rods and
cables) have the potential to offer a revolutionary new robotic
design that is light-weight, energy-efficient, robust to fail-
ures, capable of unique modes of locomotion, impact toler-
ant, and compliant (reducing damage between the robot and
its environment). Unfortunately robots built from tenseg-
rity structures are difficult to control with traditional meth-
ods due to their oscillatory nature, nonlinear coupling be-
tween components and overall complexity. Fortunately this
formidable control challenge can be overcome through the
use of learning systems and multiagent system. In this pa-
per we show how both single-agent and multiagent learning
algorithms based in direct policy search can be used to ef-
ficiently control a ball shaped tensegrity robot. Experimen-
tal results performed in a detailed soft-body physics simu-
lator show that the single-agent learning system performs
80% better than a hand-coded solution, while the multia-
gent learning systems performs 100% better. In addition,
learning is able to discover diverse control solutions (both
crawling and rolling) that are robust against structural fail-
ures and can be adapted to a wide range of energy and ac-
tuation constraints. These successful controls will form the
basis for building high-performance tensegrity robots in the
near future.

Categories and Subject Descriptors
1.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Design, Reliability

Keywords
Robotics, Tensegrity, Multiagent Systems

1. INTRODUCTION

Tensegrity robots are part of an exciting emerging field of
soft-body robotics that are entirely composed of pure tension
and compression elements (cables and rods - see Figure 1).
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Figure 1: Tensegrity Structure. Tensegrities are com-
posed of pure tension and pure compression elements (e.g.
cables and rods). They can be light-weight, energy-efficient
and robust to failures.

These structures are made of axially loaded compression el-
ements encompassed within a network of tensional elements,
and thus each element experiences either pure linear com-
pression or pure tension. As a result, individual elements
can be extremely lightweight as there are no bending or
shear forces that must be resisted. A unique property of
tensegrity structures is how they can internally distribute
forces. As there are no lever arms, forces do not magnify
into joints or other common points of failure. Rather, ex-
ternally applied forces distribute through the structure via
multiple load paths, creating a system level robustness and
tolerance to forces applied from any direction. Thus tenseg-
rity structures can be easily reoriented and are ideally suited
for operation in dynamic environments where contact forces
cannot always be predicted.

Tensegrities have a number of beneficial properties includ-
ing:

e Light-weight: Forces align axially with components
and shocks distribute through the tensegrity, allowing
tensegirties to be made of light-weight tubes/rods and
cables/elastic lines.

e Energy efficient: Through the use of elastic tensile
components and dynamical gaits, efficient movement
is possible.



e Robust to failures: Tensegrities are naturally dis-
tributed systems and can gracefully degrade perfor-
mance in the event of actuation or structural failure.

e Capable of unique modes of locomotion: Tenseg-
rities can roll, crawl, gallop, swim or flap wings de-
pending on construction and need.

e Impact tolerant and compliant: Since forces are
distributed upon impact, they can fall or bump into
things at moderate speed. In addition they will do
minimal damage to objects that they hit.

e Naturally distributed control: Characteristics of
force propagation in tensegrities allows effective local
controllers.

The last property is the most subtle but important. In “tra-
ditional” robots, distributed controls becomes messy due to
the need to communicate global state information to all
the controllers with high precision, and thus often under-
mines the very promise of distribution. Fundamentally, this
stems the fact that a rigidly connected structure will mag-
nify forces internally through leverage, and will accumulate
force into joints. Thus, the actions of a local distributed
controller can have disproportionate global consequences,
requiring a certain amount of global coordination and state
management, undermining the value of the local controller.
Tensegrity structures are different, due to the tension net-
work, there is no leverage in the structure. Thus, forces dif-
fuse through the structure, rather than accumulate in joints.
As a result, actions by a local controller diffuse through the
structure, integrating with all the other local controllers.
While any one local controller will impact the structure glob-
ally, that impact is locality relevant and not magnified via
leverage. Thus, the structure enables true distributed con-
trol, because local actions stay (predominately) local.

Despite these desirable properties, tensegrity robots have
remained mostly a novelty for many years due to difficult
control properties that make them hard to control with tra-
ditional control algorithms:

1. Complex oscillatory motions : Tensegrity robots
tend to have oscillatory motions influenced by their
interactions with their environment.

