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ABSTRACT 

Prognostics performance evaluation has 
gained significant attention in the past few 
years.

*
As prognostics technology matures and 

more sophisticated methods for prognostic 
uncertainty management are developed, a 
standardized methodology for performance 
evaluation becomes extremely important to 
guide improvement efforts in a constructive 
manner. This paper is in continuation of 
previous efforts where several new evaluation 
metrics tailored for prognostics were 
introduced and were shown to effectively 
evaluate various algorithms as compared to 
other conventional metrics. Specifically, this 
paper presents a detailed discussion on how 
these metrics should be interpreted and used. 
Several shortcomings identified while 
applying these metrics to a variety of real 
applications are also summarized along with 
discussions that attempt to alleviate these 
problems. Further, these metrics have been 
enhanced to include the capability of 
incorporating probability distribution 
information from prediction algorithms as 
opposed to evaluation based on point 
estimates only. Several methods have been 
suggested and guidelines have been provided 
to help choose one method over another based 
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on probability distribution characteristics. 
These approaches also offer a convenient and 
intuitive visualization of algorithm 
performance with respect to metrics like 
prediction horizon and α-λ performance, and 
also quantify the corresponding performance 
while incorporating the uncertainty 
information.  

1. INTRODUCTION 

Prognostics being an emerging research field, most of 

the published work has naturally been exploratory in 

nature, consisting mainly of proof-of-concepts and one-

off applications. Prognostic Health Management (PHM) 

has by-and-large been accepted by the engineered 

systems community in general, and the aerospace 

industry in particular, as the direction of the future. 

However, for this field to mature, it must make a 

convincing case in numbers to the decision makers in 

research and development as well as fielded applications. 

It is as Prof. Thomas Malone, an eminent management 

guru, said, “If you don’t keep score, you are only 

practicing.” 

In research, metrics are not simply a means to 

evaluate the quality of an approach, they can be useful in 

a variety of different ways. One of the most direct uses is 

reporting performance both internally and externally 

with respect to the research organization. Metrics can 

create a standardized language with which technology 

developers and users can communicate their findings 

with each other and compare results. This aids in the 

dissemination of scientific information as well as 

decision making. Metrics may also be viewed as a 

feedback tool to close the loop on research and 
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development by using them as objective functions to be 

minimized or maximized, as appropriate, by the 

research effort. 

The multifarious uses notwithstanding, metrics can 

be a double-edged sword. An oft repeated quote in the 

management world goes, “Be careful what you 

measure—you might just get it.” What this saying 

means is that we mostly set goals based on what we can 

measure, and then we set about achieving those goals 

without heed to the inherent value of the work. It is 

usually much harder to ascertain value than it is to 

evaluate metrics. Thus, the careful choice and design of 

a metric to reflect the intended value is of paramount 

importance, especially in a nascent research area like 

prognostics.  

Recently there has been a significant push towards 

crafting suitable metrics to evaluate prognostics 

performance. Researchers from academia and industry 

are working closely to arrive at useful performance 

measures. For instance, in [1] authors propose some 

prognostics metrics and compare them with diagnostics 

metrics. However, these metrics are mostly derived 

from metrics used for prediction tools in finance as 

opposed to being specifically tailored for prognostics. 

In [2] we categorized various forecasting applications 

based on their different characteristics and pointed out 

that there are notable differences other domains and the 

task of remaining life prediction. It is therefore, 

important to develop metrics that directly address the 

problem at hand. On the flipside it becomes quite 

challenging to reshape the mindset around using 

metrics from other forecasting domains. Wang and Lee 

[3] propose simple metrics in their paper from the 

classification discipline and also suggest a new metric 

called “Algorithm Performance Profile” that tracks the 

performance of an algorithm using the accuracy score 

each time an estimated RUL is estimated. In [4], 

authors present two new metrics for prognostics; in 

particular they define a reward function for predicting 

the correct time-to-failure that also takes into account 

prediction and problem detection coverage. They also 

propose a cost-benefit analysis based metric to quantify 

how much an organization could save by deploying a 

given prognostic model. Thus in general efforts are 

being made to evaluate prognostics from different end-

user point of views. 

