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Abstract

Amongst the essential steps to be taken towards developing
and deploying safe systems with embedded learning-enabled
components (LECs)—i.e., software components that use ma-
chine learning—are to analyze and understand the contribu-
tion of the constituent LECs to safety, and to assure that those
contributions have been appropriately managed. This paper
addresses both steps by, first, introducing the notion of hazard
contribution modes (HCMs)—a categorization of the ways in
which LECs can contribute to hazardous system states; and,
second, providing argumentation patterns to capture the rea-
soning that can be used to assure HCM mitigation. Our con-
tributions are generic in the sense that the categories of HCMs
developed i) can admit different learning schemes, i.e., super-
vised, unsupervised, and reinforcement learning, and ii) are
not dependent on the type of system in which the LECs are
embedded, i.e., both cyber and cyber-physical systems. The
goal is to serve a starting point for systematizing LEC safety
analysis towards eventually automating it in a tool.

Introduction
Learning-enabled components (LECs) are software that
leverage knowledge acquisition and machine learning pro-
cesses to implement a function or service. The dramatic
increase in the capabilities of machine learning (ML) al-
gorithms over the past decade has motivated the inclusion
of LECs into larger systems, to perform tasks traditionally
accomplished by human operators (in the case of physical
systems), engineered heuristics (in the case of software and
mechanical systems), or perform functions that might other-
wise have been infeasible. When integrated into a safety-
critical context, e.g., transportation systems, or surgical
robots, LECs can directly cause or contribute to harm (Na-
tional Transportation Safety Board 2017).

Safety assurance arguments are structured reasoning that
relate safety claims to auditable and verifiable items of ev-
idence, and are often a core element of modern safety as-
surance cases—a comprehensive, defensible, and valid jus-
tification of the safety of a system for a given applica-
tion in a defined operating environment (Denney and Pai

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2018). Safety cases have been extensively used as a means of
safety assurance in various safety-critical domains, and re-
cent standardization efforts (Underwriter Laboratories Inc.
Forthcoming) feature safety argumentation as a core ele-
ment of autonomy safety assurance, i.e., systems including
LECs. Safety argumentation can be documented in a number
of forms, one of which is using graphical notations such as
the Goal Structuring Notation (GSN) (The Assurance Case
Working Group (ACWG) 2018). Towards enabling reuse
and ease of comprehension, GSN-based argument structures
can be abstracted and represented in the form of argumenta-
tion patterns.

The key starting point for safety analysis and assurance
is a systematic hazard analysis. While this analysis is typ-
ically conducted at the higher-levels of the system hierar-
chy, a variety of lower-level, bottom-up analyses applied at a
component-level stand in support. A typical example of such
analysis is a failure modes and effects analysis (FMEA).

(Salay and Czarnecki 2018) suggest that the difficulty of
assuring LEC safety is due to two distinct differences be-
tween an ML algorithm and a traditional software compo-
nent. First, the problems to which ML algorithms are applied
are often difficult if not impossible to specify. This condition
is often by design—if it were possible to write a specifica-
tion for a problem, an ML algorithm might not be necessary
or useful in the first place. Second, ML algorithms and their
internal logic are often uninterpretable to humans, compli-
cating oversight by humans. This difficulty of assuring LEC
safety presents a gap in the safety assurance practice that
we seek to address in the work presented in this paper. The
goal is to analyze and understand the contribution of LECs
to safety, when embedded into a wider system, and to assure
that those contributions have been appropriately managed.

This paper addresses both steps by, first, introducing the
notion of hazard contribution modes (HCMs)—a catego-
rization of the ways in which LECs can contribute to haz-
ardous system states; and, second, providing argumentation
patterns to capture the reasoning that can be used to assure
HCM mitigation. These two contributions of our paper are
generic in the sense that the categories of HCMs developed
i) can admit different learning schemes, i.e., supervised, un-
supervised, and reinforcement learning, and ii) are not de-
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Figure 1: Characterization of LEC output, showing the haz-
ard contribution modes in the highlighted boxes in boldface.

pendent on the type of system in which the LECs are em-
bedded, i.e., both cyber and cyber-physical systems. The
broader goal is to serve a starting point for systematizing
LEC safety analysis towards eventually automating it in a
tool.