2. Non-linear distributed interactions: A force gen-
erated on one part of the tensegrity propagates in a
non-linear way through the entire tensegrity.

Fortunately learning algorithms and multiagent systems are
a natural match to these problems. Learning systems can
learn complex control policies that maximize a performance
criterion without needing to handle the oscillatory motions
and distributed interactions explicitly. In addition, increased
performance can be achieved by assigning learning agents to
different control points throughout the tensegrity. Then as
a multiagent system, the agents can learn a unified control
policy.

In this paper, we present how a direct policy search based
learning algorithm and a multiagent system can be used to
learn control policies that allow a six segment tensegrity
to roll through its environment. This paper is organized as
follows: Section 2 gives background on tensegrity robots and
previous work. Section 3 gives details about the tensegrity
robot used in this paper. Section 4 shows how a learning

algorithm can be used to create a control policy for our
tensegrity robot. Section 5 presents experimental results.
Section 6 discusses hardware details and Section 7 ends the
paper with conclusions and future work.

2. BACKGROUND AND PREVIOUS WORK

Tensegrity structures are a fairly modern concept, having
been initially explored in the 1960’s by Buckminster Fuller
[7] and the artist Kenneth Snelson [19, 18]. For the first
few decades, the majority of tensegrity related research was
concerned with form-finding techniques [25, 10, 20, 26, 12,
14] and the design and analysis of static structures [1, 8,
17]. Research into control of tensegrity structures was ini-
tiated in the mid-1990’s, with initial efforts at formalizing
the dynamics of tensegrity structures only recently emerg-
ing [17, 11, 24]. The very properties that make tensegrities
ideal for physical interaction with the environment (com-
pliance, multi-path load distribution, non-linear dynamics,
etc) also present significant challenges to traditional control
approaches. A recent review [22] shows that there are still
many open problems in actively controlling tensegrities.

There are several approaches that have been taken to con-
trol tensegrity robots. Most related to the work in this paper
are approaches to locomotion of tensegrity robots using evo-
lutionary algorithms [6]. Paul et al [13] shows two different
tensegrity robots that can perform a locomotion movement.
These robots perform motion mostly by alternating between
different configurations and doing small hops and crawling.
Being able to successfully evolve these gaits is impressive
given that one of the tensegrities uses only three rods, while
the other uses four. However, such simple tensegrities are
not able to achieve efficient rolling motion or complex dy-
namical movements, which is the main goal of this paper.

Instead of learning control policies for tensegrities, more
recent work has been done on engineering control algorithms
that leverage key features of locomotion [16, 2, 3]. There has
also been recent work involving hand tuning of controls for
rolling tensegrity robots by body deformation [15, 9, 21, 5].
While this work is able to produce stable smooth dynamics,
they are not designed to address the oscillatory nature of
tensegrities that come up at high speeds, on uneven terrain,
or upon collisions with other objects that occurs in many
domains. Instead, with our learning approach, these oscil-
latory complexities of the tensegrity are implicitly incorpo-
rated into the reward function generated from the physics
simulations, and therefore we are able to create dynamical
control that can incorporate complexities of the domain as
they arise.

3. TARGET TENSEGRITY PLATFORM

In this paper we show how controls can be learned on a
ball-shaped tensegrity capable of a large range of movement.
To do this we choose as our experimental platform, a 6-rod,
24-cable tensegrity as shown in Figure 2. It is chosen since it
is one of the simplest tensegrity platforms that can exhibit
the following complex behaviors:

e Many modes of locomotion: They can crawl, “gal-
lop” and roll, with rolling being an especially efficient
and fast mode of locomotion.

e Robust against failures: They exhibit enough re-
dundancy that they can recover from hardware failure.



Figure 2: Structure for Tensegrity Robot. This siz-rod
design is one of the simplest designs that can behave as a
“ball.” It is capable of rolling, changing shapes, and can be
robust against failures.

e Shape changing: They can change shape to “peer”
over things, get unstuck or to move sensors located on
tensegrity structure.

These “ball” tensegrities can be useful in many domains,
especially those in which a tensegrity has to navigate rugged
terrains that can be difficult for wheeled vehicles.