This paper is a thematic continuation of previous 

works that surveyed metrics in use for prognostics in a 

variety of domains [2] in order to come up with a list of 

metrics to assess critical aspects of RUL predictions 

and showed how such metrics can be used to 

effectively assess the performance of prognostic 

algorithms [5]. This paper will focus on the design and 

choice of parameters for metrics that are specifically 

designed for prognostics beyond the conventional ones 

being used for diagnostics and other forecasting 

applications. These metrics have been introduced in [2] 

and their implementation discussed in [5]. Here we 

discuss the ways in which these metrics may be 

interpreted and used, and even misused or abused 

depending upon specific application scenarios. 

Furthermore, some enhancements over the original 

definitions have been presented to incorporate issues 

observed while applying these metrics to real 

applications. 

The next section motivates our detailed analysis on 

prognostics metrics. This analysis is first presented in the 

context of prediction horizon and then extended to other 

metrics in section 3. Section 3 also presents 

enhancements on these metrics to include prediction 

distributions and methods to implement them. Finally, 

the paper discusses future directions in section 4 

followed by conclusions in section 5. 

2. MOTIVATION 

In this paper we discuss the two fold benefits of 

performance metrics (see Figure 1).  
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Figure 1. Prognostics metrics are used for performance 

evaluation and also help in requirement specification 

Given current TRL level for the prognostics 

technology, lack of assessment about prognosability of a 

system and concrete uncertainty management 

approaches, managers of critical systems/applications 

have struggled to define concrete performance 

specifications. In most cases performance requirements 

are either derived from previous diagnostics experience 

or are very loosely specified. Prognostics metrics as 

proposed in [2] depend on various parameters that must 

be specified by the customer as requirements that an 

algorithm should attempt to meet as specifications. 

Process of coming up with reasonable values for these 

parameters must consider a complex interplay between 

several other factors as discussed in this paper. We 
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show, here, how these metrics can help users to come 

up with these specifications by taking such factors into 

account in a systematic framework. It is anticipated that 

in this manner these metrics will be useful for decision 

making in practical implementations of prognostics. On 

the other hand, providing feedback to algorithm 

developers and helping them improve their algorithms 

while trying to meet such specifications is yet another 

role these metrics are expected to play in a more 

conventional sense. 

The new prognostics metrics developed in previous 

work require a change in thinking about what 

constitutes a good performance. More importantly the 

time varying aspect of performance, each time the 

estimates are updated, differentiates these metrics from 

other related domains. These metrics offer visual as 

well as quantitative assessment of performance as it 

evolves over time. The visual representation allows 

making several observations about the performance and 

it is necessary for us, now, to understand the 

capabilities and the limits of information these new 

metrics can provide. Therefore, we try to draw a scope 

where these metrics may be applicable, useful and also 

describe where the limitations may be. 

With some initial experience we found ourselves 

under a dilemma between creating a comprehensive but 

complicated metric and a simple but less generic 

metric. The trade-off originates from the interplay 

between the ease of use, interpretability, and 

comprehensiveness. We determined that a more 

complicated metric has fewer chances of being adopted 

and more chances of breaking in many special cases 

that may not have been envisioned while formulating 

these ideas. Therefore, suggesting enhancements to the 

extent where these metrics are still simple enough to 

use and at the same time pointing out cases where these 

metrics are not expected to break is another objective of 

this paper. A significant enhancement presented in this 

paper is the ability of these metrics to incorporate 

uncertainty estimates available in the form of RUL 

distributions.  

3. PROGNOSTIC PERFORMANCE METRICS 

In this paper we discuss the four prognostics metrics 

namely; Prediction Horizon, α-λ Performance, Relative 

Accuracy, and Convergence. These four metrics follow 

a systematic progression in terms of the information 

they seek (Figure 2).  

Prognostic Horizon

• Does the algorithm predict within desired accuracy 
around EoL and sufficiently in advance?

α-λ Performance

• Further does the algorithm stay within desired 
performance levels relative to RUL at a given time?

Relative Accuracy

• Quantify how well an algorithm does at a given time 
relative to RUL

Convergence

• If the performance converges (i.e. satisfies above 
metrics) quantify how fast does it converge

 

Figure 2. Hierarchical design of the prognostics metrics. 

