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Abstract—We present techniques for automatically inferring
formal properties of feed-forward neural networks. We observe
that a significant part (if not all) of the logic of feed forward
networks is captured in the activation status (on or off ) of
its neurons. We propose to extract patterns based on neuron
decisions as preconditions that imply certain desirable output
property e.g., the prediction being a certain class. We present
techniques to extract input properties, encoding convex predicates
on the input space that imply given output properties and
layer properties, representing network properties captured in
the hidden layers that imply the desired output behavior. We
apply our techniques on networks for the MNIST and ACASXU
applications. Our experiments highlight the use of the inferred
properties in a variety of tasks, such as explaining predictions,
providing robustness guarantees, simplifying proofs, and network
distillation.

Errata: This version updates [14] by correcting the definition of
the three properties that were checked for ACASXU in Section V-A.

I. INTRODUCTION

Deep Neural Networks (DNNs) have emerged as a pow-
erful mechanism for solving complex computational tasks,
achieving impressive results that equal and sometimes even
surpass human ability in performing these tasks. However,
the increased use of DNNs also brings along several safety
and security concerns. These are due to many factors, among
them lack of robustness. For instance, it is well known that
DNNs, including highly trained and smooth networks, are
vulnerable to adversarial perturbations. Small (imperceptible)
changes to an input lead to misclassifications. If such a
classifier is used in the perception module of an autonomous
car, the network’s decision on an adversarial image can have
disastrous consequences. DNNs also suffer from a lack of
explainability: it is not well understood why a network makes a
certain prediction, which impedes on applications of DNNs in
safety-critical domains such as autonomous driving, banking,
or medicine. Finally, rigorous reasoning is obstructed by a
lack of intent when designing neural networks, which only
learn from examples, often without a high-level requirements
specification. Such specifications are commonly used when
designing more traditional safety-critical software systems.

In this paper, we present techniques for automatically
inferring formal properties of feed-forward neural networks.
These properties are of the form Pre ⇒ Post. Post is

a postcondition stating the desired output behaviour, for in-
stance, the network’s prediction being a certain class. Pre
is a precondition that we automatically infer and can serve
as a formal explanation for why the output property holds.
We study input properties which encode predicates in the
input space that imply a given output propertyWe further
study layer properties which group inputs that have common
characteristics observed at an intermediate layer and that
together imply the desired output behaviorThe intention is
to capture properties based on the features extracted by the
network.

There are many choices for defining network properties that
are appropriate preconditions for network behavior. In this
work, we infer properties corresponding to decision patterns of
neurons in the DNN. Such patterns prescribe which neurons
are on or off in various layers. For neurons implementing
the ReLU activation function, this amounts to whether the
neuron output is greater than zero (on) or equal to zero (off ).
We focus on these simple patterns because they are easy
to compute and have simple mathematical representations.
Furthermore, they define natural partitions on the input space,
grouping together inputs that are processed the same by the
network and that yield the same output. Other obvious, more
complex properties (e.g. use a positive threshold rather than
zero for the activation functions, use linear combinations on
neuron values) are left for study in future work.

We define input properties based on patterns that constrain
the activation status (on or off ) of all neurons up to an
intermediate layer. Such patterns form convex predicates in
the input space. Convexity is attractive as it makes the in-
ferred properties easy to visualize and interpret. Furthermore,
convex predicates can be solved efficiently with existing linear
programming solvers. Analogously, we define layer properties
based on patterns that constrain the activation status at an
intermediate layer. Layer patterns define convex regions over
the values at an intermediate layer and can be expressed as
unions of convex regions in the input space.

Another motivation for studying decision patterns is that
they are analogous to path constrains in program analysis.
Different program paths capture different input-output be-
haviour of the program. Similarly, different neuron decision
patterns capture different behaviours of a DNN. It is our
proposition that we should be able to extract succinct input-



output properties based on decision patterns that together
explain the behavior of the network, and can act as formal
specifications of networks. We present two techniques to
extract network properties. Our first technique is based on
iteratively refining decision patterns while leveraging an off-
the-shelf decision procedure. We make use of the decision
procedure Reluplex [20], designed to prove properties of feed-
forward ReLU networks, but other decision procedures can be
used as well. Our second technique uses decision tree learning
to directly learn layer patterns from data. The learned patterns
can be formally checked using a decision procedure. In lieu
of a formal check, which is typically expensive, one could
empirically validate the learned patterns over a held-out dataset
to obtain confidence in their precision.

We consider this work as a first step in the study of formal
properties of DNNs. As a proof of concept, we present several
different applications. We learn input and layer properties for
an MNIST network, and demonstrate their use in providing
robustness guarantees, explaining the network’s decisions and
debugging misclassifications made by the network. We also
study the use of patterns at intermediate layers as interpolants
in the proof of given input-output properties for a network
modeling a safety-critical system for unmanned aircraft control
(ACAS XU) [19]. The learned patterns help decompose the
proofs thereby making them computationally efficient. Finally,
we discuss a somewhat radical application of the learned
patterns in distilling [16] the behavior of DNNs. The key idea
is to use the patterns that have high support as distillation
rules that directly determine the network’s prediction without
evaluating the entire network. This results in a significant
speedup without much loss of accuracy.

II. BACKGROUND

A neural network defines a function F : IRn → IRm

mapping an input vector of real values X ∈ IRn to an output
vector Y ∈ IRm. For a classification network, the output
defines a score (or probability) across m classes, and the
class with the highest score is typically the predicted class.
A feed forward network is organized as a sequence of layers
with the first layer being the input. Each intermediate layer
consists of computation units called neurons. Each neuron
consumes a linear combination of the outputs of neurons in
the previous layer, applies a non-linear activation function to
it, and propagates the output to the next layer. The output
vector Y is a linear combination of the outputs of neurons
in the final layer. For instance, in a Rectified Linear Unit
(ReLU) network, each neuron applies the activation function
ReLU(x) = max(0, x). Thus, the output of each neuron is of
the form ReLU(w1 ·v1+ . . .+wp ·vp+ b) where v1, . . . vp are
the outputs of the neurons from the previous layer, w1, . . . , wp
are the weight parameters, and b is the bias parameter of the

neuron.1

Example. We use a simple feed forward ReLU network,
shown in Figure 1a, as a running example throughout this
paper. The network has four layers: one input layer, two hidden
layers and one output layer. It takes as input a vector of size
2. The output vector is also of size 2, indicating classification
scores for 2 classes. All neurons in the hidden layers use
the ReLU activation function. The final output is a linear
combination of the outputs of the neurons in the last hidden
layer. Weights are written on the edges. For simplicity, all
biases are zero. Consider the input [1.0,−1.0]. The output
on this input is F ([1.0,−1.0]) = [y1, y2] = [1.0,−1.0].
To see this, notice that the output of the first hidden layer
is [v1,1, v1,2] = [ReLU(1.0 · 1.0 − 1.0 · −1.0),ReLU(1.0 ·
1.0 + 1.0 · −1.0)] = [2.0, 0.0]. This feeds into the second
hidden layer whose output then is [v2,1, v2,2] = [ReLU(0.5 ·
2.0 − 0.2 · 0.0),ReLU(−0.5 · 2.0 + 0.1 · 0.0)] = [1.0, 0.0].
This in turn feeds into the output layer which computes
[y1, y2] = [1.0·1.0−1.0·0.0,−1.0·1.0+1.0·0.0] = [1.0,−1.0].

A feed forward network is called fully connected if all neu-
rons in a hidden layer feed into all neurons in the next layer;
the network in Figure 1a is such a network. Convolutional
Neural Networks (CNNs) are similar to ReLU networks, but
in addition to (fully connected) layers, they may also contain
convolutional layers which compute multiple convolutions
of the input with different filters and then apply the ReLU
activation function. For simplicity, we focus our discussion on
ReLU networks, but our work applies to all piece-wise linear
networks, including ReLUs and CNNs (and in experiments we
describe an analysis for a CNN).

