
Static Analysis using Abstract Interpretation

Maxime Arthaud

Table of contents

1. Introduction
2. IKOS
3. Abstract Interpretation

Table of contents

1. Introduction
A. Software development
B. Validation and Verification
C. Formal Verification
D. Static Analysis

2. IKOS
3. Abstract Interpretation

Software development

• Software represent more than half of the development cost of an
aircraft

• Safety Critical : Failure is not an option

• Regulated by international standards : DO-178 rev. B/C

• Robust Software Engineering

V Model

Requirement
Engineering

System/SW
Design

Software
Development

Unit
Testing

Integration
Testing

Acceptance
Testing

Code

Cost Analysis

Requirement
Engineering

System/SW
Design

Software
Development

Unit
Testing

Integration
Testing

Acceptance
Testing

Code

~ 80-90% of faults
introduced in
these phases

~ 96% of faults
found in

these phases

Validation and Verification

• Validation:
The software meets the needs of the user
→ Are we building the right thing?

• Verification:
The software meets the specification
→ Are we building it right?

Formal Verification

• Formal Verification:
Prove the correctness of a program with respect to a formal
specification

• Formal Specification:
Mathematical description of a software

Properties

• Safety property:
Something bad will never happen

• Liveness property:
Something good will eventually happen

Formal Methods

• Abstract Interpretation:
Compute an over approximation of all the reachable states

• Model Checking:
Explore all the reachable states

• Symbolic Execution:
Explore interesting paths with symbolic inputs

• Theorem Proving:
Prove properties manually or with heuristic algorithms

• Etc...

Static Analysis

• Static Analysis:
Analysis of a software without actually executing it

• Opposite of Dynamic Analysis
• Can be performed on the source code or binary code
• Objectives:
• Find runtime errors
• Measure metrics
• Reverse engineering
• Etc...

Table of contents

1. Introduction
2. IKOS
3. Abstract Interpretation

IKOS

Requirement
Engineering

System/SW
Design

Software
Development

Unit
Testing

Integration
Testing

Acceptance
Testing

Code

2. IKOS
Static code analyzer
for C/C++ with low
false positive rate

1. Cocosim
Safety requirement

verification on Simulink
models

4. MARGInS
Validation testing to

identify unusual behaviors

1. Fret
Safety requirements

specification

IKOS

int tab[10];

for (int i = 0; i < 10; i++) {
tab[i] = i * i;

}

C/C++ code
IKOS
Static

Analyzer

List of (possible) runtime errors:

• Buffer Overflows
• Null pointers
• Division by Zero
• Uninitialized Variables
• Assertion Prover
• Etc.

IKOS performs a compile-time analysis of a C/C++ source code.
It can detect or prove the absence of runtime errors.

IKOS is NOT a code style checker
IKOS is NOT a compiler: It can detect errors that compilers cannot catch

IKOS Design

CLANGC/C++
Code

LLVM Verification
Report

Interval
Domain

Liveness
Analysis

Fixpoint Engine

Gauge
Domain

… …

IKOS

Pointer
Analysis

Polyhedra
Domain

DBM
Domain

Verification Report

• Safe: The instruction is proven free of runtime errors

• Error: The instruction always produces a runtime error

• Warning:
• The instruction can produce an error depending on the input
• The instruction is safe but IKOS could not prove it (also called false

positive)

• The analysis discovers program properties: 0 ≤ i ≤ 9

int tab[10];

for (int i = 0; i < 10; i++) {
tab[i] = i * i;

}

Example

• The analysis discovers program properties: 0 ≤ i ≤ 9
• The verification uses the properties discovered:
• Array-bound compliance
• Check that array tab has at least 10 elements

int tab[10];

for (int i = 0; i < 10; i++) {
tab[i] = i * i;

}

Example

Access within bounds?