First, the prediction horizon identifies whether an 

algorithm predicts within a specified error margin 

(specified by the parameter α) around the actual end-of-

life and if it does how much time it allows for any 

corrective action to be taken. In other words it assesses 

whether an algorithm yields a sufficient prognostic 

horizon and if not it may not even be meaningful to 

compute other metrics. Thus if an algorithm passes the 

PH test the α-λ Performance goes further to identify 

whether the algorithm performs within desired error 

margins (specified by the parameter α) of the actual RUL 

at any given time instant (specified by the parameter λ) 

that may be of interest to a particular application. This 

presents a more stringent requirement of staying within a 

converging cone of error margin as a system nears end-

of-life (EoL). If this criterion is also met, the next step is 

to quantify the accuracy levels relative to actual 

remaining useful life. These notions assume that 

prognostics performance improves as more information 

becomes available with time and hence by design an 

algorithm will satisfy these metrics criteria if it 

converges to true RULs. Therefore, the fourth metric 

Convergence quantifies how fast the algorithm 

converges provided it satisfies all the previous metrics. 

The group of these metrics can be considered a 

hierarchical test that yields several levels for comparison 

among different algorithms in addition to the specific 

information these metrics provide individually regarding 

algorithm performance. 

Since, these metrics share the attribute of 

performance tracking with time; we first develop our 

discussions using Prediction Horizon as an example. 

These discussions are then extended to the rest three 

with additional details specific to individual metrics. 

3.1 Prediction Horizon 

Prognostic Horizon is defined as the difference between 

the time index i when the predictions first meet the 

specified performance criteria (based on data 

accumulated until time index i) and the time index for 
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End-of-Life (EoL). The performance specification may 

be specified in terms of allowable error bound (α) 

around true EoL.  

iEoLPH −= ,                            (1) 

where: 

( ) ( ){ })1()()1(|min ** αα +≤≤−∧∈= rjrrjji l
l  is 

the first time index when predictions satisfy α-bounds 

l is the set of all time indexes when a prediction is 

made 

l is the index for l
th

 unit under test (UUT) 

*r is the ground truth RUL 

Prediction horizon produces a score that depends 

on length of ailing life of a system and the time scales 

in the problem at hand. The range of PH is between 

(tEoL-tP) and max[0, tEoL-tEoP], where the best score can 

be obtained when the algorithm always predicts within 

desired accuracy zone and the worst score when it 

never predicts within the accuracy zone. 

3.1.1 What can be inferred from the metric  

The notion for Prediction Horizon has been long 

discussed in the literature from a conceptual point of 

view. This metric indicates whether the predicted 

estimates are within specified limits around the actual 

EoL so that the predictions are considered trustworthy. 

It is clear that longer the prognostics horizon more time 

is available to act based on a prediction that has some 

desired credibility. Therefore, while comparing 

algorithms, an algorithm with longer prediction horizon 

would be preferred. 

As shown in Figure 3, the desired level of accuracy 

with respect to the EoL ground truth is specified as ±α-

bounds. RUL values are then plotted against time for 

various algorithms that are being compared. The PH for 

an algorithm is declared as soon the corresponding 

predictions enter the band of desired accuracy. As 

clearly evident from the illustration, the first algorithm 

has a longer PH. 

Dt Pt

α2

1PH

EOL

R
U

L

EOP

2PH

RUL Predictions Algorithm 1 

RUL Predictions Algorithm 2 

RUL Ground Truth 

±α Accuracy Zone

time
 

Figure 3. Prognostic Horizon. 

3.1.2 Issues 

There are several cases where standard definition for PH 

breaks from a practical point of view and declaring a PH 

may not be straight forward. We discuss some such cases 

next and suggest possible ways to deal with them. 

RUL trajectory jumps out of the accuracy zone: 

Based on our experience and feedback received from 

fellow researchers while applying these metrics to 

several applications there are often cases where RULs 

jump in and out of the ±α accuracy zone. In such cases it 

may not be appropriate to declare the PH at a time 

instant where RUL enters within ±α accuracy zone for 

the very first time and then jumps out again. As 

illustrated in Figure 4, for both examples predictions at 

time instant c jump out of the accuracy zone and get 

back in at a later prediction step. In absence of such an 

anomaly the PHs for these algorithms would have been 

declared at times a and b. A situation like this results in 

multiple time indexes when RUL trajectory enters the 

accuracy zone. A simple approach to deal with this 

situation can be being more conservative and declaring 

PH at the latest time instant the predictions enter 

accuracy zone. Another option is to use the original PH 

definition and evaluate other metrics to determine if the 

algorithm satisfies other requirements. To avoid 

confusions we recommend using the original definition. 

This will encourage practitioners to go back to the 

algorithm development stage and improve their 

prediction process to incorporate capabilities to deal with 

such anomalies in their algorithms. 
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Figure 4. Cases where RUL predictions do not stay 

consistently within the accuracy zone. 

