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Software development

• Software represent more than half of the development cost of an 
aircraft 

• Safety Critical : Failure is not an option

• Regulated by international standards : DO-178 rev. B/C 

• Robust Software Engineering 
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Validation and Verification

• Validation:
The software meets the needs of the user
→ Are we building the right thing?

• Verification:
The software meets the specification
→ Are we building it right?



Formal Verification

• Formal Verification:
Prove the correctness of a program with respect to a formal 
specification

• Formal Specification:
Mathematical description of a software 



Properties

• Safety property:
Something bad will never happen 

• Liveness property:
Something good will eventually happen 



Formal Methods

• Abstract Interpretation:
Compute an over approximation of all the reachable states

• Model Checking:
Explore all the reachable states

• Symbolic Execution:
Explore interesting paths with symbolic inputs

• Theorem Proving:
Prove properties manually or with heuristic algorithms

• Etc...



Static Analysis

• Static Analysis:
Analysis of a software without actually executing it

• Opposite of Dynamic Analysis
• Can be performed on the source code or binary code
• Objectives:
• Find runtime errors
• Measure metrics
• Reverse engineering
• Etc...
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IKOS

int tab[10];

for (int i = 0; i < 10; i++) {
tab[i] = i * i;

}

C/C++ code
IKOS
Static 

Analyzer

List of (possible) runtime errors:

• Buffer Overflows
• Null pointers
• Division by Zero
• Uninitialized Variables
• Assertion Prover
• Etc.

IKOS performs a compile-time analysis of a C/C++ source code.
It can detect or prove the absence of runtime errors.

IKOS is NOT a code style checker
IKOS is NOT a compiler: It can detect errors that compilers cannot catch
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Verification Report

• Safe: The instruction is proven free of runtime errors

• Error: The instruction always produces a runtime error

• Warning:
• The instruction can produce an error depending on the input
• The instruction is safe but IKOS could not prove it (also called false 

positive)



• The analysis discovers program properties: 0 ≤ i ≤ 9

int tab[10];

for (int i = 0; i < 10; i++) {
tab[i] = i * i;

}

Example



• The analysis discovers program properties: 0 ≤ i ≤ 9
• The verification uses the properties discovered:
• Array-bound compliance
• Check that array tab has at least 10 elements

int tab[10];

for (int i = 0; i < 10; i++) {
tab[i] = i * i;

}

Example

Access within bounds?



IKOS Checks

•Buffer overflow
•Division by zero
•Null pointer dereference
•Assertion prover
•Unaligned pointer
•Uninitialized variable
• Integer overflow (signed, unsigned)
• Invalid bit shift
• Invalid pointer comparison
• Invalid function pointer call
•Dead code
•Double free and Invalid lifetime



IKOS Abstract Domains

Domain Constraints Complexity
Interval x ∈ [a, b] n
Congruence x ∈ aZ+b n
Gauge x ∈ [a*i + b*k + …, a’*i + b’*k + …] K*n
Difference Bound Matrices x - y ∈ [a, b] n³
APRON Octagon x ± y ∈ [a, b] n³
APRON Polka Polyhedra a*x + b*y + … + c <= 0 Exponential
APRON PPL Polyhedra a*x + b*y + … + c <= 0 Exponential
Variable Packing of … … n



Live demo



IKOS Installation

• Supported platforms:
• Mac OS
• Linux
• Windows (using MinGW)

• Dependencies can be installed with a package manager (brew, apt-get, yum, ..)
• Installation instructions for each platform available in: doc/install/
• Bootstrap script for non-admin installations: downloads and compiles all missing 

dependencies (slow)



IKOS Usage

• Analyze a single file: ikos file.c

• Runs the analysis
• Prints the results
• Generates an output database containing the analysis results: output.db

• Analyze a whole project:
• ikos-scan make

• ikos program.bc

• Generate a report from an output database: ikos-report output.db
• Examine the results in a graphical interface: ikos-view output.db



IKOS-SCAN

• Analyze a whole project with: ikos-scan <command>

• It compiles all executables to LLVM bitcode: program.bc

• It runs IKOS on the LLVM bitcode: ikos program.bc

• Works with most build systems: Make, CMake, Autoconf, etc...