Notations and Definitions. All subsequent notations and
definitions are for a feed forward ReLU network F , often
referred to implicitly. We use uppercase letters to denote
vectors and functions, and lowercase letters for scalars. We
use N,N ′, N1, . . . to range over neurons, and N for the set
of all neurons in the network. For any two neurons N1, N2,
the relation N1 ≺ N2 holds if and only if the output of neuron
N1 feeds into neuron N2, either directly or via intermediate
layers. We define feeds(N) ::= {N ′ | N ′ ≺ N}, and extend
it to sets of neurons in the natural way.

The output of each neuron N can be expressed as a
function of the input X . We abuse notation and use N(X)
to denote this function. It is defined recursively via neurons
in the preceding layer. That is, if N1, . . . , Np are neurons
from the preceding layer that directly feed into N , then
N(X) = ReLU(w1 · N1(X) + . . . + w2 · N2(X) + b). For
ReLU networks, N(X) is always greater than or equal to
0. We say that the neuron is off if N(X) = 0 and on if
N(X) > 0. This essentially splits the cases when the ReLU
fires and does not fire. As we will see in Section III, the

1Most classification networks based on ReLUs typically apply a softmax
function at the output layer to convert the output to a probability distribution.
We express such networks as F ::== softmax(G), where G is a pure ReLU
network, and then focus our analysis on the network G. Any property of the
output of F is translated to a corresponding property of G.



(a) Example (b) Input property for prediction “1”

Fig. 1: Example neural network and input contract

on/off activation status of neurons is our key building block
for defining network properties.

III. NETWORK PROPERTIES

Our goal is to extract succinct input-output characterizations
of the network behaviour, that can act as formal specifications
for the network. The network itself provides an input-output
mapping but of course this is uninteresting. Ideally we should
group together inputs that lead to the same output and express
that in concise mathematical form. To this end we propose
to infer input properties wrt a given output property P . An
input property is a predicate over the input space, such that, all
inputs satisfying it evaluate to an output satisfying the property
P . In other words, an input property is a precondition for
postcondition P . Together, the input property and the post
condition form a formal contract for the network. An example
of an output property for a classification network is that the
top predicted class is c, i.e., P (Y ) ::= argmax(Y ) = c. Such
properties are called prediction postconditions.

In this work, we infer input properties that characterize
inputs that are processed in the same way by the network,
i.e. they follow the same on/off activation pattern up to some
layer and define convex regions in the input space. There may
be many such convex regions for a particular output property
(say a particular prediction). The union of these regions fully
captures the behavior of the network wrt the output property.
In practice it may be too expensive to compute precisely this
union but we show that even computing a subset of these
regions can be useful for many applications.

We further study layer properties which encode common
properties at an intermediate layer that imply the desired
output behavior. Neural networks work by applying layer after
layer of transformations over the inputs, to extract important
features of the data, and then make decisions based on these
features. Thus layer properties can potentially capture common
characteristics over the extracted features, allowing us to get
insights into the inner workings of the network. Similar to
input properties, we seek to infer layer properties by studying
the activation patterns of the network. Unlike input properties,
layer properties do not map to convex regions in the input
space, but rather to unions of convex input regions.
Decision Patterns. We infer network properties based on
decision patterns of neurons in the network. A decision pattern
σ specifies an activation status (on or off ) for some subset
of neurons. All other neurons are don’t care. We formalize
decision patterns σ as partial functions N ⇀ {on, off }, and
write on(σ) for the set of neurons marked on , and off (σ) be

the set of neurons marked off in the pattern σ. Each decision
pattern σ defines a predicate σ(X) that is satisfied by all inputs
whose evaluation achieves the same activation status for all
neurons as prescribed by the pattern.

σ(X) ::=
∧

N∈on(σ)

N(X) > 0 ∧
∧

N∈off (σ)

N(X) = 0 (1)

A decision pattern σ is a network property wrt a postcondition
P if:

∀X : σ(X) =⇒ P (F (X)). (2)

We seek minimal patterns σ which have the property that
dropping (which amounts to unconstraining) any neuron from
the pattern invalidates it. Minimality helps in getting rid of
unnecessary constraints, and ensuring that more inputs can
satisfy the property.

The support of a pattern, denoted by supp(σ), is a measure
of the number of inputs that follow the pattern. Formally, it
is the total probability mass of inputs satisfying σ, under a
given input distribution. In the absence of an explicit input
distribution, support can be measured empirically based on a
training or test dataset. For large networks a formal proof for
∀X : σ(X) =⇒ P (F (X)) may not be feasible. In such
cases, one could aim for a probabilistic guarantee that the
conditional expectation (denoted E) of P (F (X)) given σ(X)
is above a certain threshold, i.e., E(P (F (X)) | σ(X)) ≥ τ .2

A. Input Properties

To build input properties we infer input properties that
are convex predicates in the input space implying a given
postcondition. Given that feed forward ReLU networks encode
highly non-convex functions, the existence of input properties
is itself interesting. To identify input properties, we consider
decision patterns wherein for each neuron N in the pattern, all
neurons that feed into N are also included in the pattern. We
call such patterns ≺-closed. We show that ≺-closed patterns
capture convex predicates in the input space.

Theorem 1: For all ≺-closed patterns σ, σ(X) is convex,
and has the form:∧
i in 1..|on(σ)|

Wi ·X + bi > 0 ∧
∧

j in 1..|off (σ)|

Wj ·X + bj ≤ 0

Here Wi, bi,Wj , bj are some constants derived from the
weight and bias parameters of the network.

2This is similar to the probabilistic guarantee associated with “An-
chors” [29], which we discuss further in Section VI.



The proof is provided in the Appendix. It is based on induction
over the depth of neurons in the pattern σ. It shows that
the value of any neuron in the pattern can be expressed
as a linear combination of the inputs and that each on/off
activation adds a linear constraint to the input predicate. 3

Thus, an input property can be obtained by identifying a ≺-
closed pattern σ such that ∀X : σ(X) =⇒ P (F (X)). For
convex postconditions P , we show that an input property can
be identified using any input X whose output satisfies P . For
this, we consider the activation signature of X , which is a
decision pattern σX that constrains the activation status of all
neurons to that obtained during the evaluation of X .

Definition 1: Given an input X , the activation signature of
X is a decision pattern σX such that for each neuron N ∈ N ,
σX(N) is on if N(X) > 0, and off otherwise.
It is easy to see that σX is a ≺-closed pattern. Thus, following
Theorem 1, σX can be used to obtain an input property, i.e. a
property that implies a desired output behavior. We state this
result as a proposition, which will be used in Section IV.

Proposition 1: Given a convex postcondition P and an
input X whose output satisfies P (i.e., P (F (X) holds), the
following holds. There exist parameters W, b such that:

(A) ∀X ′ : σX(X ′) =⇒ F (X ′) =W ·X ′ + b
(B) The predicate σX(X ′) ∧ P (W · X ′ + b) is an input

property.

Example. We illustrate input properties on the network shown
in Figure 1a (introduced in Section II). Consider the postcondi-
tion that the top prediction is class 1, i.e., P ([y1, y2]) ::= y1 >
y2. Let N1,1, N1,2 be the neurons in the first hidden layer, and
N2,1, N2,2 be the neurons in the second hidden layer. Consider
the pattern σ = {N1,1 → on, N1,2 → off }. We argue that
this pattern is an input property wrt P . Since N1,1 is on it
must be the case that the values that feed into N1,1 (which
have the form x1 − x2) are positive, hence the inputs satisfy
x1 − x2 > 0. Furthermore, since N1,2 is off it must be the
case that the values that feed into N1,2 (which have the form
x1 + x2) are negative, hence the inputs satisfy x1 + x2 ≤ 0.
Now notice that all the inputs that satisfy these two constraints
also satisfy neuron N2,1 is always on and neuron N2,2 is
always off . This is because the value that feeds into N2,1 is
0.5 · (x1 − x2) which must be positive (since x1 − x2 > 0).
Similarly the value that feeds into N2,2 is −0.5 · (x1 − x2)
which must be negative. Consequently the output [y1, y2] =
[1.0·N2,1(X)−1.0·N2,2(X),−1.0·N2,1(X)+1.0·N2,2(X)] =
[0.5 · (x1 − x2),−0.5 · (x1 − x2)] always satisfies y1 > y2
(when x1 − x2 > 0), making the pattern a precondition
for the property P . The pattern is ≺-closed, and therefore
by Theorem 2, the predicate σ(X) is convex. The predicate
σ(X) = N1,1(X) > 0 ∧ N1,2(X) = 0 (see Equation 7)
amounts to the convex region x1 − x2 > 0 ∧ x1 + x2 ≤ 0
(shown in blue in Figure 1b) and is minimal.