IKOS Checks

•Buffer overflow
•Division by zero
•Null pointer dereference
•Assertion prover
•Unaligned pointer
•Uninitialized variable
• Integer overflow (signed, unsigned)
• Invalid bit shift
• Invalid pointer comparison
• Invalid function pointer call
•Dead code
•Double free and Invalid lifetime

IKOS Abstract Domains

Domain Constraints Complexity
Interval x ∈ [a, b] n
Congruence x ∈ aZ+b n
Gauge x ∈ [a*i + b*k + …, a’*i + b’*k + …] K*n
Difference Bound Matrices x - y ∈ [a, b] n³
APRON Octagon x ± y ∈ [a, b] n³
APRON Polka Polyhedra a*x + b*y + … + c <= 0 Exponential
APRON PPL Polyhedra a*x + b*y + … + c <= 0 Exponential
Variable Packing of … … n

Live demo

IKOS Installation

• Supported platforms:
• Mac OS
• Linux
• Windows (using MinGW)

• Dependencies can be installed with a package manager (brew, apt-get, yum, ..)
• Installation instructions for each platform available in: doc/install/
• Bootstrap script for non-admin installations: downloads and compiles all missing

dependencies (slow)

IKOS Usage

• Analyze a single file: ikos file.c

• Runs the analysis
• Prints the results
• Generates an output database containing the analysis results: output.db

• Analyze a whole project:
• ikos-scan make

• ikos program.bc

• Generate a report from an output database: ikos-report output.db
• Examine the results in a graphical interface: ikos-view output.db

IKOS-SCAN

• Analyze a whole project with: ikos-scan <command>

• It compiles all executables to LLVM bitcode: program.bc

• It runs IKOS on the LLVM bitcode: ikos program.bc

• Works with most build systems: Make, CMake, Autoconf, etc...

• Works by overriding environment variables: CC, CXX, LD

IKOS-SCAN

Live demo

Analyzing a library

• The analysis needs an entry point (i.e, main)

• Workaround: create a small program that uses the library

• Analyze a program with a specific entry point: ikos file.bc –e=MyMain

IKOS-VIEW

• Graphical interface to examine the analysis results

• Starts a web server in the terminal, opens the default browser

• ikos-view output.db

IKOS-VIEW

Live demo

IKOS Abstract Domains Guidelines

• Start with fast but imprecise domain
• Go towards slow but precise domain
• Stop when the analysis is too slow for your use case
• Recommended order:
• Interval: -d=interval
• Gauge + Interval + Congruence: -d=gauge-interval-congruence
• Variable Packing DBM: -d=var-pack-dbm
• Variable Packing Polyhedra: -d=var-pack-apron-ppl-polyhedra

IKOS Assumptions

• The source code is compiled with Clang for the host architecture
• Clang defines:
• The data model (size of types)
• The memory layout (alignments)
• The endianness
• The semantic of floating points
• Etc...

IKOS Assumptions

• The program is single-threaded
• The program does not receive signals or interrupts
• Unknown extern functions:
• Do not update global variables
• Can write on their pointer arguments
• Do not call user-defined functions (no callbacks)

• Assembly code is treated as a call to an unknown extern function
• Recursive functions can update any value in memory

False positives

• False positive: invalid warning

• Objective: low rate of false positives

• Common source of false positives:
• Unknown library functions
• “Bad” code patterns
• Imprecision of the analysis

Modeling library functions

• The analyzer does not require the libraries used by your program

• Unknown library functions will trigger a warning ("ignored call side effect” in
ikos-view)

• Modeling library functions can reduce the number of warnings

• Write “stubs”: fake implementations of library functions

Modeling library functions

#include <ikos/analyzer/intrinsic.h>

char* fgets(char* restrict str,
int size,
FILE* restrict stream) {

__ikos_assert(size >= 0);
__ikos_forget_mem(stream, sizeof(FILE));
__ikos_abstract_mem(str, size);
errno = __ikos_nondet_int();
return __ikos_nondet_int() ? str : NULL;

}

IKOS Annotations

• Annotating your source code can reduce the number of warnings
• List of intrinsic functions: analyzer/include/ikos/analyzer/intrinsic.h

• __ikos_assert(condition)

• __ikos_assume(condition)

• __ikos_nondet_int()

• __ikos_check_mem_access(ptr, size)

• __ikos_assume_mem_size(ptr, size)

• __ikos_forget_mem(ptr, size)

• __ikos_abstract_mem(ptr, size)

• __ikos_print_values(description, var)

IKOS Annotations

ret = talg->parse_algoid_params(buf, param_len, param);

IKOS Annotations

int (*fun)(const u8*, u16, alg_param*) =
talg->parse_algoid_params;

__ikos_assume(fun == parse_algoid_params_generic ||
fun == parse_algoid_params_ecdsa_with ||
fun == parse_algoid_params_ecPublicKey ||
fun == parse_algoid_params_rsa);

ret = fun(buf, param_len, param);

ret = talg->parse_algoid_params(buf, param_len, param);