• Works by overriding environment variables: CC, CXX, LD



IKOS-SCAN

Live demo



Analyzing a library

• The analysis needs an entry point (i.e, main)

• Workaround: create a small program that uses the library

• Analyze a program with a specific entry point: ikos file.bc –e=MyMain



IKOS-VIEW

• Graphical interface to examine the analysis results

• Starts a web server in the terminal, opens the default browser

• ikos-view output.db



IKOS-VIEW

Live demo



IKOS Abstract Domains Guidelines

• Start with fast but imprecise domain
• Go towards slow but precise domain
• Stop when the analysis is too slow for your use case
• Recommended order:
• Interval: -d=interval
• Gauge + Interval + Congruence: -d=gauge-interval-congruence
• Variable Packing DBM: -d=var-pack-dbm
• Variable Packing Polyhedra: -d=var-pack-apron-ppl-polyhedra



IKOS Assumptions

• The source code is compiled with Clang for the host architecture
• Clang defines:
• The data model (size of types)
• The memory layout (alignments)
• The endianness
• The semantic of floating points
• Etc...



IKOS Assumptions

• The program is single-threaded
• The program does not receive signals or interrupts
• Unknown extern functions:
• Do not update global variables
• Can write on their pointer arguments
• Do not call user-defined functions (no callbacks)

• Assembly code is treated as a call to an unknown extern function
• Recursive functions can update any value in memory



False positives

• False positive: invalid warning

• Objective: low rate of false positives

• Common source of false positives:
• Unknown library functions
• “Bad” code patterns
• Imprecision of the analysis



Modeling library functions

• The analyzer does not require the libraries used by your program

• Unknown library functions will trigger a warning ("ignored call side effect” in 
ikos-view)

• Modeling library functions can reduce the number of warnings

• Write “stubs”: fake implementations of library functions



Modeling library functions

#include <ikos/analyzer/intrinsic.h>

char* fgets(char* restrict str,
int size,
FILE* restrict stream) {

__ikos_assert(size >= 0);
__ikos_forget_mem(stream, sizeof(FILE));
__ikos_abstract_mem(str, size);
errno = __ikos_nondet_int();
return __ikos_nondet_int() ? str : NULL;

}



IKOS Annotations

• Annotating your source code can reduce the number of warnings
• List of intrinsic functions: analyzer/include/ikos/analyzer/intrinsic.h

• __ikos_assert(condition)

• __ikos_assume(condition)

• __ikos_nondet_int()

• __ikos_check_mem_access(ptr, size)

• __ikos_assume_mem_size(ptr, size)

• __ikos_forget_mem(ptr, size)

• __ikos_abstract_mem(ptr, size)

• __ikos_print_values(description, var)



IKOS Annotations

ret = talg->parse_algoid_params(buf, param_len, param);



IKOS Annotations

int (*fun)(const u8*, u16, alg_param*) =
talg->parse_algoid_params;

__ikos_assume(fun == parse_algoid_params_generic ||
fun == parse_algoid_params_ecdsa_with ||
fun == parse_algoid_params_ecPublicKey ||
fun == parse_algoid_params_rsa);

ret = fun(buf, param_len, param);

ret = talg->parse_algoid_params(buf, param_len, param);



Bad code pattern (1)

CommandResult = XXX();
if (CommandResult == TRUE) {

FilenameState = YYY();
if (FilenameState == FM_NAME_IS_INVALID) {

CommandResult = FALSE;
}

}
if (CommandResult == TRUE) {

CommandResult = ZZZ();
}
if (CommandResult == TRUE) {

// ...
}
return CommandResult;