3The theorem can also be proven by representing the network as a
conditional affine transformation as shown in [12].

B. Layer Properties

While inferred input properties may be easy to interpret,
they often have tiny support. For instance, a property defined
based on the activation signature of an input X may only
be satisfied by X , and possibly a few other inputs that are
syntactically close to X . Ideally, we’d like properties to group
together inputs that are semantically similar in the eye of the
network. To this end, we focus on decision patterns at an
intermediate layer that capture high-level features.

A layer property for a postcondition P encodes a decision
pattern σl over neurons in a specific layer l that satisfies ∀X :
σl(X) =⇒ P (F (X)).4

Note that a layer property is convex in the space of values
at that layer, but not in the input space. However, it is
simple to express a layer property as a disjunction of input
preconditions. This is achieved by extending a layer pattern
with all possible patterns over neurons that feed into the
layer (directly or indirectly). Each such extended pattern is ≺-
closed, and therefore convex (by Theorem 2). We formulate
this connection between layer and input properties in the
following proposition.

Proposition 2: Let σl be a layer property for an output
property P . Let N l be the set of neurons constrained by
σl, and let σ1, . . . , σp be all possible decision patterns over
neurons in feeds(N l).5 Then the following statements hold:
(A) For each i, σl(X) ∧ σi(X) is an input property.
(B) σl(X)⇔

∨
i(σ

l(X) ∧ σi(X)).
Thus, layer properties can be seen as a grouping of several
input properties as dictated by an internal layer. We note that
identifying the right layer is key here. For instance, if one picks
a layer too close to the output then the layer property may
span all possible input properties, which is uninteresting. In
general, the choice of layer would depend on the application.
We discuss it further in Section V.

Example. Let us revisit the example in Figure 1a for
the postcondition that the top prediction is class 1, i.e.,
P ([y1, y2]) ::= y1 > y2. A layer pattern for this property is
{N2,1 → on, N2,2 → off }. It is easy to see that for all inputs
satisfying this pattern, the output [y1, y2] = [1.0 ·N2,1(X) −
1.0 · N2,2(X),−1.0 · N2,1(X) + 1.0 · N2,2(X)] will satisfy
y1 > y2, making the pattern a layer property wrt P . The pat-
tern is satisfied by the input [1.0,−1.0]. The execution of this
input involves neuron N1,1 being on and neuron N1,2 being
off . Consequently, by proposition 2 (part (A)), the extended
pattern {N1,1 → on, N1,2 → off , N2,1 → on, N2,2 → off } is
an input property wrt P .

C. Interpreting and Using Inferred Network Properties

Robustness guarantees and adversarial examples. We first
remark that provably-correct input and layer properties defined
wrt prediction postconditions characterize regions in the input

4For simplicity, we restrict ourselves to computing properties with respect
to a single internal layer but the approach extends to multiple layers.

5There are two 2|feeds(N l)| such patterns.



space in which the network is guaranteed to give the same
label, i.e. the network is robust. Inputs generated from counter-
examples of pattern candidates that fail to prove represent po-
tential adversarial examples, as they are close (in the Euclidean
space) to (regions of) inputs that are classified differently.
Furthermore, they are semantically similar to benign ones
(since they follow the same decision pattern) yet are classified
differently. We show such examples in Section V.

Explaining network predictions. Neural networks are infa-
mous for being complex black-boxes [22], [4]. An important
problem in interpreting them is to understand why the network
makes a certain prediction on an input. Predictions properties
(that ensure that the prediction is a certain class) can be
used to obtain such explanations. But, such properties are
useful explanations only if they are themselves understandable.
Inferred input properties are useful in this respect as they trace
convex regions in the input space. Such regions are easy to
interpret when the input space is low dimensional.

For networks with high-dimensional inputs (e.g., image
classification networks) input properties may be hard to in-
terpret or visualize. The conventional approach here is to
explain a prediction by assigning an importance score, called
attribution, to each input feature [32], [33]. The attributions
can be visualized as a heatmap overlayed on the visualization
of the input. In light of this, we propose two different
methods to obtain similar visualizations from input properties.
We note that in contrast to attributions, which help explain
predictions for individual inputs, our proposed input properties
help explain the predictions for regions of the input space.
Furthermore, and in contrast to existing attribution methods,
they provide formal guarantees as the computed explanations
are themselves network properties that imply the given post-
condition.

Under-approximation Boxes. As stated in Theorem 2, an input
property consists of a conjunction of linear inequations, which
can be solved efficiently with existing Linear Programming
(LP) solvers. We propose computing under-approximation
boxes (i.e. bounds on each dimension) as a way to interpret
input properties. Specifically, we use LP solving (after a
suitable re-writing of the constraints)6 to find solution intervals
[loi, hii] for each input dimension i such that

∑
i(hii− loi) is

maximized. As there are many such boxes, we constrain each
box to include as many inputs from the support as possible.
These boxes provide simple mathematical representations of
the properties, and are easy to visualize and interpret. Note
that the under-approximating boxes are themselves network
properties that formally imply the input properties and hence
the given postcondition.

Minimal Assignments. We also propose another natural way
to interpret both input and layer properties through the lens of
a particular input. Analogous to attribution methods, we aim
to determine which input dimensions (or features) are most

6We replace each occurrence of variable xi with loi or hii based on the
sign of the coefficient in the inequalities. See the Appendix for details on the
computation of under-approximation boxes.

relevant for the satisfaction of the property. Every concrete
input defines an assignment to the input variables x1 = v1 ∧
x2 = v2∧..∧xn = vn that satisfies σ(X). The problem now is
to find a minimal assignment that still leads to the satisfaction
of the property, i.e., a minimal subset of the assignments such
that xk1 = vk1 ∧ xk2 = vk2 ∧ ..∧ xkn = vkn =⇒ σ(X). The
problem has been studied in the constraint solving literature,
and is known to be computationally expensive [3]. We adopt
a greedy approach that eliminates constraints iteratively and
stops when σ(X) is no longer implied; the checks are per-
formed with a decision procedure. The resulting constraints
are also network properties that formally guarantee the corre-
sponding postcondition.

Layer Patterns as Interpolants. For deep networks deployed
in safety-critical contexts, one often wishes to a prove a
contract of the form A =⇒ B, which says that for all inputs
X satisfying A(X), the corresponding output Y (= F (X))
satisfies B(Y ). For the ACASXU application, there are several
desirable properties of this form, wherein, A is a set of
constraints defining a single or disjoint convex regions in the
input space, and B is an expected output advisory. Formally,
proving such properties for multi-layer feed forward networks
is computationally expensive [20]. We show that the inferred
network patterns, in particular layer patterns, help decompose
proofs of such properties by serving as useful interpolants [24].
Given a layer pattern σl, we propose the following rule to
decompose a proof.

(A =⇒ σl), (σl =⇒ B)

(A =⇒ B)
(3)

Thus, to prove A =⇒ B, we must first identify a layer pattern
σl that implies output property B, and then attempt the proof
A =⇒ σl on the smaller network up to layer l. Additionally,
once a layer pattern σl is identified for a property B, it can
be reused to prove other properties involving B. In Section V,
we show that this decomposition leads to significant savings
in verification time for properties of the ACASXU network.