Bad code pattern (1)

CommandResult = XXX();
if (CommandResult == TRUE) {

FilenameState = YYY();
if (FilenameState == FM_NAME_IS_INVALID) {

CommandResult = FALSE;
}

}
if (CommandResult == TRUE) {

CommandResult = ZZZ();
}
if (CommandResult == TRUE) {

// ...
}
return CommandResult;

Bad code pattern (1)

• Bad readability

• Prone to errors

• Hard for static analyzers

• Please use “early return on errors”

Bad code pattern (1)

CommandResult = XXX();
if (!CommandResult) {

return FALSE;
}
CommandResult = YYY();
if (CommandResult == FM_NAME_IS_INVALID) {

return FALSE;
}
CommandResult = ZZZ();
if (!CommandResult) {

return FALSE;
}
// ...
return TRUE;

Bad code pattern (2)

• Single global variable containing everything

AppData_t g;

typedef struct {
PipeId_t CmdPipeId;
uint16 usCmdPipeDepth;
char cCmdPipeName[OS_MAX_API_NAME];
int32 ulfd;
uint32 uiRunStatus;
// ...
uint8 lastCmdBchErrorStatus;

} AppData_t;

Bad code pattern (2)

• Makes the buffer overflow analysis harder

• Please split it into different global variables

Bad code pattern (3)
• Small integers for loop counters
void f(uint16_t n) {

for (uint16_t i = 0; i < n; i++) {
// ...

}
}

Bad code pattern (3)
• Small integers for loop counters
void f(uint16_t n) {

for (uint16_t i = 0; i < n; i++) {
// ...

}
}

• Integer promotion rules of C
void f(uint16_t n) {

for (uint16_t i = 0;
(unsigned int)i < (unsigned int)n;
i = (uint16_t)((unsigned int)i + 1)) {

// ...
}

}

Bad code pattern (3)

• Creates temporary variables in the LLVM bitcode

• Leads to imprecision of the analysis

• Please use size_t (or int) for loop indexes

Imprecision

• Initialization functions returning an error code

int Init(void) {

int status = Register();
if (status != SUCCESS) {

return status;
}

status = InitEvent();
if (status != SUCCESS) {

return status;
}

// ...

Imprecision

• Imprecision due to the abstract union in the analysis

• Analysis option: --partitioning=return

Success Story: BioSentinel

• Space biology mission
• CubeSat spacecraft
• Developed at NASA Ames, in collaboration

with JPL, JSC, MSFC
• Flight software built on top of CFS

Success Story: BioSentinel

Success Story: BioSentinel

• Each application was analyzed with IKOS

• The CFE framework was modeled to improve the analysis (~ 1200 LOC)

• Low rate of warnings: 1.31% in average

• Found ~ 17 real bugs

Success Story: BioSentinel
Application Abstract Domain Time Errors Warnings Warnings% Checks

adio var-pack-dbm 1 min 6.92 sec 0 1 0.07% 1334
brdio var-pack-dbm 8.02 sec 0 8 0.97% 818

ci var-pack-dbm 19.98 sec 0 6 0.65% 923
comio var-pack-dbm 1 min 4.83 sec 0 4 0.26% 1494
epsio var-pack-dbm 30.64 sec 0 5 0.42% 1181
letio var-pack-dbm 24.33 sec 0 18 1.64% 1095
ms interval 0.16 sec 0 0 0% 444

saio var-pack-dbm 22.35 sec 0 8 0.64% 1246
sensio var-pack-dbm 4.67 sec 0 79 9.56% 826

spe interval 0.16 sec 0 0 0% 445
thrio var-pack-dbm 19.33 sec 0 4 0.38% 1043

to var-pack-dbm 2 min 18.32 sec 0 33 1.98% 1666
xactio var-pack-dbm 22.18 sec 0 6 0.51% 1165

BioSentinel Bug (1)

ssize_t numbytes = read(fd, &FrameBufferRaw[0], 4096);

if (numbytes < 0) {
return ERROR;

}

// ...

numbytes -= 9; // Integer overflow

memcpy(/*dst*/ FrameBuffer, /*src*/ FrameBufferRaw, /*size*/ numbytes);
^~~

warning: Possible buffer overflow, pointer '&FrameBuffer[0]' with offset 0
bytes points to global variable 'FrameBuffer' of size 4096 bytes