Bad code pattern (1)

• Bad readability

• Prone to errors

• Hard for static analyzers

• Please use “early return on errors”



Bad code pattern (1)

CommandResult = XXX();
if (!CommandResult) {

return FALSE;
}
CommandResult = YYY();
if (CommandResult == FM_NAME_IS_INVALID) {

return FALSE;
}
CommandResult = ZZZ();
if (!CommandResult) {

return FALSE;
}
// ...
return TRUE;



Bad code pattern (2)

• Single global variable containing everything

AppData_t g;

typedef struct {
PipeId_t CmdPipeId;
uint16 usCmdPipeDepth;
char cCmdPipeName[OS_MAX_API_NAME];
int32 ulfd;
uint32 uiRunStatus;
// ...
uint8 lastCmdBchErrorStatus;

} AppData_t;



Bad code pattern (2)

• Makes the buffer overflow analysis harder

• Please split it into different global variables



Bad code pattern (3)
• Small integers for loop counters
void f(uint16_t n) {

for (uint16_t i = 0; i < n; i++) {
// ...

}
}



Bad code pattern (3)
• Small integers for loop counters
void f(uint16_t n) {

for (uint16_t i = 0; i < n; i++) {
// ...

}
}

• Integer promotion rules of C
void f(uint16_t n) {

for (uint16_t i = 0;
(unsigned int)i < (unsigned int)n;
i = (uint16_t)((unsigned int)i + 1)) {

// ...
}

}



Bad code pattern (3)

• Creates temporary variables in the LLVM bitcode

• Leads to imprecision of the analysis

• Please use size_t (or int) for loop indexes



Imprecision

• Initialization functions returning an error code

int Init(void) {

int status = Register();
if (status != SUCCESS) {

return status;
}

status = InitEvent();
if (status != SUCCESS) {

return status;
}

// ...



Imprecision

• Imprecision due to the abstract union in the analysis

• Analysis option: --partitioning=return



Success Story: BioSentinel

• Space biology mission
• CubeSat spacecraft
• Developed at NASA Ames, in collaboration 

with JPL, JSC, MSFC
• Flight software built on top of CFS



Success Story: BioSentinel



Success Story: BioSentinel

• Each application was analyzed with IKOS

• The CFE framework was modeled to improve the analysis (~ 1200 LOC)

• Low rate of warnings: 1.31% in average

• Found ~ 17 real bugs



Success Story: BioSentinel
Application Abstract Domain Time Errors Warnings Warnings% Checks

adio var-pack-dbm 1 min 6.92 sec 0 1 0.07% 1334
brdio var-pack-dbm 8.02 sec 0 8 0.97% 818

ci var-pack-dbm 19.98 sec 0 6 0.65% 923
comio var-pack-dbm 1 min 4.83 sec 0 4 0.26% 1494
epsio var-pack-dbm 30.64 sec 0 5 0.42% 1181
letio var-pack-dbm 24.33 sec 0 18 1.64% 1095
ms interval 0.16 sec 0 0 0% 444

saio var-pack-dbm 22.35 sec 0 8 0.64% 1246
sensio var-pack-dbm 4.67 sec 0 79 9.56% 826

spe interval 0.16 sec 0 0 0% 445
thrio var-pack-dbm 19.33 sec 0 4 0.38% 1043

to var-pack-dbm 2 min 18.32 sec 0 33 1.98% 1666
xactio var-pack-dbm 22.18 sec 0 6 0.51% 1165



BioSentinel Bug (1)

ssize_t numbytes = read(fd, &FrameBufferRaw[0], 4096);

if (numbytes < 0) {
return ERROR;

}

// ...

numbytes -= 9; // Integer overflow

memcpy(/*dst*/ FrameBuffer, /*src*/ FrameBufferRaw, /*size*/ numbytes);
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

warning: Possible buffer overflow, pointer '&FrameBuffer[0]' with offset 0 
bytes points to global variable 'FrameBuffer' of size 4096 bytes