Hazard Contribution Modes
An LEC, when embedded and integrated into a wider sys-
tem, can migrate it to undesired states that pose the poten-
tial for harm—hazards—through its outputs and interactions
with other system components. This contribution of an LEC
to a hazard may assume different forms, which we term as
(LEC) hazard contribution modes (HCMs). An HCM thus
characterizes the safety impact of an LEC, in terms of the
relationship between (possibly) observable LEC output and
the observable output (or behavior) of the wider system in
which it is embedded.

We identify two types of LEC output, namely expected
performance and unexpected performance, as shown in Fig-
ure 1. The characterization of LEC output for both output
types is the same, though only shown fully for expected
performance. We can refine each output type into modes
concerning accuracy or error. Here, accuracy represents the
property that LEC results are globally optimal, be it in the
form of correct classification, near-exact regression, or a se-
lection of the reward maximizing actions in reinforcement
learning (RL). Likewise, by error1 we mean the divergence
between LEC output and the true values, i.e., ground truth (if
available, e.g., as in supervised learning), or the optimal val-
ues produced according to the loss, cost, or objective func-
tions of the optimization algorithm (e.g., as in RL using re-
ward functions).

As we will later see, the two hazardous modes shown
under the ‘with error’category in Figure 1 can, effectively,

1We adopt the usage of dependability terminology (Avižienis et
al. 2004) rather than ML terminology, where the term alludes to
various measures of ML algorithm performance.

be subsumed under one generalized mode2. Thus, there are,
broadly, four categories of HCMs: Expected and Accurate
(EA), Expected with Error (EE), Unexpected and Accurate
(UA), and Unexpected with Error (UE).

This categorization of HCMs can be applied indepen-
dently of the type of systems in which LECs are embed-
ded, be it a physical system, such as a road vehicle, or an
intangible cyber system, such as enterprise software. Rec-
ognizing that LEC output is produced from machine learn-
ing processes—effectively the application of optimization
algorithms with respect to some objective functions—we
hypothesize that the HCMs proposed are agnostic to the
learning scheme used, i.e., supervised learning, unsuper-
vised learning, and RL.

Applying the HCM categories can be viewed as a bottom-
up analysis similar to a failure modes and effects analy-
sis (FMEA). However, we distinguish HCMs from failure
modes since not all failure modes need contribute to a haz-
ard, while all HCM do, by definition, although some HCMs
may indeed be failure modes (see Figure 2). HCMs are more
abstract than failure modes and, from a safety standpoint,
they are broader in the sense that they include non-failing
outputs that can be hazardous. Methodologically, we envi-
sion that HCMs would be used alongside, rather than as a
replacement for, FMEA.

Next, we describe each output type and the associated
HCMs, giving representative examples towards typifying
what the mode is, and identifying plausible causes. Later in
the paper, we will discuss how we envision providing assur-
ance that the HCMs can be acceptably managed towards the
broader goal of system safety.

Expected Performance
Expected performance is simply the required runtime LEC
output or behavior. It is expected in the sense that, for in-
puts as captured within the system requirements, in opera-
tion one anticipates observing LEC outputs3 corroborating
that it is at least as performant, as it was during model vali-
dation and calibration. This is reflective of the input-output
relationships learnt during ML model (re)training, valida-
tion, and calibration efforts that are iteratively performed as
part of the lifecycle of LEC development, prior to deploy-
ment. As such, expected performance of an LEC is either
accurate, or with error.

Practically, various error bounds can be specified. The
bounds on accuracy are such that LEC outputs with errors
that fall within those bounds are considered to be accurate.
System-level requirements determine the amount of error
that is operationally acceptable, beyond which the LEC out-
put can be considered to have failed. Figure 2 shows an (in-
tentionally) simplified notional concept that illustrates this
characterization of LEC output.