BioSentinel Bug (2)

warning: Possible buffer overflow, pointer '&cmd[n + 2]' accesses 1 bytes at
offset between 8 and 16 bytes of local variable 'cmd' of size 16 bytes

uint8_t cmd[16];
uint8_t n;
// ...
switch(cmd_request) {

case CMD_OPEN:
n = CMD_OUT + CMD_OPEN; // 6 + 8 = 14
break;

// ...
}
// ...
cmd[n + 2] = 0; // 14 + 2 = 16

Guidelines

• Use a lightweight static analyzer first: cppcheck, clang-tidy, pvs-studio, etc.
• Use ikos-scan to generate the llvm bitcode (.bc): ikos-scan make
• Use ikos on the llvm bitcode (.bc): ikos program.bc
• Try different abstract domains: ikos –d=var-pack-dbm
program.bc
• Use ikos-view to examine the results: ikos-view output.db
• (Optional) Model key library functions
• (Optional) Annotate the code
• (Optional) Avoid “bad” patterns
• (Optional) Add ikos in your continuous build system

IKOS at a glance

• IKOS is a static analyzer for C/C++ targeting safety critical software

• IKOS is open source: https://github.com/NASA-SW-VnV/ikos

• Contact: ikos@lists.nasa.gov

Table of contents

1. Introduction
2. IKOS
3. Abstract Interpretation

A. Overview
B. Concrete semantic
C. Abstract semantic
D. Interval domain
E. Convergence Acceleration

Abstract Interpretation

• Mathematical framework

• Approximation of the reachable states of a program

• Fully automated: No user interaction

• Sound: Cannot miss a bug

• Formalized by Patrick and Radhia Cousot in the late 1970s

Overview

Semantics(P)

Overview

Specification(P)

Overview

Semantics(P) ⊆ Specification(P)

Overview

Using Testing

Overview

Abstraction(P)

Overview

Abstraction(P) ⊆ Specification(P)

Overview

Semantics(P) ⊆ Abstraction(P) ⊆ Specification(P)

Toy language - Syntax

stmt ::= | v = expr;
| stmt stmt
| if (expr > 0) { stmt }
else { stmt }

| while (expr > 0) { stmt }

expr ::= | v ∈ 𝕍
| n ∈ ℤ
| rand(a, b)
| expr + expr
| expr – expr
| expr * expr
| expr / expr

𝕍 set of variables
ℤ set of integers

rand(a, b) represents an
integer between a and b
(simulate an input)

Toy language - Example

x = rand(0, 12);
y = 42;
while (x > 0) {

x = x - 2;
y = y + 4;

}

An execution:
(values at the beginning of the loop)

x | 7 5 3 1 -1
y | 42 46 50 54 58

Toy language - Example

x = rand(0, 12);
y = 42;
while (x > 0) {

x = x - 2;
y = y + 4;

}

An execution:
(values at the beginning of the loop)

x | 7 5 3 1 -1
y | 42 46 50 54 58

Notes:
• A very simple language, no functions, no arrays, ...
• But it is an imperative language like C
• It is actually a subset of C
• It can compute everything − Turing complete

Toy language - Semantic

• We need to define the semantic of our language

• Also called Formal Specification

• Collective semantic:
Mathematical definition of the reachable states of a given program

Control flow graph

A control flow graph is a triplet (L, O, A) with a set of program points
L, an entry point O ∈ L and a set of edges A ⊆ L x command x L with:

command ::= | v = expr
| expr > 0

Control flow graph

A control flow graph is a triplet (L, O, A) with a set of program points
L, an entry point O ∈ L and a set of edges A ⊆ L x command x L with:

command ::= | v = expr
| expr > 0

Control flow graph

A control flow graph is a triplet (L, O, A) with a set of program points
L, an entry point O ∈ L and a set of edges A ⊆ L x command x L with:

command ::= | v = expr
| expr > 0

Semantic of Expressions

Semantic of expressions:

Semantic of Expressions

Semantic of expressions:

An environment 𝝆 is a function 𝕍 → ℤ that associates a value to each
variable

Errors

Notes on errors:
We can reach 2 kind of errors during the execution:

Errors

Notes on errors:
We can reach 2 kind of errors during the execution:

• rand(n1, n2) with n1 > n2 :

Errors

Notes on errors:
We can reach 2 kind of errors during the execution:

• rand(n1, n2) with n1 > n2 :

• Division by zero :

Errors

Notes on errors:
We can reach 2 kind of errors during the execution:

• rand(n1, n2) with n1 > n2 :

• Division by zero :

We assume the program aborts on errors.