Situations like these can occur due to various 

reasons as listed below and it is important to identify 

the correct one before computing a PH.  

• Inadequate system model: Real systems often 

exhibit inherent transients at different stages of 

their lives. These transients get reflected as 

deviations in computed RUL estimates from the 

true value if the underlying model assumed for the 

system does not account for these behaviors. For 

example, in [5] authors describe an application of 

Li-ion battery health management where the 

capacity decay shows such transient behaviors in 

the beginning and the end phases of the battery 

life. Their examples show cases where RUL 

trajectories jump away from ground truth 

whenever such transient phases occur. Therefore, 

for situations as depicted in Figure 4 one must go 

back and refine their models to incorporate such 

anomalies. 

• Operational transients: Another source of such 

behaviors can be due to sudden changes in 

operational profiles under which a system is 

operating. Prognostic algorithms may show a time 

lag in adapting to such changes and hence resulting 

in temporary deviation from the real values.  

• Uncertainties in prognostic environments: 

Prognostics is inevitably surrounded by 

uncertainties arising from a variety of sources. This 

makes prognostics inherently a stochastic process 

and hence the behavior observed from a particular 

run may not exhibit the true nature of prediction 

trajectories. This discussion assumes that all 

measures for uncertainty reduction have already 

been taken during algorithm development and that 

such observations are an isolated realization of the 

process. In that case these trajectories should be 

obtained based on multiple runs to achieve 

statistical significance or more sophisticated 

stochastic analyses can be carried out. 

Before one arrives at the final assessment for PH 

metric, a situation like the one discussed above helps 

pinpoint the exact reason for such behaviors. Whenever 

such behavior is observed one must go back and identify 

the most probable cause and try to improve the models, 

fine tune algorithms, or better the experimental design as 

the situation may demand. A robust algorithm and a 

system model should be capable of taking care of 

transients inherent to the system behavior and 

operational conditions. Plotting the RUL trajectory in 

prediction horizon plot provides clues regarding such 

deficiencies to algorithm developers. Once these 

deficiencies are taken care of there is a good chance that 

such behavior disappears and a PH can be easily 

determined, otherwise the simple but conservative 

approach, discussed earlier, may be used. 

RUL trajectory jumps out close to EoL: other 

situations that were reported included cases where one 

observes a well behaved converging behavior for the 

RUL trajectory for most of the ailing life except at the 

very end when they jump out of the accuracy zone (see 

Figure 5).  

Dt Pt
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1PH

EoL

R
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L

time
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Figure 5. Prediction behavior after EoUP is practically 

inconsequential and hence need not affect the PH. 

In [5] authors attribute such behavior to system 

transients that were not modeled well by some of the 

data-driven algorithms that were used. To deal with 

situations we introduce a new concept of “useful 

predictions”. All engineered systems undergo non-linear 

dynamics during fault progression, leading to a system 

failure at tEoL. More often than not these dynamics are 

difficult to model or learn from data as the system nears 

the failure point. Thus, it is possible when evaluating the 

PH metric for a particular algorithm in a given 

application that the RUL curve deviates away from the 

error band near tEoL, having entered it earlier during its 

trajectory. In such a case, it may be counterproductive to 

bias ourselves against an algorithm which has a very 
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small or no PH, since we would be ignoring the 

algorithm’s performance elsewhere on the RUL curve. 

Consequently it may be prudent to evaluate PH on a 

error band that is limited in extent on the time x-axis by 

the time instant tEoUP, which denotes the End-of-Useful-

Predictions (EoUP), such that we ignore the region near 

tEoL, within which it is impossible to take any corrective 

action based on the RUL prediction and these 

predictions are of little or no use practically. The value 

of tEoUP chosen is dependent upon the application, the 

time and cost for possible redress actions in that 

domain. In other words EoUP determines the lower 

limit on acceptable range for PH in a given application. 

As an example, Figure 6 shows the results for 4 

different algorithms in predicting battery life. All 

algorithms except Relevance Vector Machines (RVM) 

deviate away from the true RUL whereas RVM reaches 

very close to true RUL near EoL. But at the same time 

RVM results in a shorter PH. In cases depending on 

how much time may be needed to repair/replace the 

battery would determine the EoUP and hence a 

definition of a better PH. 
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Figure 6. An example showing different cases in a real 

application [5]. 