3.1 Structure

The structure of the tensegrity used in this paper is shown
in Figure 2. As with all tensegrities, rods never connect di-
rectly with other rods. Instead rods are indirectly connected
though cables. In the orientation shown in Figure 2 (left)
one pair of the rods are parallel to x-axis, another pair is
parallel to y axis and the last pair is parallel to z axis. Both
ends of the rods are connected via cables. Each end of a
rod is connected to the ends of other non parallel rods via
4 different cables. When the structure is in balance, it is
symmetrical and convenient for a rolling motion. On the
other hand, when an external force is applied, it easily de-
forms and distributes the force to every component of the
structures.

3.2 Controls

Figure 3: Controls. Tensegrity controls are broken down
into eight groups containing three cables each (three of the
groups are shown here). All of the three cables in a group
are set to the same target length. Using groups reduces com-
plexity over having to control 24 cables individually.

The tensegrity is controlled by changing the lengths of the
cables. Many physical designs do this by using a motor to
pull the cable around a spool that is either interior to the
tensegrity or inside a rod. Other concepts involve ways of
using dynamic cable twisting or elastomers to change the
shape of the cable. In this paper, we do not consider the ac-
tually physical implementation though as discussed further
in Section 5.1, we do take into account the possible range
limitations of control implementations.

In principle it would be possible to provide individual con-
trols to each of the 24 cables in our tensegrity. However, to
simplify our control problem, the 24 cables are put into 8
groups according to the symmetry of the structure (see Fig-
ure 3). The structure is symmetrical according to x plane,
y plane and z plane, which divides the structure into front
- back, left-right and top-down segments. Each group con-
tains 3 cables forming a triangle. Each of these groups is
controlled as a whole, with the control algorithm always set-
ting the target length of each of the three cables within a
group to be the same.

The control of the robot is done via sinusoidal control of
the lengths of the cables. The lengths of the cables change
over time according to a sinusoidal signal, and the parame-
ters of the signal are controlled by the agents. The value of
the cable is calculated with formula:

y(t) = C + A = sin(wt + ¢) (1)

where,
e (), represents the center position of the sine wave.

e A, the amplitude, is the peak deviation of the function
from its center position.

e w, the angular frequency, is how many oscillations oc-
cur in a unit time interval

e ¢, the phase, is specifies where in its cycle the oscilla-
tion begins at t = 0.

3.3 Simulation

Our tensegrity simulator is built on top of the open-source
Bullet Physics Engine [4]. Bullet was chosen because of
its built in support for soft-bodied physics, and has been
used previously in tendon-driven robotics simulators such
as Wittmeier et al’'s CALIPER software [23]. Cables are
represented as nodes with Hooke’s-law-like stiffness between
them. Therefore our “cables” are actually somewhat elas-
tic and exert a force dependent on their length. We keep
our model of actuation abstract in order to explore the best
control solutions and then drive requirements back into real
hardware design requirements. To enforce additional real-
ism, we prevent the cables being actuated when stretched
more than 25%, as an upper limit on the hypothetical motor
force. This approach allows us to find the types of control
and requirements that will be driven into actuation selec-
tion.

4. LEARNING CONTROLS

While the control parameters of our tensegrity platform
are relatively straightforward, the relationship between these
parameters is highly complex. In this section we explore how



we can use the simulation combined with a reward evalua-
tion to implement a learning algorithm that can learn a set
of control parameters that leads to high performance.

4.1 Reward Evaluation

We measure the performance of a simulated tensegrity
based on how far it can travel from a starting location within
60 seconds:

T:d(ChAlvwlaqsh'" 5087A87w87¢8)7 (2)

where, d is the distance travelled, which is a function of the
32 parameters of the control policy. Note that the decom-
position of the distance function d is not readily obtainable
in closed form. Instead it must be computed from observing
simulations or measured from a physical implementation.
Also note that our evaluation does not explicitly take any
behavior into account besides distance moved. Tensegrities
can exhibit many different gaits, ranging from hopping to
rolling, and many different paths, ranging from spirals to
straight lines. However, tensegrities that maximize our re-
ward function tend to roll in fairly straight lines. Deviations
from this pattern tend to hurt performance.