Distilling rules from networks. Distillation is the process
of approximating the behavior of a large, complex deep
network with a smaller network [16]. The smaller network
is meant to be favorable to deployment under latency and
compute constraints while having comparable accuracy. We
show that layer patterns with high support provide a novel
way to perform such distillation. Suppose σl is a pattern at an
intermediate layer l that implies that the prediction is a certain
class c. For any input X , we can execute the network up to
layer l, and check if the activation statuses of the neurons in
layer l satisfy the pattern σl. If they do then we can directly
return the prediction class c. Otherwise we continue executing
the network. Thus for all inputs where the pattern is satisfied,
we replace the cost of executing the network from layer
l onward (possibly involving several matrix multiplications)
with simply checking the pattern σl. The savings could be
substantial if layer l is sufficiently far from the output, and the
layer pattern has high support. Notice that if the patterns are



formally verified then this hybrid setup is guaranteed to have
no degradation in accuracy. Having said this, we also note that
most distillation methods typically tolerate a small degradation
in accuracy. Consequently, instead of the expensive formal
verification step one could perform an empirical validation of
the patterns, and select ones that hold with high probability.
This makes the approach practically attractive. As a proof of
concept, we evaluate this approach on an eight layer MNIST
network in Section V. Interestingly, we note that a network
simplified in this manner satisfies the inferred properties by
construction, without any proof needed.

IV. COMPUTING NETWORK PROPERTIES

We now describe two techniques to build input and layer
properties from a feed-forward network wrt convex output
property P .

A. Iterative relaxation of decision patterns

This is a technique for extracting input properties. It makes
use of an off-the-shelf decision procedure for neural networks.
In this work, we use Reluplex [20] but other decision proce-
dures can be used too (see Section VI). 7

Recall from Section III that an input property is a ≺-closed
pattern σ that satisfies ∀X : σ(X) =⇒ P (F (X)). Ideally we
would like to identify the weakest such pattern, i.e., one that
constraints the fewest neurons. Computing such a property
would involve enumerating all ≺-closed patterns (O(2|N |)),
and using a decision procedure to validate whether Equation 2
holds. This is computationally prohibitive.

Instead, we apply a greedy approach to identify a minimal
≺-closed pattern σ, meaning that there is no ≺-closed sub-
pattern of σ that also satisfies Equation 2. We start with
an input X whose output satisfies the postcondition P , i.e.,
P (F (X)) holds. Let σX be the activation signature (see
Definition 1) of the input X . By Proposition 1 (Part (B)),
we have that σX(X ′)∧P (F (X ′)) is an input property; recall
that P is assumed to be convex. But this property may not
be minimal. Therefore, we iteratively drop constraints from it
till we obtain a minimal property. The algorithm is formally
described in the Appendix (see Algorithm 1). It is easy to
see that the resulting pattern is ≺ −closed, minimal, and it
implies the output property (F (X ′) = y).

Proposition 3: Algorithm 1 (refer Appendix) always re-
turns a minimal input property, and involves at most n +m
calls to the decision procedure, where n is the number of
layers, and m is the maximum number of neurons in a layer.
Example. Consider the example network from Figure 1a,
and the input X = [1.0,−1.0] for which the network predicts
class 1. We apply Algorithm 1 to identify an input property
for class 1. The algorithm starts with the activation signature
of X , which is the pattern σX = {N1,1 → on, N1,2 →
off , N2,1 → on, N2,2 → off }. Notice that σX is already an

7As discussed, in the absence of a decision procedure, empirical validation
of properties can also used. While we would lose the formal guarantee that the
computed decision patterns imply the postcondition, they may still be useful
in practice.

input property for class 1. The algorithm begins to unconstrain
all neurons in each layer, starting from the last layer, and
identifies layer 1 as the critical layer (i.e., unconstraining
neurons in layer 1 violates the postcondition). The algorithm
then identifies {N1,1 → on, N1,2 → off } as a minimal pattern
that implies the postcondition.

B. Mining layer properties using decision tree learning

The greedy algorithm described in the previous section is
computationally expensive as it invokes a decision procedure
at each step. We now present a relatively inexpensive technique
that relies on data, and avoids invoking a decision procedure
multiple times. The idea is to observe the activation signatures
of a large number of inputs, and learn decision patterns that
imply various output properties. In this work, we use deci-
sion tree learning (see Appendix for background) to extract
compact rules based on the activation statuses (on or off ) of
neurons in a layer. Decision trees are attractive as they yield
decision patterns that are compact (and therefore have high
support) based on various information-theoretic measures. The
resulting patterns are empirically validated layer properties,
which can be formally checked with a single call to a decision
procedure.

Our algorithm works as follows. Suppose we have a dataset
of inputs D. Consider a layer l where we would like to
learn a layer property wrt postcondition P . We evaluate the
network on each input X ∈ D, and note: (1) the activation
status of all neurons in layer l, denoted by σlX , and (2)
the boolean P (F (X)) indicating whether the output F (X)
satisfies property P . Thus, we have a labeled dataset of feature
vectors σlX mapped to labels P (F (X)); see for example
Figure 2a. We now learn a decision tree from this dataset. The
nodes of the tree are neurons from layer l, and branches are
based on whether the neuron is on or off . Each path from root
to a leaf labeled True forms a decision pattern for predicting
the output property; see Figure 2b. We filter out patterns σ that
are impure, meaning that there exists an input X ∈ D that
satisfies σ(X) but P (F (X)) does not hold. The remaining
patterns are “likely” layer properties wrt the postcondition.
We sort them in decreasing order of their support and invoke
the decision procedure (DP(σ(X), P (F (X)))) to formally
verify them. This last step can be skipped for applications
such as distillation (see Section V) where empirically validated
patterns may suffice.

We can refine the method for the case where the out-
put property is a prediction postcondition i.e., of the form
P (Y ) ::= argmax(Y ) = c. In this case, rather than predicting
a boolean as to whether the predicted class is c, we train a deci-
sion tree to directly predict the class label. This lets us harvest
layer patterns for prediction postconditions corresponding to
all classes. Specifically, the path from the root to a leaf labeled
class c is a likely layer property for the postcondition that the
top predicted class is c.
Counter-example guided refinement. In verifying Equa-
tion 2 for a decision pattern σ using a decision procedure,
if a counter-example is found, we strengthen the pattern by



additionally constraining the activation status of those neurons
from layer l that have the same activation status for all inputs
satisfying the pattern σ. If verification fails on this stronger
pattern then we do a final step of constraining all neurons
from layer l based on the activation signature of a single
input satisfying the pattern. If verification still fails, we discard
the pattern. One can also consider a different strategy for
refinement, were the counter-examples are added back to the
data set and the decision tree learning is re-run, obtaining
new layer patterns that will no longer lead to those counter-
examples. The drawback is that it may require too many calls
to the decision procedure, if many refinement steps are needed.

V. APPLICATIONS

In this section, we discuss case studies on computing input
and layer properties, and using them for different applica-
tions. We implemented all our algorithms in Python 3.0 and
Tensorflow. The Python notebook is connected to Python2
Google Compute Engine backend with 12Gb RAM allotted.
Our implementation supports analysis of both ReLU and CNN
networks. However, for the proofs we use Reluplex [20],
which is limited to ReLU networks. To enforce a decision
pattern we modified Reluplex to constrain intermediate neuron
values. As more decision procedures for neural networks
become available, we plan to incorporate them in our tool, thus
extending its applicability. The Reluplex runs were done on a
server with Ubuntu v16.04 (8 core, 64 GB RAM). We use the
linear programming solver pulp 2.3.1 to solve for under-
approximation boxes. We plan to make the implementation
and the networks available with a final paper version.

A. Analysis of ACASXU

We first discuss the analysis of ACASXU, a safety-critical
collision avoidance system for unmanned aircraft control [19].
ACASX is a family of collision avoidance systems for aircraft,
under development by the Federal Aviation Administration
(FAA). ACASXU is the version for unmanned aircraft. It
receives sensor information regarding the drone (the ownship)
and any nearby intruder drones, and then issues horizontal
turning advisories aimed at preventing collisions. The input
sensor data includes: (1) Range: distance between ownship and
intruder; (2) θ: angle of intruder relative to ownship heading
direction; (3) ψ: heading angle of intruder relative to ownship
heading direction; (4) vown: speed of ownship; (5) vint: speed
of intruder; (6) τ : time until loss of vertical separation; and
(7) aprev: previous advisory.