2Henceforth, we will simply use mode when we mean hazard
contribution mode (HCM), qualifying its usage when unclear from
context.

3In general, it may not be possible to observe LEC performance
directly; rather it would be inferred from the system output or be-
havior, to which LEC output would propagate.
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Figure 2: Simplified (notional) concept for LEC output, dis-
tinguishing the Expected and Accurate (EA), and the Ex-
pected with Error (EE) hazard contribution modes. The
safety threshold shown is derived and applicable to the LEC.

We assume that safety thresholds (or more generally
bounds) can be defined on the wider system state, e.g., us-
ing a safety envelope approach (Tiwari et al. 2014). Violat-
ing the safety thresholds indicates a transition of the system
from a safe state to a hazardous state (represented in Figure 2
by the region labeled unsafe). Note that the safety threshold
shown in Figure 2 would be derived from the system-level
safety threshold and apportioned appropriately to the LEC;
although, for illustrative purposes, here we consider them to
be equivalent.

Expected and Accurate Hazard Contribution Mode
The Expected and Accurate (EA) mode of an LEC is one
where its outputs are accurate and can induce hazardous sys-
tem states. Conceptually, this can be viewed as the condition
where the safe operational state space of the system has been
over-approximated resulting in an overlap with the unsafe
state space. In Figure 2, the LEC outputs that have error≈ 0
and ε2 are representative of the EA mode.

Consider, for example, a lane keeping function in au-
tomated driving, whose implementation uses a perception
LEC to classify and localize lanes whilst providing distance
estimates to lane boundaries. In this case, not considering
temporary or removed lane markings4 in the LEC training
data, may result in correct localization and accurate dis-
tance estimation from the wrong (i.e., removed) lane mark-
ings during operation. This is an instance of the EA mode
that, when unmitigated, in turn poses the potential for unin-
tended lane departure and intrusion into neighboring lanes.

The EA mode can manifest when known precursor or
contributory conditions to hazards identified during system
safety analysis—e.g., sensor malfunctions, off-nominal en-
vironmental conditions, etc.—have not been explicitly ac-
counted for during LEC development, i.e., when they have
not been i) included, or insufficiently represented, in the data

4Possibly introduced due to roadwork, this condition of the road
environment can confuse even experienced human drivers.

used for training and testing the ML model underpinning an
LEC, or ii) reflected in the optimization algorithm used.

Expected with Error Hazard Contribution Mode The
Expected with Error (EE) mode of an LEC is one where its
outputs have error, and the magnitude of the error is such
that one or more safety thresholds are violated, due to which
potentially hazardous system states are inducible.

An LEC output is not accurate when its error exceeds the
error bounds on accuracy. An LEC output that is not accurate
need not be a failed output, e.g., if the output is imprecise
but meets the applicable requirement. For the EE mode, the
main issue is whether the amount of error produced beyond
the bounds on accuracy is such that the output induces a haz-
ardous system state. As shown in Figure 2, when an LEC is
in the EE mode it produces outputs with error magnitudes
(labeled ε3 and ε5) that are, respectively, i) not accurate (but
operationally acceptable) and unsafe; and, ii) failed unsafe.

The EE mode can emerge in a number of scenarios, with
diverse local and global effects. Consider, again, our ear-
lier example of a lane keeping function using a perception
LEC, although under nominal road conditions, i.e., without
temporary or removed lane markings as before. If the errors
in physical sensor values, as well as other errors introduced
due to sensor placement, scene preprocessing, sensor fusion,
etc., and their impact on violating the system-level safety
threshold are not accounted for during LEC development,
then the output error may be such that lanes are estimated to
be farther away than they actually are. As a result, a subse-
quent control action intended to maintain the current lane
may inadvertently result in a lane departure. Thus, errors
in the input (including adversarial perturbations) can cause
LEC output error magnitude to be modified such that an oth-
erwise safe output becomes hazardous.