Semantic of commands

Semantic of commands:

Semantic of commands

Semantic of commands:

Note that e ≤ 0 can be rewritten as 1 – e > 0 (syntactic sugar)

Semantic of programs

Semantic of programs:

For each program point, it gives the set of environments

Semantic of programs

Semantic of programs:

For each program point, it gives the set of environments

It is the smallest solution (in term of inclusion) of the following system:

Semantic of programs

Semantic of programs:

For each program point, it gives the set of environments

It is the smallest solution (in term of inclusion) of the following system:

The theorem of Knaster-Tarski tells us that the solution always exists!

Equations:

Equations: Smallest Solution:

Equations: Smallest Solution:

Equations: Smallest Solution:

Equations: Smallest Solution:

Equations: Smallest Solution:

Equations: Smallest Solution:

Order and Supremum

An order ⊑ is a binary relation:
• Reflexive :
• Transitive :
• Antisymmetric :

Order and Supremum

An order ⊑ is a binary relation:
• Reflexive :
• Transitive :
• Antisymmetric :

The supremum associates to each subset S’ of S its
smallest upper bound:
•
•

Complete Lattice

A set S equipped with an order ⊑ is a complete lattice if it has a
supremum

Complete Lattice

A set S equipped with an order ⊑ is a complete lattice if it has a
supremum

A complete lattice automatically has:
• An infimum (greatest lower bound):

• A smallest element (bottom):

• A greatest element (top):

Example

is not a complete lattice : does not exist

Example

is not a complete lattice : does not exist

is a complete lattice

Example

is not a complete lattice : does not exist

is a complete lattice

• What is ⊤ ?
• What is ⊥ ?

Example

Is it a lattice?

Example

Is it a lattice?

No: does not exist

Example

Is it a lattice?

No: does not exist

This is a lattice

Monotonic Function

A function f on a complete lattice is monotonic if and only if:

Knaster-Tarski

Theorem of Knaster-Tarski:
If S is a complete lattice and f is a monotonic function on this lattice,
then f has a least fixed point:

Knaster-Tarski - Idea

Knaster-Tarski - Idea

Knaster-Tarski - Idea

Semantic
• is a complete lattice

• Let

• F is monotonic

• Thus lfp F exists – Knaster-Tarski

Semantic

• lfp F is also the smallest solution to our system:

• Thus our semantic is well defined!

Semantic

• Unfortunately, the concrete semantic cannot be calculated

• We will compute an over-approximation!

Abstract Interpretation

Abstract Interpretation is a constructive theory of sound
approximation of fixed points of monotonic functions on complete
lattices.

Fixed Point Iteration

Method of computing a fixed point:
x, f(x), f(f(x)), f(f(f(x))), ...

Concrete

Fixed Point Iteration

Method of computing a fixed point:
x, f(x), f(f(x)), f(f(f(x))), ...

Start with a point C0

Concrete

Fixed Point Iteration

Method of computing a fixed point:
x, f(x), f(f(x)), f(f(f(x))), ...

Start with a point C0

fn(x) = fn+1(x) ⇒ lfp f found!

Concrete

Fixed Point Iteration

Method of computing a fixed point:
x, f(x), f(f(x)), f(f(f(x))), ...

Start with a point C0

fn(x) = fn+1(x) ⇒ lfp f found!

Problem: Computing lpf f is undecidable

Concrete

Abstraction

Idea:
• Use a different complete lattice
• Abstract the monotonic function: f#

• Abstract the entry point: C0
#

Abstract

Abstraction

Idea:
• Use a different complete lattice
• Abstract the monotonic function: f#

• Abstract the entry point: C0
#

Abstract

Abstraction

Idea:
• Use a different complete lattice
• Abstract the monotonic function: f#

• Abstract the entry point: C0
#

Abstract

Galois Connection

Concrete Abstract

Galois Connection

Concrete Abstract

Galois Connection

Concrete Abstract

Build an abstraction

• Goal: Abstract

Build an abstraction

• Goal: Abstract
• L : finite set of program points – keep

Build an abstraction

• Goal: Abstract
• L : finite set of program points – keep
• 𝕍 : finite set of variables – keep

Build an abstraction

• Goal: Abstract
• L : finite set of program points – keep
• 𝕍 : finite set of variables – keep
• ℤ : infinite set of integers – abstract!