The FAA is exploring an implementation of ACASXU that
uses an array of 45 deep neural networks, from which we
selected one network for discussion here. The five possible
output actions are as follows: (0) Clear-of-Conflict (COC), (1)
Weak Left, (2) Weak Right, (3) Strong Left, and (4) Strong
Right. Each advisory is assigned a score, with the lowest
score corresponding to the best action. The network that we
analyzed (namely model 1 1) consists of 6 hidden layers, and
50 ReLU activation nodes per layer. We used 384221 inputs
with known labels. ACASXU networks were analyzed before

with Reluplex [20]. Verification for ACASXU is challenging,
taking many hours (may even time out after 12h); we give
more details below.

1) Property Inference: We infer network properties wrt
prediction postconditions that require that the output of a
network classifier is a certain class. We used decision tree
learning to extract layer patterns; we list them all (total 25)
in Table III in Appendix. The learning took 45 seconds on
average per layer (4.5 minutes in total). We discuss here the
verification of one specific layer pattern. This pattern was for
label COC (clear-of-conflict) at layer 5, and was subsequently
used to decompose proofs of ACASXU properties, as dis-
cussed below. The pattern has a support of 109417 inputs. We
were able to prove a property computed based on this pattern
after two refinement steps (Section IV), within 5 minutes. We
also extracted candidate input properties corresponding to the
decision pattern of the layer property following proposition 2.
From the 109417 inputs that satisfied the decision pattern at
layer 5, we extracted distinct decision prefixes corresponding
to 5532 inputs. We were able to prove all of them (3600
properties) within an average time of 1 minute per property.

These experiments show that it is feasible to extract input
and layer properties in terms of the on/off patterns of the ReLU
nodes of real networks. The experiments also show that the
patterns constraining lesser number of neurons have higher
support and layer properties have higher support than input
properties, as expected, since they cover a union of regions in
the input space.

2) Explaining Network Predictions: The input-output prop-
erties derived for ACASXU can explain the network behavior.
We further used LP solving to calculate under-approximation
boxes corresponding to input properties. We calculated such
a box for each of the 3600 input properties that we had
proved. We also generated under-approximation boxes for
input decision patterns that could not be proved within a time
limit of 12 hours but had high support. This helped elicit novel
properties of the network, which were validated by the domain
experts. We give some examples below.

– All the inputs within: 31900 ≤ range ≤ 37976, 1.684 ≤
θ ≤ 2.5133, ψ = -2.83, 414.3 ≤ vown ≤ 506.86, vint = 300,
should have the turning advisory as COC.

– All the inputs within: range = 499, -0.314 ≤ θ ≤ -3.14,
-3.14 ≤ ψ ≤ 0, 100 ≤ vown ≤ 571, 0 ≤ vint ≤ 150, should
have the turning advisory as Strong Left.

We further experimented with computing minimal assign-
ments that satisfy the inferred properies. For instance, we
analyzed a layer 2 property for the label COC, with a support
of 51704 inputs. By computing the minimal assignment over
an input that satisfied this property, we determined that the last
two input attributes, namely, vown (speed of ownship) and vint
(speed of intruder) were not relevant when the other attributes
are constrained as follows: range = 48608, θ = -3.14 and ψ =
-2.83. This represents an input-output property of the network
elicited by our technique. The domain experts confirmed that
this was indeed a valid and novel property of the ACASXU
network.



〈x1, x2〉 〈N1,1, N1,2〉 P (F (X))

〈0,−1〉 〈on, off 〉 True
〈1, 0〉 〈on, on〉 True
〈0, 1〉 〈off , on〉 False
〈4, 3〉 〈on, on〉 False
〈1,−1〉 〈on, off 〉 True

(a) Training dataset for decision tree.
(b) Resultant decision tree. The pattern harvested for
True is {N1,1 → on, N1,2 → off }.

Fig. 2: Illustration of decision tree learning for mining properties for the network in Figure 1a. The output property is that
the top predicted class is “1”.

3) Layer Patterns as Interpolants: To evaluate the use of
layer patterns in simplifying difficult proofs, we selected 3
properties from the ACASXU application. These properties
have previously been considered for verification directly using
Reluplex [20]. We list here the three properties.

• Property 1: All inputs within the following region, 36000
≤ range ≤ 60760, 0.7 ≤ θ ≤ 3.14, -3.14 ≤ ψ ≤ -3.14
+ 0.01, 900 ≤ vown ≤ 1200, 600 ≤ vint ≤ 1200, should
have the turning advisory as COC. This property takes
approx. 31 minutes to check with Reluplex.

• Property 2: All the inputs within the following region:
12000 ≤ range ≤ 62000, (0.7 ≤ θ ≤ 3.14) or (-3.14 ≤
θ ≤ -0.7), -3.14 ≤ ψ ≤ -3.14 + 0.005, 100 ≤ vown ≤
1200, 0 ≤ vint ≤ 1200, should have the turning advisory
as COC. This property has a large input region and direct
verification with Reluplex times out after 12 hours.

• Property 3: All the inputs within the following region:
range > 55947.691, -3.14 ≤ θ ≤ 3.14, -3.14 ≤ ψ ≤
3.14, 1145 ≤ vown ≤ 1200, 0 ≤ vint ≤ 60, should have
the turning advisory as Clear-of-Conflict (COC). This
property takes approx. 5 hours to check with Reluplex.

All three properties have the form A =⇒ B, where A
specifies constraints on the input attributes, and B specifies
that the output turning advisory is COC. For each property, we
used decision tree learning to extract multiple layer patterns
for label COC at every layer, and selected the one that
covers maximum number of inputs within the input region A.
Incidentally, for all three properties the same pattern at layer
5 (denoted by σ5) was selected.

Property 1: We found 195 inputs in the training set that fall
within A and classify as COC. All of these inputs are also
covered by σ5. We therefore proceeded to prove A =⇒ σ5

and σ5 =⇒ B using Reluplex. For proving σ5 =⇒ B, we
had to strengthen the pattern by constraining 48 nodes at layer
5. This made the proof go through, and finish in 5 minutes.

We then attempted to prove A =⇒ σ5 for the strengthened
version. This process finished in 2 minutes. Thus, we were
able to prove this property in 7 minutes. In contrast, direct
verification of the property using Reluplex takes 31 minutes.

Properties 2 and 3: We could not identify a single layer

pattern that covered the inputs within A completely. The
pattern σ5 had maximum coverage with respect to the training
inputs within A (5276/7618 inputs for property 2, 256/441
for property 3). We split the proof into two parts. First, we
extracted the activation signature prefixes up to layer 5 for each
of the training inputs that satisfy σ5. Let cov be the set of these
prefixes. We then checked (A ∧

∨
σi∈cov σi(X)) =⇒ B8

Checks of the form (A ∧ σi(X)) =⇒ B were spawned
in parallel for every σi. This completed in an hour for
property 2 and within 6 mins for property 3. The remain-
ing obligation in completing the proof for the property was
(A∧¬(

∨
i∈cov σi(X))) =⇒ B. To check this efficiently, we

determined the under-approximation boxes for each σi, and
spawned parallel checks on the partitions within A not covered
by the boxes. The longest time taken by any job was 2 hours
10 minutes for property 2 and 1 hour 30 minutes for property
3. This is a promising result as a direct proof of property 2
using Reluplex times out after 12 hours. For property 3, a
direct proof takes 5 hours.

B. Analysis of MNIST

We also analyzed MNIST, an image classification network
based on a large collection of handwritten digits [25]. It
has 60,000 training input images, each characterized by 784
attributes and belonging to one of 10 labels. We first analyzed
a simple network from the Reluplex distribution (containing
10 layers with 10 ReLU nodes per layer). The simplicity of the
network makes it amenable to proofs using Reluplex. For the
distillation experiments (described in the following subsection)
we use a more complex MNIST network that is close to state-
of-the art.

1) Property Inference: We extracted input properties using
iterative relaxation and layer properties using decision tree
learning, showing the feasibility of our approach in the context
of image classification, which involves a much larger input
space compared to ACASXU. Details about the computed
properties (total 30) are given in Tables I and II in the
Appendix.