3.1.3 Guidelines for using the metrics 

The main idea behind these metrics is not only to 

compare different algorithms for performance 

evaluation but also to help management decide on 

specifications and requirements on prognostics 

algorithm in the fielded applications. The outcome of 

the metric depends directly on the values chosen for 

input parameters like α. To that end, we describe how α 

can be chosen for a specific application. 

Prognostic horizon emphasizes on the time critical 

aspects of prognostics. A prediction for catastrophic 

event ahead of time is meaningful only if a corrective 

action can be completed before the system fails. 

Keeping the description generic, there are systems that 

involve different levels of criticality when they fail. In a 

mission critical scenario a failure may be catastrophic 

and hence a limited number of false positives may be 

tolerable whereas in other cases cost of acting on false 

positives may be prohibitively high. There are even 

cases where it is more cost effective if there are several 

false negatives as opposed to reacting to a false positive 

and hence it is acceptable even if the system runs to 

failure once in a while. There are several factors that 

determine how critical it may be to make a correct 

prediction. These factors combined together should 

dictate the choice of α while implementing PH for 

performance evaluation. We list here some of the most 

important such factors.  

1) Time for problem mitigation: the amount of time 

that takes to mitigate a problem or start a corrective 

action when critical health deterioration of a 

component/system has been detected is a very 

important factor. As mentioned earlier, very 

accurate predictions at a time when no recovery 

action can be made is not useful. Hence, a tradeoff 

between error tolerance and time for recovery from 

fault should be considered. The time for problem 

mitigation will vary from system to system and 

involves multiple factors. 

2) Cost of mitigation: cost of the reparative action is an 

important factor in all management related decisions 

and hence should be considered while determining 

α. 

3) Criticality of system or cost of failure (false 

positive): In time-critical applications, resources 

should be directed towards more critical and 

important components in order to efficiently 

maintain overall health of the system. Hence, if 

health assessment is being performed on multiple 

units in a system, α for the different units should be 

chosen based on a prioritized list of criticality.  

Note that the factors mentioned above are not 

arranged based on any order of importance and users 

should utilize them based on characteristics of their 

systems and may skip a few of them. We denote the 

combination of factors used in determining α as 

“recovery cost” or trecovery. 

3.1.4 Recipe to choose α 

A suitable value for α can be chosen following few 

simple steps. 

Step 0: Initialize α based on past 

experience (or arbitrarily if 

no past information available) 

Step 1: Plot RULs and compute PH as 

per the definition.  
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Step 2: If the PH is much larger than 
trepair repeat steps 1 - 2 by 

reducing α until PH is close 

to trepair. 

Step 3: If in step 1, PH is already 
smaller than trepair, increase α 

until a desired length of PH 

is obtained. 

This procedure provides a range for suitable values 

of α and one can choose to operate at a particular value 

based on amount of risk that may be acceptable by 

being closer to EoL if a smaller α is desirable. 

This procedure accounts for the requirements from 

logistics point of view of the health management and 

does not take into account the factor of prognosability 

of the system. There may be limitations on how well a 

prognostics algorithm may be able to manage and 

reduce uncertainty and hence is limited by a lower 

bound on the best achievable precision. Although the 

preferred approach should be to improve the algorithm 

to meet specified α requirement wherever possible, but 

if due to the nature of the problem no algorithm can 

meet the specifications one needs to relax the 

specifications by choosing a larger α from the range 

obtained above. 

3.1.5 Incorporating probability distributions of 
predictions 

In previous work presented in [2] and [5] we 

presented the definitions and examples of performance 

metrics considering that the prognostics algorithm 

provides a RUL prediction r(k) represented by a single 

point. This assumed that such prediction is 

deterministic or that an algorithm includes additional 

reasoning to compute a single point estimate of the 

prediction distribution. Given that there are multiple 

sources of uncertainties inherent to the prognostics 

problem, it is expected/required that a prognostics 

algorithm provides information about the confidence 

around the prediction. This confidence can be 

represented in several ways. There are algorithms that 

provide an approximation of the probability distribution 

of the RUL, r(k) at any point k  by providing a set of 

discrete samples of r(k) with their corresponding 

probabilities [6]. Other algorithms that rely on 

Guassian assumptions describe the uncertainty by 

providing the mean and variance of a normally 

distributed r(k) prediction [7]. In some cases where 

multimodal distributions are obtained an approximation 

with mixture of Gaussians has been considered to 

derive at the distribution characteristics [8]. 