Depending on the learning scheme, error can assume
different forms. For instance, error in supervised learning
emerges from a combination of model assumptions (bias),
the type and quantity of data used (variance), and noise.
In unsupervised learning, error may emerge from an inade-
quately specified optimization objective (approximation er-
ror), model parameter choices that complicate differenti-
ation between distinct inputs (identifiability error), inade-
quate data (estimation error), and algorithmic insufficien-
cies (optimization error) (Liang and Klein 2008).

More generally, LECs can be susceptible to the EE mode
owing to the numerous error generating processes involved
in LEC development, and how they account for the applica-
ble safety thresholds. For example, due to
a) inadequate sampling practices in preparing the training

data. One consequence of this can be unbalanced data
that insufficiently represents the relationship between the
inputs, outputs, and the safety thresholds;

b) assumptions made in building the ML model. This may
be reflected in an optimization objective function that in-
sufficiently accounts for the relevance and impact of the
applicable safety thresholds;

c) inadequate representation or coverage—of the conditions
of the operating environment that impact, or are impacted
by the safety thresholds—during model validation.



Unexpected Performance
Unexpected performance represents emergent runtime LEC
output or behavior that is not otherwise anticipated to be
seen in operation, and that was also not previously observed
during model validation. Like expected performance, unex-
pected LEC output can be considered as accurate, with er-
ror, or failed. Also, as mentioned earlier (also see Figure 1),
the HCMs associated with unexpected performance mirror
those identified for expected performance, i.e., they concern
hazardous LEC outputs that are both accurate—i.e., the Un-
expected and Accurate (UA) mode—and have error—i.e.,
the Unexpected with Error (UE) mode.

Intrinsically, as well as from the standpoint of the impact
in inducing hazardous system states, there is conceptually
little difference between the UA and UE modes, and those
that we identified earlier. Consequently we expect that the
processes and causes from which the UA and UE modes
stem, will overlap to some degree with many of those re-
sponsible for generating the EA and EE modes.

However, unexpected LEC performance, in general, is an
operational manifestation of misconceptions about i) the na-
ture of the operating environment and ii) the system in which
the LEC is deployed, reflected in the ML algorithms used,
and the data used to train them. This, in conjunction with po-
tential inadequacies in the steps of LEC development result
in a divergence between what is required (i.e., expected per-
formance), and what is experienced at runtime (unexpected
performance). From this, we hypothesize that two particular
reasons for the UA and UE modes include dataset shift, and
validation insufficiency.

Additionally, due to the inherently uncertain nature of
unexpected (and possibly hazardous) LEC outputs, the ap-
proaches used for mitigation and assurance are where the
UA and UE modes are likely to differ from the EA and
EE modes, respectively. In particular, although the latter
two modes may be manageable through a largely preven-
tative approach, mitigation of the former two modes is
likely to be more reliant on runtime detection, recovery, and
architecture-level safety mechanisms.

Unexpected and Accurate Hazard Contribution Mode
The Unexpected and Accurate (UA) mode characterizes
unanticipated LEC output that are nevertheless optimal or
accurate, and also hazardous.

For example, consider a collision avoidance function in
an unmanned aircraft system implemented using an LEC
trained using reinforcement learning (RL). In this case, a le-
gitimate reward maximizing action such banking to the left
to avoid a collision can be learnt since this is an admissi-
ble action for some states and situations. However, in cer-
tain collision scenarios, and in particular, under conditions
where another aircraft rapidly emerges on a head-on course
in a short range (e.g., in certain uncontrolled airspace where
human-piloted general aviation also co-operate), the estab-
lished rules of air require both aircraft to bank right. In this
case, an otherwise optimal control action is unexpected for
the operating scenario and can be potentially catastrophic,
i.e., if the other aircraft banks to the right, as required, while
our aircraft, controlled by the LEC banks to the left.