8Since σ5 implies the property B only after strengthening, showing
that (A ∧

∨
i∈cov σi(X)) =⇒ σ5 is not enough to ensure that

(A ∧
∨

i∈cov σi(X)) =⇒ B.



Fig. 3: Original images from the data set (left). Counter-
examples to failed proofs for patterns containing the original
images (right).

Fig. 4: Visualization of MNIST input properties using under-
approximation boxes.

The Reluplex checks for some of the network properties
generated counter-examples which show potential vulnerabil-
ities of the network, since they are close (in the Euclidean
space) to other inputs that are classified differently (Figure 3).

2) Explaining Network Predictions: We further computed
and visualized under-approximation boxes for the inferred
properties. As an example, in Figure 4, we show a visual-
ization of input properties corresponding to three different
images from the training set. The first column shows original
images. Columns 2 and 3 show images with all pixels set to
their minimum and maximum values in the computed under-
approximating box, respectively. Columns 4, 5 and 6 have each
pixel set to the mean value of its range in the box, a randomly
chosen value below the mean, and a randomly chosen value
above the mean, respectively.

In Figure 5, we visualize layer properties via under-
approximation boxes corresponding to 5 input properties,
based on 5 randomly chosen images from the support of the
property. Each box is represented by 2 images, setting all the
pixels to their respective minimum and maximum values in the
box. Note that the images drawn from the under-approximation
boxes represent new inputs (not in the training set) that satisfy
the same property and hence are labelled the same. While input
properties capture visually (or syntactically) similar images,
layer properties cluster images of the same digit written in
different ways, indicating that layer properties can potentially
capture common features across inputs. The developer can
examine the generated images to get a sense of the image
characteristics that contributed to the network decisions.

3) Misclassifications: Under-approximation boxes can also
be used to reason about misclassifications. Misclassified inputs
are typically “rare” and spread across the input space, and
it is very difficult for developers to understand their cause
and fix the underlying problem. Figure 6 shows an image
of digit 1 misclassified to digit 2 (Figure 6, first column).
We used this input to extract an input decision pattern and

Fig. 5: Visualization of MNIST layer properties using under-
approximation boxes.

Fig. 6: Digit 1 misclassified to 2 and images with
min and max values from under-approximation box
of original image.

compute an under-approximation box for it (Figure 6, 2nd
and 3rd columns). We can thus draw many more inputs from
the box that are similarly misclassified. These inputs can help
developers understand the cause of misclassification and re-
train the network on them.

C. Distillation

Our final experiment is to evaluate the use of layer prop-
erties in distilling a network. As discussed in Section III-C,
the key idea is to use prediction properties at an intermediate
layer as distillation rules. For inputs satisfying the property,
we save the inference cost of evaluating the network from
the intermediate layer onwards. We present a preliminary
evaluation of this idea using a more complex MNIST net-
work [1] with 8 hidden layers; two convolutional, one max
pooling, two convolutional, one max pooling, and two fully
connected layers. The network has a superior accuracy of
0.9943 but it is computationally expensive during inference.
We use the decision tree algorithm to obtain layer patterns.
We then empirically validate them (using a validation set
of 5000 images), and select ones with accuracy above a
threshold τ (see Section III). The selected properties are used
as distillation rules for inputs satisfying them. Using a held-
out test dataset, we measure the overall accuracy and inference
time of this hybrid setup for different values of τ .

Figure 7 shows the results of distillation from the first max
pooling layer9, which consists of 4608 neurons. The x-axis
shows the empirical validation threshold used for selecting
properties. The extreme right point (threshold > 1) corre-
sponds to one where no properties are selected, and therefore
distillation is not triggered. The reported inference times are
based on an average of 10 runs of the test dataset on a single
core Intel(R) Xeon(R) CPU @ 2.30GHz. The figure shows the
trend of overall accuracy and inference time as the threshold
τ is varied from 0.9 to 1.0. Observe that at a threshold
of τ = 0.98, one can achieve a 22% saving in inference
time while only degrading accuracy from 0.9943 to 0.9903.

9While max pooling neurons are different from ReLU neurons, we could
still consider activation patterns on them based on whether the neuron output
is greater than 0 or equal to 0. A decision tree can then be learned over these
patterns to fit the prediction labels.



Fig. 7: Distillation of an eight layer MNIST network (from [1])
using properties at the first max pooling layer.

Fig. 8: Distillation of an eight layer MNIST network (from [1])
using layer patterns at the second max pooling layers.

This is quite promising. As expected, lowering the threshold
further considers more properties, and therefore reduces both
inference time and accuracy. The results from the second max
pooling layer (shown in Figure 8) are similar except that both
the degradation in accuracy and the saving in inference time
are smaller. This is expected as the second max pooling layer
is closer to the output, and therefore the properties that we
infer approximate a smaller part of the network.

VI. RELATED WORK

We survey the works that are the most closely related to
ours. In [34] it has been shown that neural networks are
highly vulnerable to small adversarial perturbations. Since
then, many works have focused on methods for finding adver-
sarial examples. They range from heuristic and optimization-
based methods [13], [7], [27], [1], [26] to analysis tech-
niques which can also provide formal guarantees. In the latter
category, tools based on constraint solving, interval analysis
or abstract interpretation, such as DLV [17], Reluplex [20],
AI2[12] ReluVal [36], Neurify [35] and others [5], [8], are
gaining prominence. Our work is complementary as it focuses
on inferring input-output properties of neural networks. In
principle, we can leverage the previous analysis techniques
to verify the inferred properties.

There are several papers on explaining predictions made
by neural networks, see [15] for a survey. One line of work
is on explaining individual predictions by attributing them to
input features [32], [28], [31], [33], [23], [18]. They are either
based on computing gradients of the prediction with respect

to input features [32], [33], back-propagating the prediction
score to input features using a set of rules [31], [18], using
attribution techniques from cooperative game theory [23], or
computing local linear approximations of the behavior of the
network [28].

The closest to ours is the work on Anchors [29], which aims
to explain the network behaviour by means of rules (called
anchors), which represent sufficient conditions for network
predictions. These anchors are computed solely based on the
black-box behaviour of the neural network. Input properties
from our work can be viewed as anchors for various output
properties. The key difference is that our input properties
are obtained via a white-box analysis of the neurons in the
network, and are backed with a formal guarantee.

Also relevant, there is work on computing the influence of
individual neurons on predictions made by the network [2],
[21]. In a sense, our layer properties can be seen as a means for
identifying influential neurons for a prediction, the key differ-
ence being that layer properties also guarantee that decisions
of the influential neurons indeed imply the prediction. These
previous approaches evaluate neuron influence by measuring
how accurately the top k most influential neurons alone can
predict the class. Interestingly, we believe these works also
lend themselves to distillation. We leave a thorough compari-
son of different distillation mechanisms to future work.

There is a large body of work on property inference,
including [9], [6], [10], [11] to name just a few, although
none of the previous works have addressed neural networks.
The programs considered in this literature tend to be small
but have complex constructs such as loops, arrays, pointers.
In contrast, neural networks have simpler structure but can be
massive in scale.

A recent paper [30] uses properties over neuron activation
distributions to determine whether a given input is benign (i.e.,
non adversarial). The ‘invariants’ in [30] are meant to capture
properties of a given set of inputs (benign inputs), while our
input and layer properties are meant to capture properties of
the network. Furthermore, our properties partition the input
space into prediction-based regions, and are justified with a
formal proof. We do note that our properties can be seen as
invariance properties of the network, that have the special form
‘precondition implies postcondition’.

Our distillation approach is related to teacher-student learn-
ing in neural networks [16]. Note that we do not perform
transfer learning (from a teacher to a student) but instead use
the inferred properties to simplify the network. Thus, unlike
teacher/student learning, our distillation approach is adaptive,
allowing to process some inputs (that satisfy the layer prop-
erties) using the simplified computation; the other inputs (that
may need more complex processing) go through the original
network. Furthermore, we provide formal guarantees as by
construction, our ‘distilled’ network satisfies the properties
used in the distillation.