4.2 Single Agent Learning

In this paper, we perform both single agent learning and
multiagent learning. In the single agent case, a single control
policy is learned for the entire tensegrity robot. This control
policy sets the 32 parameters for the sinusoidal controllers
for the eight groups of cables. The algorithm is a simple
population-based direct policy search that tries to learn a
policy that maximizes our reward function. At the beginning
of training, a population of n random policies is created
and evaluated based on our reward function r. After each
round of learning, the worst k policies are removed, and
are replaced by mutated versions of the best k policies *
As learning progresses, the population tends to converge to
higher performance policies.

4.3 Multiagent Learning

In addition to single agent learning, we perform multia-
gent learning, where one agent is assigned to each control
group. Therefore there are 8 agents total, and each agent is
responsible for setting the values for the 4 parameters of the
sinusoidal controller used for that group. These 4 parame-
ters represent the control policy of the agent. The goal of
each agent is to create a control policy that helps maximize
the overall system reward function r defined in Equation 2
when combined with the control policies of all the other
agents.

In our multiagent learning system, each agent has a pop-
ulation of n policies. First the performance of individual
agent policies is assessed. This is done by first creating 15
full system policies by sampling the agent policies uniformly.
Each system policy is then evaluated according to the full
system reward r. Each agent policy is then given the eval-
uation of the full system policy that it participated in that
received the highest reward. After the evaluation step, for
each agent the lowest performing k policies are removed, and

IThis can be seen as a simple form of evolution with no
cross-over. In related experiments, no large performance
differences are seen between this and non-population based
reinforcement learning

are replaced by the mutated versions of the best k policies.
The pseudo-code for this algorithm is as follows:

Algorithm 1: Multiagent learning algorithm for tenseg-
rity control.

Data: Population of n elements for each agent
for i=1..15 do
random team < 0 ;
forall the Populations do
‘ random team < random agent;
score = evaluate random team ;
forall the agents € random team do
if score > agent.score then
‘ agent.score = score ;
forall the Populations do
order the population;
eliminate last k;
copy first k to last k;
set score of last k to MIN;
mutate last k;

4.4 Hand-Coded Solution

In addition to creating control policies through learning,
we explore how to hand-code a control solution using the
same parameters available to the learning systems. The goal
here is to explore the challenges of hand-coding a solution
and to see how well or best effort compares to our learned
solutions. It turns out that creating a control policy by
hand using our 32 parameters is very difficult, and the best
achieved solution barely moved. This problem will only get
more difficult as we scale the tensegrity robots to more com-
plex versions with more elements. To improve performance,
we reduced the parameter space by hand coding the ampli-
tudes of each group and making the oscillation frequency the
same for all groups. The results shown later in this paper
are for this second, better-performing hand-coded solution.

S. EXPERIMENTAL RESULTS

In this section, we present experiments evaluating the
performance of our learning methods to control tensegrity
robots in the physics simulator described in Section 3.3. The
goal of our experiments is to evaluate whether learning sys-
tems can be successfully applied to tensegrity robots under
nominal conditions, and how robust these solutions are to
limitations in the range of actuation, to actuator noise and
to a physical breakage in a cable of the tensegrity. For the
nominal condition case we test the following methods of cre-
ating the controller:

e Hand Coded Control policy is developed by hand to
try to achieve maximum performance.

e Single Agent Learning A single control policy is
learned for the entire tensegrity robot.

e Multiagent Learning A multiagent system learns
the control policy for tensegrity robot, with one agent
assigned to each of the 8 control groups.

We then test the robustness of our highest performance so-
lution (multiagent learning as shown below) in the following
ways:



e Actuation Range We limit how far the cables are
allowed to contract, to simulate designs where range
may be limited and to simulate control modes where
low-power locomotion is needed.

e Actuation Noise We add noise to how far cables are
actually moved as compared to how far they are being
requested to move.

e Cable Failure We test performance when a single
cable in the robot breaks.

All experiments start with a stationary tensegrity robot
on the ground. For each experiment, the robots are created
on a flat surface, and after 5 seconds of stabilization time,
active control of the cables starts. The agents are given
fixed amount of time (60 seconds) to move the robot as far
as possible. The evaluation function is the distance between
the starting position and the position at the end of given
time period. The population size in the policy search is set
to n = 10 and the selection parameter is set to k = 5. We
perform 10 statistical runs for each type of experiment. Us-
ing a t-test we confirm that our conclusions are statistically
significant.