BioSentinel Bug (2)

warning: Possible buffer overflow, pointer '&cmd[n + 2]' accesses 1 bytes at 
offset between 8 and 16 bytes of local variable 'cmd' of size 16 bytes

uint8_t  cmd[16];
uint8_t  n;
// ...
switch(cmd_request) {

case CMD_OPEN:
n = CMD_OUT + CMD_OPEN; // 6 + 8 = 14
break;

// ...
}
// ...
cmd[n + 2] = 0; // 14 + 2 = 16



Guidelines

• Use a lightweight static analyzer first: cppcheck, clang-tidy, pvs-studio, etc.
• Use ikos-scan to generate the llvm bitcode (.bc): ikos-scan make
• Use ikos on the llvm bitcode (.bc): ikos program.bc
• Try different abstract domains: ikos –d=var-pack-dbm
program.bc
• Use ikos-view to examine the results: ikos-view output.db
• (Optional) Model key library functions
• (Optional) Annotate the code
• (Optional) Avoid “bad” patterns
• (Optional) Add ikos in your continuous build system



IKOS at a glance

• IKOS is a static analyzer for C/C++ targeting safety critical software

• IKOS is open source: https://github.com/NASA-SW-VnV/ikos

• Contact: ikos@lists.nasa.gov
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Abstract Interpretation

• Mathematical framework

• Approximation of the reachable states of a program

• Fully automated: No user interaction

• Sound: Cannot miss a bug

• Formalized by Patrick and Radhia Cousot in the late 1970s 



Overview

Semantics(P)
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Overview

Semantics(P) ⊆ Specification(P)



Overview

Using Testing
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Overview

Abstraction(P) ⊆ Specification(P)



Overview

Semantics(P) ⊆ Abstraction(P) ⊆ Specification(P)  



Toy language - Syntax

stmt ::= | v = expr;
| stmt stmt
| if (expr > 0) { stmt } 
else { stmt } 

| while (expr > 0) { stmt }

expr ::= | v ∈ 𝕍
| n ∈ ℤ
| rand(a, b)
| expr + expr
| expr – expr
| expr * expr
| expr / expr

𝕍 set of variables
ℤ set of integers

rand(a, b) represents an 
integer between a and b
(simulate an input)



Toy language - Example

x = rand(0, 12);
y = 42;
while (x > 0) {

x = x - 2; 
y = y + 4;

}

An execution:
(values at the beginning of the loop)

x |  7   5   3   1  -1
y | 42  46  50  54  58



Toy language - Example

x = rand(0, 12);
y = 42;
while (x > 0) {

x = x - 2; 
y = y + 4;

}

An execution:
(values at the beginning of the loop)

x |  7   5   3   1  -1
y | 42  46  50  54  58

Notes:
• A very simple language, no functions, no arrays, ...
• But it is an imperative language like C
• It is actually a subset of C
• It can compute everything − Turing complete



Toy language - Semantic

• We need to define the semantic of our language

• Also called Formal Specification

• Collective semantic:
Mathematical definition of the reachable states of a given program



Control flow graph

A control flow graph is a triplet (L, O, A) with a set of program points 
L, an entry point O ∈ L and a set of edges A ⊆ L x command x L with:

command ::= | v = expr
| expr > 0



Control flow graph
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Control flow graph

A control flow graph is a triplet (L, O, A) with a set of program points 
L, an entry point O ∈ L and a set of edges A ⊆ L x command x L with:

command ::= | v = expr
| expr > 0



Semantic of Expressions

Semantic of expressions: 



Semantic of Expressions

Semantic of expressions: 

An environment 𝝆 is a function 𝕍 → ℤ that associates a value to each 
variable



Errors

Notes on errors:
We can reach 2 kind of errors during the execution:
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Errors

Notes on errors:
We can reach 2 kind of errors during the execution:

• rand(n1, n2) with n1 > n2 :

• Division by zero :

We assume the program aborts on errors.