The UA mode can emerge in operating contexts where
there is no notion of ground truth, and potentially also from
the conditions and causes that precipitate the EA mode. That
is, when conditions and events known to contribute to iden-
tified hazards are not suitably accounted for, during LEC de-
velopment, either in the training and validation data, or in the
optimization objective function. Other differentiating causes
include, as mentioned earlier, dataset shift, and insufficient
model validation before deployment.

In our aircraft system example above, dataset shift may
present as unbalanced data, for example, itself potentially
due to inappropriate sampling, or due to assumptions made
whilst modeling the environment. Likewise, incomplete cov-
erage of various collision geometries, with variable aircraft
types and speeds, is reflective of inadequate model valida-
tion.

Unexpected with Error Hazard Contribution Mode
The Unexpected with Error (UE) mode categorizes unan-
ticipated LEC output that has a magnitude of error such that
it contributes to hazardous system states.

Consider, again, a perception LEC deployed in an auto-
mated driving scenario used for detecting and tracking ex-
ternal entities, in support of collision avoidance. Although in
training and validation, the average detection performance to
identify and localize pedestrians—as measured by sensitiv-
ity and specificity metrics—may indicate that the LEC will
perform as expected in operation, false positives/negatives in
specific context-dependent environmental situations reflect
unexpected outputs with an error magnitude that could be
potentially hazardous, e.g., a false negative classification of
a pedestrian with dark clothing who may be camouflaged by
an equally dark background, in a limited visibility environ-
ment, due to which vehicle brakes are not engaged, poten-
tially resulting in a collision.

In this case, the false negative is the consequence of
an edge case (Koopman 2019), a rare situation represent-
ing a special form of covariate shift that may elude non-
comprehensive model validation. Covariate shift is one spe-
cific type of the more general dataset shift condition, where
the distribution of the inputs to the LEC in operation is dif-
ferent from that which was used for its training. Other forms
of dataset shift include prior shift, where the output dis-
tributions differ between training and operation, and con-
cept shift, where the joint distribution of inputs and outputs
changes in operation from that which was represented by the
training data.

More generally, and as mentioned earlier in this section,
the UE mode can occur due to various error generating
processes in LEC development steps, including inadequate
training and validation data, and assumptions encoded in
the optimization loss, error, or objective functions, in addi-
tion to the two particular causes of unexpected performance:
dataset shift, and inadequate validation.

Assuring Acceptable Safety Contribution
Recall that, first, the EA and EE modes are similar to the UA
and UE modes, respectively, from the standpoints of: i) their
impact on system safety, and ii) the specific aspects of the



LEC output, i.e., accuracy and error magnitude. Also recall
that there is a degree of overlap between the causes of the
modes, due to which there is a consequent overlap in the
way mitigation is addressed. Thirdly, we hypothesized two
particular reasons for unexpected hazard contribution.

We now describe some mechanisms towards acceptably
managing the safety contribution of the identified hazard
contribution modes, which can also be considered as generic
and high-level evidence requirements.

Managing Hazard Contribution Modes
Assurance of acceptably mitigating the EA and UA modes
can be provided, in part, through evidence of a combination
of the following:
– sufficiently reflecting in the training and validation data,

all known and identified conditions that are both known
hazard precursors and that can be associated to functions
allocated to LECs;

– penalizing the relevant hazard precursors in the loss,
cost, or objective functions of the optimization algorithms
used, e.g., as parameterized variables of a regularization
term added to a loss function. Contextually relevant ro-
bustness testing of the LEC can then provide additional
evidence assuring that the revised objective functions are
suitable to reduce the occurrence of the EA mode;

– comprehensive model testing and verification-based cov-
erage of the identified precursor conditions of the hazards
induced by the EA mode.
To provide assurance that the EE and UE modes have been

acceptably managed, requiring evidence of at least a combi-
nation of the following can be useful:
– valid safety thresholds (or bounds) associated with the