5.1 Nominal Conditions
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Figure 4: Evolutionary Approach vs. Hand Coded
Agorithm. The policies are evaluated according to how far
the tensegrity can move in 60 seconds. Single agent approach
performs better than the hand coded policy. Multiagent ap-
proach performs the best.

The first experiment compares three different control poli-
cies: Hand-coded, single agent learning and multiagent learn-
ing. Figure 4 shows that both learning approaches can easily
outperform the hand coded solution. The multiagent learn-
ing approach provides the best performance by moving 20%
more quickly than the single agent and 100% more than our
hand coded agent. Both single agent and multiagent algo-
rithms are able to achieve smooth rolling motions as shown
in Figure 5. Note that while our hand coded tensegrity is
not able to achieve a rolling motion, we are not trying to im-
ply that this problem is impossibly complex for non-learning
algorithms. In fact there have been several successful algo-
rithms to do this [15, 9, 21, 5]. Instead we are illustrat-
ing that it is in fact quite difficult to create these controls,

and that the single agent and multiagent learning algorithms
are creating complex, non-trivial control solutions. In addi-
tion a multiagent framework has the potential to be adapted
to many different complex tensegrities with less effort than
hand coding an algorithm for each new tensegrity.

Figure 5: Tensegrity Dynamics. Tensegrity is able to
achieve smooth rolling motion. This rolling is accomplished
solely by changing the length of the cables. Our learned con-
trol policies produce rolling that is also dynamical as the
tensegrity does not stop to setup mext roll action. This type
of rolling can be fast and highly efficient.

5.2 Actuation Range Limitations

In the next experiment, we test different maximum actu-
ation ranges for the controller. The maximum change in the
rest length of a cable length is varied from 1% of the size
of a tensegrity rod to 40%. Limiting the actuation range is
done to both simulate situations where our actual hardware
has limited actuation range (i.e. long range pulley/cable ac-
tuators, vs. short range electro-elastomers), and to simulate
situations where we want to reduce power requirements by
limiting actuation. Figure 6 shows that for multiagent con-
trollers, after a 10% maximum actuation range, additional
range does not gain any more advantage. On the other hand,
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Figure 6: Performances of Robot under Actuation
Limitations. Limits on the range that a cable can be con-
tracted and expanded. The performance tops with an actu-
ation range equal to 10% of the length of a tensegrity rod.
Lower actuation range reduces speed, yet increasing actua-
tion range beyond 10% does not increase performance.

decreasing these parameters results in robots that move less
quickly. A controller that can only change its cable length
5% can only move the tensegrity at 75% of the speed com-
pared to a controller that can change the cable length 10%.
If we further decrease the range of actuation, performance
declines even more.

5.3 Actuation Noise
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Figure 7. Performances of Robot under Actuation
Noise. Robots are tested in environments having gaussian
noise added to the control amplitude with standard deviations
of 1, 2, 5, 10, 25, 50 and 100 % of the mazimum control
range. The agents that are trained in a noisy environment
are able perform smooth rolling motion even in the presence
of high actuation noise.

To measure the robustness of our learning approach against
noise, we test the multiagent tensegrity robot in an environ-
ment with different levels of actuation noise. Actuation noise
is applied at every time step to the sinewave that the agents

generate to control the cables. At every time step, noise is di-
rectly added to the value of the Equation 1. To test different
levels of noise, we use different environments where the stan-
dard deviation is set to 1%, 2%, 5%, 10%, 25%, 50%, 100% of
the amplitude of the sine wave for each cable.

In this experiment, we test two different policies: 1) A
policy derived from a multiagent system that had learned
in an environment without noise, and 2) A policy derived
from a multiagent system that had learned in the noisy en-
vironment. For each level of noise, agents that are tested
are trained in an environment with that specific amount of
noise. Figure 7 shows that the tensegrity that is trained
without noise still has tolerable performance, but its perfor-
mance is significantly lower than what is is in a non-noisy
environment. When we train the agents with noise, it can
be seen that they can perform 50% better in low-noise en-
vironments (1% — 10%) and 100% better in high-noise en-
vironments (50% — 100%) than the agents that are trained
without noise. This is an impressive result, as it shows that
the solutions generated are not highly specific to an exact
model of a tensegrity and exact environmental conditions.
Instead the solutions appear highly generalizable.
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Figure 8: Multiagent Learning with a Tensegrity

Robot with Broken Cable. The robot with 40% activa-
tion range can still move the robot despite the missing cable.