VII. CONCLUSION

We presented techniques to extract neural network input-
output properties and we discussed their application to explain-
ing neural networks, providing robustness guarantees, simpli-
fying proofs and distilling the networks. As more decision
procedures for neural networks become available, we plan to
incorporate them in our tool, thus extending its applicability
and scalability. We also plan to leverage the decision patterns
to obtain parallel verification techniques for neural networks
and to investigate other applications of the inferred proper-
ties, such as confidence modeling, adversarial detection and
guarding monitors for safety and security critical systems.
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VIII. APPENDIX:

A. Proof for Theorem 1

Theorem 2: For all ≺-closed patterns σ, σ(X) is convex,
and has the form:∧
i in 1..|on(σ)|

Wi ·X + bi > 0 ∧
∧

j in 1..|off (σ)|

Wj ·X + bj ≤ 0

Here Wi, bi,Wj , bj are some constants derived from the
weight and bias parameters of the network.

We prove the following stronger property: For all neurons
N in a ≺-closed pattern σ, there exist parameters W, b such
that:

∀X : σ(X) =⇒ N(X) = ReLU(W ·X + b) (4)

The theorem can be proven from this property by applying the
definition of ReLU. We prove this property for all neurons in
σ by induction over the depth of the neurons. The base case of
neurons in layer 1 follows from the definition of feed forward
ReLU networks. For the inductive case, consider a neuron N
in σ at depth k. Let N1, . . . , Np be the neurons that directly
feed into N from the layer below. By recursively expanding
N(X), we have that there exist parameters b, w1, . . . , wp such
that:

N(X) = ReLU(w1 ·N1(X) + . . .+ wp ·Np(X) + b) (5)

By induction hypothesis, we have that for each Ni (where
1 ≤ i ≤ p), there exists Wi, bi such that:

∀X : σ(X) =⇒ Ni(X) = ReLU(Wi ·X + bi) (6)

Since σ is ≺-closed, N1, . . . , Np must be present in σ.
Without loss of generality, let N1, . . . , Nk be marked off , and
Nk+1, . . . , Np be marked on . The definition of σ(X) is as
follows,

σ(X) ::=
∧

N∈on(σ)

N(X) > 0 ∧
∧

N∈off (σ)

N(X) = 0 (7)

Hence we have:

∀i ∈ {1, . . . , k} ∀X : σ(X) =⇒ Ni(X) = 0 (8)

∀i ∈ {k + 1, . . . , p} ∀X : σ(X) =⇒ Ni(X) > 0 (9)

From Equations 9 and 6, and definition of ReLU, we have:

∀i ∈ {k + 1, . . . , p} ∀X : σ(X) =⇒ Ni(X) =Wi ·X + bi
(10)

Using Equations 5, 8, and 10, we can show that there exists
parameters W and b such that

∀X : σ(X) =⇒ N(X) = ReLU(W ·X + b) (11)

This proves the property for neuron N .

B. Background on Decision Tree Learning

Decision tree learning is a supervised learning technique for
extracting rules that act as classifiers. Give a set of data {D}
respective classes {c}, decision tree learning aims to discover
rules (R) in terms of the attributes of the data to discriminate
one label from the other. It builds a tree such that, each path of
the tree is a rule r, which is a conjunction of predicates on the
data attributes. Each rule attempts to cluster or group inputs
that belong to a certain label. There could be more than one
paths leading to the same label, and therefore more than one
rules for the same label. The decision tree learning attempts to
extract compact rules that are generalizable beyond the training
data. Each rule is discriminatory within the tolerance of the
error threshold (i.e. two inputs with different labels will have
different rules).

Tree = DecTree({data}, {label}, {attribute})

Tree ::= (path0 ∨ path1 ∨ ... ∨ pathn)

R ::= {r0, r1, ..., rn}

ri =
∧

a∈{attribute}

predicate(a)

C. Algorithms and Results

We present the iterative relaxation of decision patterns in
Algorithm 1. We use the notation DP(A(X), B(X)) for a call
to the decision procedure to check ∀X : A(X) =⇒ B(X).10

We use σ \ N to denote a sub-pattern of σ wherein all neurons
from N are unconstrained.

First, we drop the constraint (F (X) = y) and invoke the
decision procedure to check if σ(X) =⇒ P (F (X)). If
this does not hold (i.e. σ(X)∧¬P (F (X)) is satisfiable) then
σ(X)∧P (F (X)) is returned as an input property. Otherwise,
we have that σ(X) is an input property. However it may be
too ‘narrow’. We then proceed to unconstrain neurons in σ
while still maintaining the output property. This is done in
two steps: (1) We unconstrain all neurons in a single layer,
starting from the last layer, until we discover a critical layer cl
such that unconstraining all neurons in cl no longer implies the
postcondition. (2) Within the critical layer cl, we unconstrain
neurons one by one (the exact order does not matter as all the
conditions in a layer are independent) till we end up with a
minimal subset.

We now describe how we use an LP solver to compute an
under-approximation box containing inputs satisfying an input
property. Given an input property, σ, we aim to compute a box
represented as ranges on each input attribute (0...n), such that
every point within this box which is an input to the network
which would satisfy σ; in other words the box is an under-
approximation of the property. The code snippet below shows
the use of the pulp LP solver to determine these ranges.

10Most decision procedures would validate this property by checking
whether the formula A(X) ∧ ¬B(X) is satisfiable.



Algorithm 1 Iterative relaxation algorithm to extract input
properties from input X .

1: // Let k be the layer before output layer
2: // We write N l for the neurons at layer l
3: σ = σX // Activation signature of input X
4: sat = DP(σ(X), P (F (X)))
5: if sat then return σ(X) ∧ P (F (X))

6: l = k
7: while l > 1 do
8: σ = σ \ N l

9: sat = DP(σ(X), P (F (X))
10: if sat then
11: // Critical layer found
12: cl = l
13: // Add back activations from critical layer
14: σ = σ ∪ N cl

15: for each N ∈ N cl do
16: σ′ = σ \ {N}
17: sat = DP(σ′(X), P (F (X))
18: if ¬sat then
19: // Neuron N can remain unconstrained
20: σ = σ′

21: return σ(X)
22: else
23: l = l − 1

for i=0; i<n;i++ do
dhi=pulp.LpVar(name,lowBound=min[i],

upBound=max[i],cat=Continuous)
dlo=pulp.LpVar(name,lowBound=min[i],

upBound=max[i],cat=Continuous)
pulpInput[i]=(dlo, dhi)

Each input is represented as a pair of pulp variables,
(dlo, dhi). The variable dlo represents the lowest value and
dhi represents the highest value for a given input in the box.
The lower and upper bounds for dlo and dhi are set based
on the minimum and maximum values for that attribute in
the set of inputs in the support of σ. The solver is invoked
to maximize the difference between dhi and dlo, in order to
obtain the widest region possible.

prob=pulp.LpProblem(”Box”,pulp.LpMaximize)
prob+=pulp.lpSum([(pulpInput[i][1]-pulpInput[i][0])],
for[i in range (0,n)]
Each neuron activation in σ represents a linear constraint

imposed by the ReLU activation function on the input vari-
ables. For example, at the first hidden layer if for a ReLU node,
N0 = 0 or N0 in off (σ), indicates that (

∑i=n
i=0 xi.wi)+b ≤ 0,

where xi is an input variable, wi is the weight of the
incoming edge and b is the bias term. This is added as a
path constraint for the LP solver as follows. The constraint is
re-arranged into the following inequality (

∑i=n
i=0 xi.wi) ≤ −b

(−(
∑i=n
i=0 xi.wi) ≤ b, if N0 is in on(σ)) . If the co-efficient

term of an input variable is negative, the variable is replaced by
the respective lower bound (dlo), while if the co-efficient term

is positive, the variable is replaced by (dhi). The equations for
the neurons in the layers below can be similarly expressed in
terms of dlo, dhi of the input variables (denoted F (dlo, dhi)).
These constraints are added to the problem as shown in the
snippet below and finally the solver is invoked.

if N ∈ on(σ) then
prob += ( -(pulp.lpSum( F (dlo, dhi) )) ≤ bias )

if N ∈ off (σ) then
prob += ( (pulp.lpSum( F (dlo, dhi) )) ≤ -bias )

prob.solve()

D. Under-approximation boxes

We list here some of the under-approximation boxes calcu-
lated for the 3600 input decision patterns that were proved on
the ACASXU network. In each property, all inputs within the
given regions should have the turning advisory as COC.