LEC outputs, derived from system-level safety bounds (or
a specification of the safety envelope and associated con-
ditions);

– adequately reflecting the LEC specific safety thresholds
in the training and validation data;

– appropriately reflecting the LEC specific safety thresholds
in the loss, cost, or objective functions of the optimization
algorithms used. Reflecting appropriateness of the ML al-
gorithms, in turn, relates to demonstrating that they are
performant and robust (Ashmore, Calinescu, and Paterson
2019), with the proviso that these assurance properties ac-
count for the applicable safety thresholds;

– comprehensive model testing and verification that con-
siders error performance in relation to the relevant safety
thresholds.
The mitigations proposed above are preventative, broadly

focusing on reducing the opportunities for the EA and EE
modes to occur in operation. In so doing, the idea is also that
they may prevent the runtime occurrence of the UA and UE
modes, since some of the same processes are responsible. To
additionally assure that the particular causes of the UA and
UE modes have been managed, assurance mechanisms can
additionally focus on gathering evidence of a combination
of the following:
– comprehensive definition of the operating environment,

and the system context, e.g., by leveraging a rich specifi-

cation of the operating constraints for the system (Koop-
man and Fratrik 2019);

– sufficiency of the training and validation data, that is as-
surable through evidence that the data used are relevant,
balanced, complete, and accurate (Ashmore, Calinescu,
and Paterson 2019).

– model validation techniques that are comprehensive and
contextually relevant (Ashmore, Calinescu, and Paterson
2019).

Of the above, the first two items seek to provide assurance
of managing dataset shift, while the third attempts to pro-
vide evidence that model validation approaches used are ad-
equate.

For wider safety assurance, it is not sufficient only to show
that LEC HCMs have been managed; rather a layered ap-
proach is prudent, including architectural mechanisms to re-
duce or mask the impact of the HCM. As such, from the
standpoint of recovery from the HCMs once they have oc-
curred, and specifically to manage the UA and UE modes,
evidence of mitigation mechanisms deployed at an architec-
ture level can provide additional assurance. For instance,
– runtime monitoring for detection of LEC outputs that vi-

olate the applicable safety bounds,
– Fail-safe / failure tolerance mechanisms that disengage

hazardous LEC outputs, or the entire LEC as appropriate,
by leveraging assurance measures (Asaadi, Denney, and
Pai 2019) that provide a quantified notion of confidence
in specific LEC assurance properties;

– using redundant and sufficiently diverse implementations
of the functions that LECs implement, along with runtime
monitors for detecting function disagreement.
Collectively, we believe that satisfying the generic evi-

dence requirements described above, can form part of the
wider basis for assurance that the system-level effects of
the LEC output are acceptable and do not contribute to haz-
ardous system states.

Safety Assurance Argument Patterns
First, we give a brief overview of the syntactic elements of
the Goal Structuring Notation (GSN) that we have used here
for specifying argument patterns. For comprehensive details
on argument patterns and their use, we refer to our prior
work (Denney and Pai 2013). Safety claims are represented
using rectangular elements termed as goals or goal nodes.
References to contextual information is represented using
rounded rectangles termed as context nodes. Parallelograms
represent strategy nodes, specifying how higher-level claims
are developed into lower-level claims, e.g., using inference
rules. Assumptions are represented using ellipses annotated
with the character ‘A’. The triangular and/or diamond dec-
oration on nodes indicates nodes that can be instantiated,
i.e., replacing the abstract parameters present in the node
descriptions (specified within braces ‘{ }’), with concrete
data. Nodes are connected by two types of links. Those with
solid arrowheads represent an inferential relation interpreted
as ‘is supported by’, while those with hollow arrowheads
represent contextual relations, interpreted as ‘in context of ’.
Links can be annotated with multiplicity, filled circles with



Figure 3: Argument pattern for assurance that the EA mode for a specific LEC is acceptably managed.

labels that specify how many times that link and connected
target node are instantiated.