Semantic of commands

Semantic of commands: 



Semantic of commands

Semantic of commands: 

Note that e ≤ 0 can be rewritten as 1 – e > 0 (syntactic sugar)



Semantic of programs

Semantic of programs: 

For each program point, it gives the set of environments
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Semantic of programs

Semantic of programs: 

For each program point, it gives the set of environments

It is the smallest solution (in term of inclusion) of the following system:

The theorem of Knaster-Tarski tells us that the solution always exists!



Equations:



Equations: Smallest Solution:



Equations: Smallest Solution:



Equations: Smallest Solution:



Equations: Smallest Solution:



Equations: Smallest Solution:



Equations: Smallest Solution:



Order and Supremum

An order ⊑ is a binary relation:
• Reflexive :
• Transitive :
• Antisymmetric :



Order and Supremum

An order ⊑ is a binary relation:
• Reflexive :
• Transitive :
• Antisymmetric :

The supremum associates to each subset S’ of S its 
smallest upper bound:
•
•



Complete Lattice

A set S equipped with an order ⊑ is a complete lattice if it has a 
supremum



Complete Lattice

A set S equipped with an order ⊑ is a complete lattice if it has a 
supremum

A complete lattice automatically has:
• An infimum (greatest lower bound):

• A smallest element (bottom):

• A greatest element (top): 



Example

is not a complete lattice :          does not exist



Example

is not a complete lattice :          does not exist

is a complete lattice



Example

is not a complete lattice :          does not exist

is a complete lattice

• What is ⊤ ?
• What is ⊥ ? 



Example

Is it a lattice?



Example

Is it a lattice?

No:         does not exist



Example

Is it a lattice?

No:         does not exist

This is a lattice



Monotonic Function

A function f on a complete lattice is monotonic if and only if:



Knaster-Tarski

Theorem of Knaster-Tarski:
If S is a complete lattice and f is a monotonic function on this lattice, 
then f has a least fixed point:



Knaster-Tarski - Idea



Knaster-Tarski - Idea



Knaster-Tarski - Idea



Semantic
• is a complete lattice

• Let 

• F is monotonic

• Thus lfp F exists – Knaster-Tarski



Semantic

• lfp F is also the smallest solution to our system:

• Thus our semantic is well defined!



Semantic

• Unfortunately, the concrete semantic cannot be calculated

• We will compute an over-approximation!



Abstract Interpretation

Abstract Interpretation is a constructive theory of sound 
approximation of fixed points of monotonic functions on complete 
lattices.



Fixed Point Iteration

Method of computing a fixed point:
x, f(x), f(f(x)), f(f(f(x))), ...

Concrete
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Fixed Point Iteration

Method of computing a fixed point:
x, f(x), f(f(x)), f(f(f(x))), ...

Start with a point C0

fn(x) = fn+1(x) ⇒ lfp f found!

Concrete



Fixed Point Iteration

Method of computing a fixed point:
x, f(x), f(f(x)), f(f(f(x))), ...

Start with a point C0

fn(x) = fn+1(x) ⇒ lfp f found!

Problem: Computing lpf f is undecidable

Concrete



Abstraction

Idea:
• Use a different complete lattice
• Abstract the monotonic function: f#

• Abstract the entry point: C0
#

Abstract



Abstraction

Idea:
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• Abstract the monotonic function: f#
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Abstract



Abstraction

Idea:
• Use a different complete lattice
• Abstract the monotonic function: f#

• Abstract the entry point: C0
#

Abstract



Galois Connection

Concrete Abstract



Galois Connection

Concrete Abstract



Galois Connection

Concrete Abstract



Build an abstraction

• Goal: Abstract  
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Build an abstraction

• Goal: Abstract  
• L : finite set of program points – keep
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Build an abstraction

• Goal: Abstract  
• L : finite set of program points – keep
• 𝕍 : finite set of variables – keep
• ℤ : infinite set of integers – abstract!