1) 39688 ≤ range ≤ 60760, 1.57 ≤ θ ≤ 1.59, ψ = -3.14,
491 ≤ vown ≤ 1176, 242 ≤ vint ≤ 382.

2) 37087 ≤ range ≤ 60760, 1.28 ≤ θ ≤ 1.57, ψ = -3.14,
837 ≤ vown ≤ 1200, 232 ≤ vint ≤ 611.

3) 38060 ≤ range ≤ 56778, 1.48 ≤ θ ≤ 1.57, ψ = -3.14,
728 ≤ vown ≤ 1200, 429 ≤ vint ≤ 640.

4) 38060 ≤ range ≤ 60760, 1.40 ≤ θ ≤ 1.57, ψ = -3.14,
728 ≤ vown ≤ 1200, 553 ≤ vint ≤ 640.

5) 20134 ≤ range ≤ 51676, -3.13 ≤ θ ≤ 1.14, ψ = -3.14,
911 ≤ vown ≤ 1200, 110 ≤ vint ≤ 150.

6) 29938 ≤ range ≤ 60760, 2.61 ≤ θ ≤ 2.83, ψ = -3.14,
889 ≤ vown ≤ 1200, vint = 0.

7) 18821 ≤ range ≤ 28766, 2.82 ≤ θ ≤ 3.09, ψ = -3.14,
407.5 ≤ vown ≤ 943.7, 205.3 ≤ vint ≤ 300.

8) 35240 ≤ range ≤ 60760, θ = 1.57, ψ = -3.14, 965 ≤
vown ≤ 1200, 600 ≤ vint ≤ 763.

9) 34271 ≤ range ≤ 52747, 1.18 ≤ θ ≤ 1.57, ψ = -3.14,
839 ≤ vown ≤ 1200, 600 ≤ vint ≤ 680.

10) 38439 ≤ range ≤ 53629, 2.46 ≤ θ ≤ 2.83, ψ = -3.14,
217 ≤ vown ≤ 434, 900 ≤ vint ≤ 1200.

11) 40489 ≤ range ≤ 60760, 1.32 ≤ θ ≤ 1.59, ψ = -3.14,
826 ≤ vown ≤ 1200, 112 ≤ vint ≤ 156.

12) 31717 ≤ range ≤ 60760, 1.25 ≤ θ ≤ 1.50, ψ = -3.14,
962 ≤ vown ≤ 1171, 999 ≤ vint ≤ 1050.

13) 44813 ≤ range ≤ 60760, 1.65 ≤ θ ≤ 1.88, ψ = -3.14,
728 ≤ vown ≤ 1000, 450 ≤ vint ≤ 692.

14) 13670 ≤ range ≤ 25541, 1.87 ≤ θ ≤ 2.19, -3.14 ≤ ψ
≤ -3.13, 571 ≤ vown ≤ 811, 600 ≤ vint ≤ 943.

15) 30093 ≤ range ≤ 60760, 2.51 ≤ θ ≤ 2.81, -3.14 ≤ ψ
≤ -3.13, 872 ≤ vown ≤ 1077, vint = 0.

16) 15624 ≤ range ≤ 28109, θ = 2.82, ψ = -3.14, 1002 ≤
vown ≤ 1200, 585 ≤ vint ≤ 1009.

17) 24392 ≤ range ≤ 39861, θ = 2.98, ψ = -3.14, 394 ≤
vown ≤ 646, 900 ≤ vint ≤ 1200.

18) 30139 ≤ range ≤ 53232, 2.51 ≤ θ ≤ 2.83, -3.14 ≤ ψ
≤ -3.13, 871 ≤ vown ≤ 1200, vint = 0.

19) 35747 ≤ range ≤ 48608, θ = 1.57, ψ = -3.14, 862 ≤
vown ≤ 1164, 450 ≤ vint ≤ 736.



20) 23991 ≤ range ≤ 42230, 2.522 ≤ θ ≤ 2.94, -3.14 ≤ ψ
≤ -3.13, 100 ≤ vown ≤ 205, 900 ≤ vint ≤ 1200.

E. Tables

Statistics from our experiments are presented in Tables I, II
and III.



TABLE I: Input Properties for MNIST listing layers: nodes in layer and support.

Pattern:Label Layers:Nodes Support
σ1: 0 1:0-9, 2:0-9 1928
σ2: 0 1:0-9, 2:0-7 2010
σ3: 0 1:0-9, 2:0-9 217
σ4: 1 1:0-9, 2:0-9 758
σ5: 1 1:0-9, 2:0-5 2
σ6: 1 1:0-9, 2:0-9, 3:0-9, 4:{5} 12
σ7: 2 1:0-9, 2:{2,3,4,5,8,9} 1338
σ8: 2 1:0-9, 2:0-9, 3:0 19
σ9: 2 1:0-9, 2:0 4
σ10: 3 1:0-9, 2:0-9, 3:0-9, 4:{5} 2
σ11: 3 1:0-9, 2:0-9, 3:{3} 52
σ12: 4 1:0-9, 2:0-9, 3:0 97
σ13: 4 1:0-9, 2:0-9, 3:{4} 10
σ14: 5 1:0-9, 2:0-9, 3:0-9, 4:0-9, 5:0-9, 6:0-1 1
σ15: 5 1:0-9, 2:0-9, 3:0-9, 4:0-9, 5:{2} 2
σ16: 6 1:0-9, 2:{0,5} 748
σ17: 6 1:0-9, 2:0 3904
σ18: 8 1:0-9, 2:{0,2,4,5,8} 358
σ19: 8 1:0-9, 2:0-9, 3:0-9, 4:0-9, 5:0-9, 6:0-5 3
σ20: 9 1:0-9, 2:0-9, 3:0-9, 4:0-2 236
σ21: 9 1:0-9, 2:0-9, 3:0-9, 4:0-9, 5:0-9, 6:0-9, 7:0-9, 8:0-9, 9:0-9 10
σ22: 9 1:0-9, 2:0-9, 3:0-9, 4:0-9, 5:0-9, 6:0-9, 7:0-9, 8:0-9, 9:0-9, 10:0-9 1

TABLE II: Layer Properties for MNIST listing layer: nodes in layer and support.

Pattern:Label Layers:Nodes Support
σ1: 6 1:0-9 3904
σ2: 6 7:{1-4, 7, 9} 5145
σ3: 4 6:{0-2, 4-6, 8} 3078
σ4: 0 7:{1-2, 4-5, 7, 9} 5333
σ5: 0 2:0-9, 3:0-7 19962
σ6: 3 9:{0, 2-4, 6, 8-9} 3402
σ7: 5 10:{0, 2, 4-5, 7-8} 3075
σ8: 1 2:0-9, 3:0 18735

TABLE III: ACASXU Layer Patterns, listing number of patterns, total support and the maximum support for a pattern.

Layer Label Num of Patterns Total Supp MAX supp inv
5 0 834 2237734 109147
5 1 776 3742 120
5 2 1139 7744 1324
5 3 1745 20059 2097
5 4 1590 23580 2133
4 0 1554 208136 25489
4 1 1185 7338 732
4 2 1272 7436 745
4 3 2322 22880 1424
4 4 2156 24565 2138
3 0 3923 249771 26134
3 1 1906 7387 210
3 2 1866 6649 134
3 3 3420 21902 945
3 4 2932 20218 552
2 0 1924 219149 51709
2 1 734 4960 497
2 2 819 4460 571
2 3 1746 14487 1262
2 4 1640 14571 1410
1 0 2937 220395 32384
1 1 1031 4422 265
1 2 1123 3611 148
1 3 2285 11756 311
1 4 2112 11386 437