Now, we discuss how the reasoning associated with the
assurance mechanisms discussed in the preceding section
may be presented in the form of patterns of assurance argu-
mentation. Figure 3 shows the assurance argument pattern
capturing the reasoning why it is the case that the EA mode
is acceptably mitigated for a specific LEC (shown as the root
goal node G1, referencing the parameter ‘lecItem’). This
claim references the hazardous system states to which it con-
tributes, as a contextual element (node C6). The pattern then
essentially provides two strands of assurance reasoning to
support the root claim.

The first (strategy node S1 and downwards) reasons indi-
vidually about the specific LEC outputs, requiring evidence
that each output is not hazardous when it is accurate (goal
node G3), and that if it is, in fact, hazardous, its value is

masked upon exceeding the associated safety threshold (goal
node G4), assuming that this violation can be detected (as-
sumption node A1). The second reasons about mitigation of
each of the generic identified causes of the HCM (goal nodes
G5–G8), reflecting the generic mitigations identified in the
previous section.

There are three remaining pattern for each of the three re-
maining modes, each following a similar rationale, but spe-
cific to the particular causes identified. Owing to space con-
straints, we do not show those patterns here.

Finally, an overarching pattern (also not shown here) re-
lates the root claim of each of the four patterns for the rele-
vant modes (e.g., goal node G1 for the EA mode, as shown
in Figure 3) to a higher-level safety claim that the contribu-
tion of the associated LEC to identified system hazards is
acceptably managed. The inference rule that we use to make
this link is that the overall contribution of the LEC to the rel-



evant system hazards is characterized by the individual haz-
ard contributions modes and assurance of the latter entails
that of the former. This is the essential basis of the reason-
ing underlying a bottom-up analysis such as FMEA that we
have sought to replicate but with a safety focus.

We note that, in fact, this is only provides a part of the
assurance since, in reality, component contribution often de-
pends on other components and the associated interactions.
However, that analysis is not in scope for this paper.

Related Work
Our taxonomy of hazard contribution modes (HCMs) shares
some similarities with other efforts examining ML safety:
For example, (Varshney and Alemzadeh 2017) character-
izes ML outputs as either desired or undesired, in contrast
with our characterization of LEC output types. Their work
also proposes a number of high-level strategies for safety,
including inherently safe design, safety reserves or factors,
fail safety, and procedural safeguards. These are well aligned
with most, if not all, of the mitigation mechanisms that we
have identified earlier in this paper.

(Amodei et al. 2016) outlines five failure modes focusing
on reinforcement learning, which (Faria 2018; 2017) builds
upon, to address additional failure mode as applied to super-
vised and unsupervised learning. Their research also points
to how the identified failure modes and safety issues may be
managed, but the associated assurance rationale is left im-
plicit. By contrast, our categorization of HCMs is broader,
including both failure modes as well as non failing modes
that have a safety impact. The associated assurance rationale
is included as an argumentation pattern that can be conve-
niently examined, augmented, and improved as appropriate.
Moreover, although the evidence requirements we identify
are far from comprehensive, the framework is intended as a
starting point for developing a more comprehensive safety
assurance basis for LECs.

Other research has addressed the problem of creating
GSN patterns for ML assurance generally: (McDermid,
Jia, and Habli 2019) introduces a high-level framework for
safety assurance of autonomous systems. This framework
is based on the observation that there is a gap between the
real world, the world as observed and the world as imag-
ined. The gap is caused by problem-inherent, procedural,
and engineering limitations of autonomous systems. Safety
assurance under this proposed framework involves exam-
ining these gaps and assuring that the negative impacts on
the safety of the system is limited. There are clear similar-
ities between this model/reality gap approach and our un-
derstanding of expected and unexpected performance due to
distributional shifts and validation.

(Bragg and Habli 2018) presents a high-level pattern for
assurance of the general safety of a reinforcement learning
system in a specific environment. This pattern is based on
the concepts of safe configuration (the model construction
and subsystem construction is safe) and failsafes.