Build an abstraction

• Goal: Abstract



Build an abstraction

• Goal: Abstract

• Non-relational :                         then 



Build an abstraction

• Goal: Abstract

• Non-relational :                         then 

• Relational : 



Reachable states at program point 2



Non-relational 
abstraction



Non-relational 
abstraction

Relational
abstraction



Interval domain

Interval lattice                 :

We first need to make sure it is a complete lattice



Interval domainInterval domain

Concretization function:



Interval domainInterval domain

Abstraction function:

with                                                and

if



Interval domain
Interval domain

(α, ɣ) is a Galois connection



Semantic of Expressions

Semantic of expressions: 



Semantic of Expressions

Semantic of expressions: 



Semantic of Expressions

Abstract operators:



Semantic of Expressions

Abstract operators:



Semantic of Expressions

Abstract operators:



Semantic of Expressions

Abstract operators:



Semantic of Expressions

Abstract operators:



Semantic of commands

Semantic of commands: 



Semantic of commands

Semantic of commands: 



Semantic of programs

Semantic of programs: 



Semantic of programs

Semantic of programs: 

It is the smallest solution (in term of inclusion) of the following system:



Semantic of programs

Semantic of programs: 

It is the smallest solution (in term of inclusion) of the following system:

Knaster-Tarski: the solution exists!



Computing the fixpoint

• We define 



Computing the fixpoint

• We define 

• F# is monotonic and computable



Computing the fixpoint

• We define 

• F# is monotonic and computable
• lfp F# is the abstract semantic of our program



Computing the fixpoint

• We define 

• F# is monotonic and computable
• lfp F# is the abstract semantic of our program
• Iterative method to compute the least fixed point:
•
•
• Stop when R#k+1 = R#k































The fixpoint is still far!



Correctness

The abstract semantic is an over-approximation of the concrete semantic.
For all l ⊆ L :
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Termination

• Problem: This algorithm might not terminate!

• The sequence (Fn(⏊))n ∈ ℕ might not converge

• The sequence is increasing because F is monotonic

• If D# is finite, then this would converge

• But intervals have infinitely increasing sequences: ([0, n])n ∈ N

• Even if it terminates, it could be slow..



Convergence Acceleration

• We introduce a new operator called widening ∇

• The widening is responsible for breaking infinitely increasing sequences

• It performs a jump forward



Widening

A widening is a binary operator                                                such 
that:

•

• For all sequences                , the following sequence converges:



Without widening



Without widening With widening



Iterations with widening

• It is still a fixpoint:                                   thus  



Iterations with widening

• It is still a fixpoint:                                   thus  

• It is not the least fixed point



Iterations with widening

• It is still a fixpoint:                                   thus  

• It is not the least fixed point

• It includes the least fixed point: 



Interval widening



Interval widening





Widening

• Widening allows the algorithm to terminate quickly

• But it might cause a loss of precision

• In practice, we only use the widening after a few iterations

• We can also use a widening with a threshold





Regain precision

• We introduce a new operator called narrowing ∆

• Perform decreasing iterations to regain precision  



Narrowing

A narrowing is a binary operator                                         such 
that:

•

• For all sequences                , the following sequence converges:







Interval narrowing



Interval narrowing





Abstract Domains

Domain Constraints Complexity
Interval x ∈ [a, b] n
Congruence x ∈ aZ+b n
Gauge x ∈ [a*i + b*k + …, a’*i + b’*k + …] K*n
Difference Bound Matrices x - y ∈ [a, b] n³
Octagon x ± y ∈ [a, b] n³
Polyhedra a*x + b*y + … + c <= 0 Exponential



Thank you.

Questions?

maxime.arthaud@nasa.gov