Generally, a common way to describe a 

distribution is based on the first two moments. The 

mean is an indication of central tendency or location 

and the variance is an indication of the spread of the 

distribution. These quantities completely summarize 

Gaussian distributions. For cases were normality cannot 

be claimed, one can rely on median as a measure of 

location and the quartiles or inter quartile range as a 

measure of spread [9].   

Prognostics metrics like prediction horizon and α-λ 

performance provide a great deal of visual information in 

addition to answers that one seeks at specific time 

instances. Therefore, incorporating enhanced visual 

representations for prediction distributions improves the 

efficacy of these metrics for performance comparison. 

For cases involving Normal distribution, including a 

confidence interval represented by an error bar around 

the point prediction is useful [10]. For cases with non-

Normal single mode distributions this can be done with 

an inter-quartile plot represented by a box plot [11]. This 

conveys how a prediction distribution is skewed and 

whether these skew should be considered while 

declaring prediction horizon. Box plot also has 

provisions to represent outliers that may be useful to 

keep track of in critical situations (Figure 7). 

outliers

Normal

25% quartile

50% quartile

+95% bound

-95% bound

1 2 3

1 2 3

 

Figure 7. Representations for distributions. 

In addition to visual enhancements, distribution 

information can be better utilized by computing total 

probability of a prediction falling within the specified α-

bounds as against using a point estimate to compute a 

metric. This concept has been depicted in Figure 8 with 

original point prediction superimposed on box plots.  
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Figure 8. Enhanced representation for prognostic 

horizon incorporating distribution information. 

The original PH metric assumed a single point 

prediction for an output of the prognostics algorithm. 

This ignores uncertainty information even if algorithms 

provide this information as distributions and does not 

allow a fair comparison for situations where a 

prediction is very close to the alpha bound but not quite 

inside it. Clearly as shown in Figure 9, a larger PH can 

be obtained for the same case if the RUL distribution 

satisfies β criterion. Therefore, it is desirable to take 

advantage of the uncertainty information and use it to 

declare PH even if the point prediction does not fall 

within the bound but is very close. 
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1PH
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Figure 9. Integrating the probabilities of RUL falling in 

α-bound can be used to decide declaration of PH 

Method to compute the metric: as mentioned above, 

computing the metric now requires integrating the 

probability distribution that overlaps with the desired 

region to compute the total probability. For cases where 

analytical form of the distribution is available, like for 

Normal distributions, it can be computed analytically by 

integrating the area under the prediction pdf between the 

α-bounds (α
-
 to α

+
). However, for cases where there is no 

analytical form available, a summation based on 

histogram obtained from the process/algorithm can be 

used to compute total probability. This procedure has 

been pictorially depicted in Figure 10.  

An important question still remains to be answered 

is what should one use as the representations for location 

and spread. For simple cases like Normal distributions 

this is straightforward, however, for other cases this may 

not be very clear. As outlined in Table 1, there are four 

main categories a distribution may be assigned to, which 

can be further classified under parametric and non-

parametric subclasses. This sub classification mainly 

determines the method of computing the total 

probability, i.e. continuous integration or discrete 

summation. It is suggested to use box plots along with a 

dot representing the mean of the distribution, which will 

allow keeping the visual information in perspective with 

respect to original plots. For mixture of Gaussians case, 

it is suggested that a model with few (preferably n ≤ 4) 

Gaussians is created and corresponding error bars plotted 

adjacent to each other.  

+∈⋅++⋅≅ InNNx nnn );,(...),()( 111 σµλσµλφ    (2) 

where: 

λ is the weight factor for each Gaussian component 

N(µ, σ) is a Gaussian distribution with mean µ and 

standard deviation σ. 

The weights for each Gaussian component can then 

be represented by the thickness of the error bars. We do 

not recommend multiple box plots in this case as there is 

no methodical way to differentiate between samples, 

assign them to particular Gaussian components and 

compute the quartile ranges for each of them. Also, to 

keep things simple we assume a linear additive model 

while computing the mixture of Gaussians. 
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Figure 10. Procedure to compute total probability of RULs being within specified α-bounds. 