5.4 Broken Cable

The fourth experiment tests the robustness of the struc-
ture and the controller. We take the same tensegrity struc-
ture, but remove one of the cables. The removal of one cable
not only decreases our ability to control the tensegrity, but
also disrupts the balance of the structure. With the cable
removed, the structure is not symmetrical anymore and it
can not keep its ball shape by default. To be able to com-
pensate for the broken cable, we trained a controller with a
high range of actuation (40%) as well as a controller with a
medium range of actuation (10%). Although these two con-
trollers score the same when used on an unbroken tensegrity,
the results change when they control the tensegrity with a
broken cable (Figure 8). While the controller with a medium
activation range can no longer perform well, the controller
with a high range of activation is able to still perform de-
cently with a broken cable. This result shows that while hav-
ing a larger range of available motion may not be valuable



under nominal conditions, under adverse conditions, we can
learn a controller that takes advantage of the larger range of
motion to effectively move the tensegrity robot. Note that
this result does not show that the learned control policy dy-
namically adapts to problems, since in this experiment we
retrain our policy after the breakage. However, it does show
the flexibility of the learning process. In addition, in many
situations a may be possible to upload solutions derived in
simulation to disabled robots in the field. This could be
especially useful when the robot is highly inaccessible.

Figure 9: Experimental Tensegrity Robot Prototype.
This 6-rod tensegrity robot is designed to test hardware im-
plementation and shape-changing abilities of tensegrities.
We are in the process of building 6-rod tensegrity that can
roll.

6. HARDWARE ROBOT

With the actuation requirements explored in simulation,
and building on our experience with prior prototype tenseg-
rity robots, we will be spending this year researching appro-
priate actuation technologies and building a prototype of the
rolling tensegrity robot discussed in this paper. Our existing
prototype tensegrity robot uses position controlled spooled-
cable actuation, and we will explore two new approaches:
Impedance Controlled (Tension and Position) Spooled Ca-
ble actuation, and Twisted Cable Actuation. Our existing
prototype robot is already designed for spooled cable actu-
ation and we will retrofit it with new sensors and controls
to support Impedance Control. In parallel we will evaluate
a novel “twisted cable” actuation approach that we believe
will allow for the use of significantly smaller and energy effi-
cient motors due to the decoupling of motor torque output

from actuator tension output. Finally these two actuator
approaches will be evaluated for design simplicity, power ef-
ficiency, and total system mass, and the best approach will
be used on our new rolling tensegrity robot. This new robot
is designed to validate the controls approaches explored here
and to show that these tensegrity robots can be used as land-
ing and mobility systems.

7. CONCLUSIONS AND FUTURE WORK

Tensegrity robotics matched with multiagent learning sys-
tems have a promising future. The structural properties of
tensegrities give them many beneficial properties, while their
distributed nature makes them a perfect match for multia-
gent systems. In this paper, we introduce a first step to this
promise. We first show that in simulation a direct policy
search algorithm is able to learn an effective controller that
allows a moderately complex tensegrity ball to roll. Then
we show how performance can be improved by applying a
multiagent learning system to this same tensegrity robot.
Not only is the multiagent system able to produce a smooth
rolling motion for the tensegrity robot, it is able to do so
under a wide range of adverse conditions, including actua-
tion limitations, actuation noise and cable breakage. These
results show that multiagent learning systems are a strong
candidate for tensegrity control. In addition, the high level
of robustness may allow our multiagent framework now used
in simulation to be used on our physical tensegrities now in
development.

The multiagent learning system used in this paper repre-
sents just a glimpse of what may be possible for tensegrity
control. While the distributed nature of a tensegrity makes
it a natural match to the distributed nature of a multiagent
system, the multiagent system we use in this paper is actu-
ally not as distributed as it could be. While all the agents
take independent actions, they all try to maximize the same
global system reward. Their use of this global reward can
cause agents to take into account too much information and
limit their ability to learn quickly. In contrast, future re-
search may show that it is possible to use agent-specific re-
wards that are more relevant to an agent’s particular ac-
tion. In addition, it may be possible to partition agents into
more distributed sets. Such changes could allow multiagent
systems to be used for even more complex tensegrities and
achieve more sophisticated control behaviors.
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