Build an abstraction

• Goal: Abstract

Build an abstraction

• Goal: Abstract

• Non-relational : then

Build an abstraction

• Goal: Abstract

• Non-relational : then

• Relational :

Reachable states at program point 2

Non-relational
abstraction

Non-relational
abstraction

Relational
abstraction

Interval domain

Interval lattice :

We first need to make sure it is a complete lattice

Interval domainInterval domain

Concretization function:

Interval domainInterval domain

Abstraction function:

with and

if

Interval domain
Interval domain

(α, ɣ) is a Galois connection

Semantic of Expressions

Semantic of expressions:

Semantic of Expressions

Semantic of expressions:

Semantic of Expressions

Abstract operators:

Semantic of Expressions

Abstract operators:

Semantic of Expressions

Abstract operators:

Semantic of Expressions

Abstract operators:

Semantic of Expressions

Abstract operators:

Semantic of commands

Semantic of commands:

Semantic of commands

Semantic of commands:

Semantic of programs

Semantic of programs:

Semantic of programs

Semantic of programs:

It is the smallest solution (in term of inclusion) of the following system:

Semantic of programs

Semantic of programs:

It is the smallest solution (in term of inclusion) of the following system:

Knaster-Tarski: the solution exists!

Computing the fixpoint

• We define

Computing the fixpoint

• We define

• F# is monotonic and computable

Computing the fixpoint

• We define

• F# is monotonic and computable
• lfp F# is the abstract semantic of our program

Computing the fixpoint

• We define

• F# is monotonic and computable
• lfp F# is the abstract semantic of our program
• Iterative method to compute the least fixed point:
•
•
• Stop when R#k+1 = R#k

The fixpoint is still far!

Correctness

The abstract semantic is an over-approximation of the concrete semantic.
For all l ⊆ L :

Termination

• Problem: This algorithm might not terminate!

Termination

• Problem: This algorithm might not terminate!

• The sequence (Fn(⏊))n ∈ ℕ might not converge

Termination

• Problem: This algorithm might not terminate!

• The sequence (Fn(⏊))n ∈ ℕ might not converge

• The sequence is increasing because F is monotonic

Termination

• Problem: This algorithm might not terminate!

• The sequence (Fn(⏊))n ∈ ℕ might not converge

• The sequence is increasing because F is monotonic

• If D# is finite, then this would converge

Termination

• Problem: This algorithm might not terminate!

• The sequence (Fn(⏊))n ∈ ℕ might not converge

• The sequence is increasing because F is monotonic

• If D# is finite, then this would converge

• But intervals have infinitely increasing sequences: ([0, n])n ∈ N

Termination

• Problem: This algorithm might not terminate!

• The sequence (Fn(⏊))n ∈ ℕ might not converge

• The sequence is increasing because F is monotonic

• If D# is finite, then this would converge

• But intervals have infinitely increasing sequences: ([0, n])n ∈ N

• Even if it terminates, it could be slow..

Convergence Acceleration

• We introduce a new operator called widening ∇

• The widening is responsible for breaking infinitely increasing sequences

• It performs a jump forward

Widening

A widening is a binary operator such
that:

•

• For all sequences , the following sequence converges:

Without widening

Without widening With widening

Iterations with widening

• It is still a fixpoint: thus

Iterations with widening

• It is still a fixpoint: thus

• It is not the least fixed point

Iterations with widening

• It is still a fixpoint: thus

• It is not the least fixed point

• It includes the least fixed point:

Interval widening

Interval widening

Widening

• Widening allows the algorithm to terminate quickly

• But it might cause a loss of precision

• In practice, we only use the widening after a few iterations

• We can also use a widening with a threshold

Regain precision

• We introduce a new operator called narrowing ∆

• Perform decreasing iterations to regain precision

Narrowing

A narrowing is a binary operator such
that:

•

• For all sequences , the following sequence converges:

Interval narrowing

Interval narrowing

Abstract Domains

Domain Constraints Complexity
Interval x ∈ [a, b] n
Congruence x ∈ aZ+b n
Gauge x ∈ [a*i + b*k + …, a’*i + b’*k + …] K*n
Difference Bound Matrices x - y ∈ [a, b] n³
Octagon x ± y ∈ [a, b] n³
Polyhedra a*x + b*y + … + c <= 0 Exponential

Thank you.

Questions?

maxime.arthaud@nasa.gov