 

Table 1 – Recipe to select location and spread measures along with visualization methods 

 

Normal 

Distribution 
Mixture of Gaussians 

Non-Normal 

distribution 

Multimodal 

 (non normal) 

Parametric  Non-Parametric 

Location  

(central 

tendency) 

Mean (µ) 

Means: µ1, µ2, …, µn 

 

weights: λ1, λ 2, …, λ n 

Mean,  

Median, 

L-estimator [9], 

M-estimator [9] 

Dominant median, 

Multiple medians, 

L-estimator, 

M-estimator 

Spread 

(variability) 

Sample standard 

deviation (σ), 

IQR (inter 

quartile range) 

Sample standard 

deviations: σ 1, σ 2, …, σ n 

Mean Absolute Deviation (MAD) 









−∑

= ni

i medianx
n :1

1 , 

Median Absolute Deviation (MdAD) 

( )medianxmedian i − , 

Bootstrap methods , 

IQR  
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Visualization 

Confidence 

Interval (CI), 

Box plot with 

mean 

 

 

Multiple CIs with 

varying bar width 

1

22

33

1

 
Note: here λ1 > λ 2 > λ 3 

Box plot with mean 

 

 

 

Box plot with mean 

 

 

 

     

In this section we have described in details various 

aspects of prognostics metrics in the context of prognostic 

horizon. Many of these concepts naturally transfer to the 

other metrics and therefore for the sake of conciseness and 

minimum repeatability, we will very briefly point out other 

salient features of the rest of the three metrics and 

frequently refer to the discussion above. 

3.2 α-λ Performance 

α-λ Performance quantifies prediction quality by 

determining whether the prediction falls within specified 

limits at particular times. These time instances may be 

specified as percentage of total ailing life of the system. Any 

performance measure of interest may fit in this framework. 

In general, so far we have used accuracy as the main 

performance measure. In our implementation we define α-λ 

accuracy as the prediction accuracy to be within α*100% of 

the actual RUL at specific time instance tλ expressed as a 

fraction of time between the point when an algorithm starts 

predicting and the actual failure. For example, this metric 

determines whether a prediction falls within 10% accuracy 

(i.e., α=0.1) halfway to failure from the time the first 

prediction is made (i.e., λ =0.5). Therefore, one needs to 

evaluate whether the following condition is met. 

( ) ( ) ( ) ( ) ( )trtrtr
l

** 11 ⋅+≤≤⋅− αα λ
              (3) 

where:   

α is the accuracy modifier 

λ is a time window modifier such that 

( )PP tEoLtt −+= λλ
. 

The output of this metric is binary (Yes or No) stating 

whether the desired condition is met at a particular time. 

This is a more stringent requirement as compared to 

prediction horizon as it requires predictions to stay within a 

cone of accuracy i.e. the bounds that shrink as time passes 

by. With the new enhancements, it is also possible to 

compute total probability overlapping with this cone to 

determine whether the criteria are met (Figure 11a). For 

easier interpretability α-λ accuracy can also be plotted as 

shown in Figure 11b. The concept of α-λ precision is further 

illustrated in Figure 12. The choice of precision measure 

may be application specific or based on the type of 

distribution. This plot shows how precision evolves with 

time and whether satisfies a given level at a specified time 

instant tλ.  
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Figure 11. (a) α-λ accuracy with error bars (b) alternative 

representation of α-λ accuracy. 
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Figure 12. Concept of α-λ precision 

3.3 Relative Accuracy 

Relative prediction accuracy is a notion similar to α-λ 

accuracy where, instead of finding out whether the 

predictions fall within given accuracy levels at a given time 

instant, we also quantitatively measure the accuracy. The 

time instant is again described as a fraction of the ailing life. 

An algorithm with higher relative accuracy is desirable. The 

range of values for RA is [0,1], where the perfect score is 1. 

It must be noted that if the prediction error magnitude grows 

beyond 100% RA gives a negative value. We do not 

consider such cases since these cases would not have 

qualified the first two tests in the first place. 

( ) ( )
( )λ

λλ
λ

tr

trtr
RA

l

*

*
1

−
−=                          (4) 

where ( )PP tEoLtt −+= λλ
. 
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L
 (
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Pt

)(* ir l

)(ir l

EOLt
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Figure 13. Schematic showing Relative Accuracy concept. 

RA conveys information at a specific time. However, to 

account for general behavior of the algorithm over time 

Cumulative Relative Accuracy (CRA) can be used. Relative 

accuracy can be evaluated at multiple time instances before 

tλ. To aggregate these accuracy levels, we define 

Cumulative Relative Accuracy as a normalized weighted 

sum of relative prediction accuracies at specific time 

instances. 