(Picardi et al. 2019) presents a GSN pattern for assurance
that an ML decision system achieves a specific level of per-
formance, and applies this system to medical diagnosis ML,

aggregating sub-arguments of suitable benchmarks, the op-
erating environment, the learned model, the training data,
and the test data. (Burton et al. 2019) builds upon this work,
proposing a method to develop confidence arguments about
model performance from testing evidence, and applies these
methods to the problem of arguing sufficient performance in
pedestrian detection for autonomous vehicles.

The argument pattern(s) we have introduced, explicitly
capture the implicit reasoning that constitutes a system-
atic, bottom-up analysis of component-level safety contribu-
tion. We call out generic, high-level evidence requirements
that emerge from this preliminary framework of analyzing
HCMs, but we do not address the methods for assembling
or assessing the concrete evidence items that would be re-
quired, nor do we address the numerous assurance tech-
niques that may be leveraged.

For example, (Ashmore, Calinescu, and Paterson 2019)
presents a theoretical framework of safety considerations in
an ML component development lifecycle, defining specific
assurance properties for constituent lifecycle stages, and an
overview of the state of the art techniques that produce the
required assurance evidence. The gap in their work that our
paper fills, is linking the assurance properties of the lifecycle
stages and, in turn, the evidence generating techniques to
safety, via the HCMs.

Our work seeks to combine a systematic component-level
assessment of ML safety with argumentation patterns to cap-
ture the associated assurance rationale. Unique to our work
is the focus on ML embedded in a wider cyber- or cyber-
physical system: how these components contribute to sys-
tem hazards and the arguments required to assure that those
contributions have been acceptably managed.

Conclusions
In this paper we have presented a framework for under-
standing the hazardous contributions of Learning-enabled
Components (LECs) to system safety, in terms of hazard
contribution modes (HCMs), characterized broadly in terms
of LEC output type and specifically in terms of accuracy,
error and performance expectations. Using examples we
have elaborated some candidate causes and conditions un-
der which they arise, and that which is entailed in providing
assurance of mitigation, seeking to be as generic as possi-
ble. However, safety effects of HCMs cannot be general-
ized, since details about the specific LEC, its interfaces to
the wider system, the system itself, and its operating context
are necessary. Hence, here we have only given illustrative
examples of potential effects of HCMs on safety. Moreover,
our characterization of the modes is not intended to be com-
plete, nor does it cover the full scope of mode causes and
mitigations. Thus, this should be seen less as an exhaustive
enumeration of all possible hazard-inducing scenarios but
rather as a guide to thinking systematically about causes, ef-
fects, and hazard conditions (including failure modes) dur-
ing a component-focused hazard analysis.

We have given argument patterns (one of which has been
elaborated in detail) that captures the above characteristics
for the different HCMs, along with generic, high-level miti-
gations for the identified associated causes. Additionally, we



have elaborated the reasoning that would be used to com-
pose each mode-specific pattern into a pattern that addresses
the overall contribution of the LEC. In practice, the mode-
specific patterns would be subsequently refined and aug-
mented with more details that are specific to the particular
LEC, the learning scheme that is implemented, the system
in which it is integrated, and the environment within which
the LEC and its containing system are deployed. These also
form the data source from which the patterns would be in-
stantiated to give concrete assurance arguments. Building on
existing hazard analysis and argument generation function-
ality in our assurance case tool, AdvoCATE (Denney and
Pai 2018), we plan to develop templates for supporting the
analysis that goes with HCMs, a library of application/ML-
specific patterns, implement a guided decision process to as-
sist users with pattern selection, composition, and instantia-
tion, towards automating the steps from fundamental analy-
sis to assurance argument creation.

Finally, as future work, we plan to refine the HCMs for
LECs from a methodological standpoint, towards refining
the high-level evidence requirements into lower-level ones
that can be linked to objective quality evidence.
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