∑
=

=
λ

λ
λ

λ

l

l 1

)(
1

i

l RArwCRA                 (5) 

where: 

w(r
l
) is a weight factor as a function of RUL at all time 

indices  

λl is the set of all time indexes before tλ when a 

prediction is made 

λl
is the cardinality of the set. 

In most cases it is desirable to weigh the relative 

accuracies higher closer to the EoL. In general it is expected 

that tλ is chosen such that it holds some physical 

significance such as a time index that provides required 

prediction horizon, or time required to apply a corrective 

action, etc. For instance RA evaluated at t0.5 signifies the 

time when a system is expected to have consumed half of its 

ailing life, or in terms of damage index the time index when 

damage magnitude has reached 50% of the failure threshold. 

This metric is useful in comparing different algorithms for a 

given λ to get an idea on how well a particular algorithm 

does when it is critical. Choice of tλ should also take into 

account the uncertainty levels that an algorithm entails by 

making sure that distribution spread at tλ does not cross over 

expected EoL by significant margins especially for critical 

applications. 

On the issue of incorporating distribution information 

for RA, one can make an informed decision on choosing a 

righteous measure of accuracy as against to choosing only 

the mean value. As pointed out in Table 1, the shape of 

RUL distribution should guide the selection of location 

indicator. This choice should also consider the nature of the 

application. For instance a critical application where risk 

tolerance level may be low one should choose an indicator 

that weighs the tails importantly and even outliers in some 

cases.  

3.4 Convergence 

Convergence is defined to quantify the manner in which any 

metric like accuracy or precision improves with time to 

reach its perfect score. As suggested earlier, our discussion 

assumes that the algorithm performance improves with time, 

i.e. has passed all previous tests. For illustration of the 

concept we show three cases that converge at different rates. 

It can be shown that the distance between the origin and the 

centroid of the area under the curve for a metric quantifies 

convergence. Lower distance means a faster convergence. 

Convergence is a useful metric since we expect a 

prognostics algorithm to converge to the true value as more 

information accumulates over time. Further, a faster 

convergence is desired to achieve a high confidence in 

keeping the prediction horizon as large as possible. 

Let (xc, yc) be the center of mass of the area under the 

curve M(i). Then, the convergence CM can be represented by 

the Euclidean distance between the center of mass and (tp, 

0), where 

 ,)(
22

cPcM ytxC +−=  
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M(i) is a non-negative prediction error accuracy or precision 

metric. 
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Figure 14. Schematic for the convergence of a metric. 

4. FUTURE WORK 

We would like to conduct a quantitative analysis for 

comparison of various approaches suggested in this paper 

using a real application scenario and identify some key 

characteristics that may dictate the choice of one over 

another. We will investigate how performance estimates get 

affected by choosing different options of integrating the 

uncertainty estimates. This will allow us to identify the 

advantages and limitations of these techniques and their 

applicability towards a standardized performance evaluation 

method.  

So far, the performance evaluation assumes that future 

loading conditions do not change or at least do not change 

the rate of fault growth. For offline studies this may be 

reasonable as we know the actual EoL index and can 

linearly extrapolate true RUL for all previous time indices to 

draw a straight line. However, for real-time applications this 

would not hold true as changes in operating conditions do 

affect the rate of fault evolution. Hence, we would also like 

investigate about how to incorporate effects of changes in 

the loading conditions that alter the RUL slope by changing 

the rate of remaining life consumption. 

We will continue to refine the concepts presented in 

this paper and apply them to a variety of applications in 

addition to developing more metrics. Developing more 

metrics like robustness and sensitivity, etc. remains on our 

research agenda.  

5. CONCLUSION 

In this paper we have presented a detailed analysis on how 

prognostics metrics should be used and interpreted. Based 

on feedback available from fellow researchers, who applied 

these metrics to a variety of applications, several 

refinements were carried out. Various cases were pointed 

out and discussed where these metrics may present an 

ambiguous situation, while making decisions. A detailed 

recipe was presented on how to select various parameters 

for these metrics on which the evaluation outcome depends. 

Furthermore, it was shown that these metrics are not only 

useful for algorithmic performance evaluation but also for 

coming up with performance specifications while keeping 

several critical constraints in mind. A detailed discussion on 

ways to include prediction distribution information for 

visual enhancements and more robust performance 

evaluation was presented. It is expected that this paper will 

greatly enhance the understanding of these performance 

metrics and encourage a wider community to use these 

metrics and help standardize the prognostics performance 

evaluation. 
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