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Abstract. The development of a safety case has become common practice for the
certification of systems in many safety-critical domains, but large safety cases still
remain difficult to develop, evaluate and maintain. We propose hierarchical safety
cases (hicases) as a technique to overcome some of the difficulties that arise in
manipulating industrial-size safety arguments. This paper introduces and moti-
vates hicases, lays their formal foundations and relates them to other safety case
concepts. Our approach extends the existing Goal Structuring Notation (GSN)
with abstraction mechanisms that allow viewing the safety case at different levels
of detail.
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1 Introduction

A safety case, or more generally an assurance case, is a structured argument supported
by a body of evidence, which provides a convincing and valid justification that a system
meets its (safety) assurance requirements, for a given application in a given operating
environment. The development of a safety case is increasingly becoming an accepted
practice for the certification of safety-critical systems in the nuclear, defense, oil and
gas, and transportation domains. Indeed, the development and acceptance of a safety
case is a key element of safety regulation in many safety-critical sectors [1].

At present, safety cases are manually constructed often using patterns; they also
have some natural higher-level structure, but this can become obscured by lower-level
details during their evolution. Furthermore, due to the volume of information aggre-
gated, safety cases remain difficult to develop, evaluate (or understand), and maintain.
As an anecdotal example, the size of the preliminary safety case for surveillance on
airport surfaces with ADS-B [9] is about 200 pages, and is expected to grow as the
operational safety case is created. Tools such as AdvoCATE [5] can assist in and, to an
extent, automate the construction of assurance argument structures from external verifi-
cation tools [6], and artifacts such as requirements tables [3]. Often, these have inherent
structure that can be exploited to help comprehension.

These observations, and our own prior experience [2], suggest a need for abstraction
and structuring mechanisms in creating, and when communicating, a safety argument.



The motivation for our work is the ongoing construction of a safety case [4] for
the Swift unmanned aircraft system (UAS), being developed at NASA Ames. We have
used the goal structuring notation (GSN) [10] to document the Swift UAS safety case.
In brief, GSN is an effective graphical notation for representing the structure of an
argument from its premises to its conclusions. Using GSN (e.g., as illustrated in Fig. 1),
we can express the goals or claims made (rectangle), the strategies (parallelogram) to
develop goals, solutions (circle) that justify the claims, together with the appropriate
associated context (rounded rectangle), assumptions, and/or justifications (ovals). GSN
also provides a graphical annotation (‘�’) to indicate undeveloped elements. There are,
additionally, two link types with which to connect the notational elements: in-context-of
and is-solved-by.

In this paper, we extend GSN to include hierarchical structuring mechanisms, mo-
tivating and illustrating our ideas with a simple, but real, example argument structure
fragment. The resulting structures, hicases, better clarify the structure of a safety case
and, we believe, improve the quality and comprehensibility of the argument. Our spe-
cific contributions are a formalization of the notion of a partial safety case (argument
structure), its extension to include hierarchy, and relating the unfolding of a hicase to
an (ordinary) safety case argument structure.

2 Types of Hierarchy and Their Restrictions

Fig. 1 shows part of a chain of claims, strategies and evidence, from the top level of
the auto-generated fragment of the Swift UAS safety case (see [4] for details). The top-
level claim AC1 concerns the correct computation of aileron control variable values,
during descent, by the relevant PID control loop in the Swift UAS autopilot. The chain
of argumentation shown represents a direct proof of a verification condition. Some of
the details of the proof have been transformed into the safety case, such as the theorem
prover used as context, the proof objects, i.e., verification conditions, as claims, etc. This
is an instance of a sub-structure that we may abstract away in a hierarchical presentation.

In general, we define three types of hierarchical abstractions, i.e., hinodes:
(1) Hierarchical evidence abstracts a fully developed chain of related strategy ap-

plications, e.g., in Fig. 1, since the argument structure starting from the strategy AC10
downwards is complete (has no undeveloped elements), we can construct a hierarchical
evidence node, H1: Proof using Vampire–0.6 Prover, that abstracts and encapsulates it.
As there are many such verification conditions (in the auto-generated safety case frag-
ment of the Swift UAS), we have many instances of this structure. We can iterate this
procedure up the proof tree which offers opportunities for nesting hierarchies. Thus,
iterated abstraction can greatly reduce the size of the argument structure when viewed.

(2) Hierarchical goals, or higoals, are an abstraction to hide a chain of goals; one of
their main purposes is to provide a high-level view of an argument structure. In Fig. 1,
we can abstract the argument structure starting from (but not including) the strategy
AC2 downwards, into the higoal H2: Decomposed correctness properties hold.

(3) Hierarchical strategies aggregate a meaningful chain of (one or more) related
strategy applications, e.g., in Fig. 1, we can abstract the strategy AC30, along with its
sub-goals (AC76 and AC86), and its context elements (AC32 and AC34), into a single



Fig. 1. Fragment of an auto-generated part of the Swift UAS safety case [4], showing hinodes
annotated as G (goal), S (strategy) and E (evidence).

hierarchical strategy H3: Argument by decomposition and hiding verification conditions.
Thus, hierarchical strategies can hide side-conditions (or trivial subgoals) by fully en-
closing particular paths of the safety case argument structure. This gives us the flexibil-
ity to concentrate an inspection on specific important paths through the safety argument,
e.g., those paths addressing claims having ‘high-risk’.

There are restrictions on what can be abstracted inside a hinode: firstly, to preserve
well-formedness, input and output node types should be consistent, e.g., a hierarchical
strategy would have a goal as an incoming node and goals as outgoing nodes, in the
same way as an ordinary strategy. Next, we cannot abstract disconnected fragments as
there would be no path from the input goal to all the outputs. It is important to note that
this restriction does not force each hinode to have only one input. Rather, the restriction
applies to the input, so multiple connections can enter a hinode. A design decision was



to place any context, justification, and assumption nodes inside a hinode; thus, we may
not link two (or more) hinodes, using a link of type in-context-of. Finally, we permit
encapsulation of both hierarchical evidence and strategies by higoals (e.g., as shown
in Fig. 1), or of both hierarchical goals and evidence by hierarchical strategies. This
gives us a notion of nesting of hierarchies as a way to manage the size of an argument
structure.

3 Formalization

To formalize standard safety case argument structures and hierarchical argument struc-
tures, we represent them as a labeled tree. The labeling function distinguishes the types
of nodes subject to some intuitive well-formedness conditions.

Definition 1. Let {s, g, e, a, j, c} be the node types strategy, goal, evidence, assump-
tion, justification, and context respectively. A partial safety case (argument structure) is
a triple 〈N, l,→〉, comprising nodes N , the labeling function l : N → {s, g, e, a, j, c}
that gives the node type, and the connector relation, →: 〈N,N〉, which is defined on
nodes. We define the transitive closure,→∗: 〈N,N〉, in the usual way. We require the
connector relation to form a finite forest with the operation isrootN (r) checking if the
node r is a root in some tree3. Furthermore, the following conditions must be met:
(1) Each part of the partial safety case has a root goal: isrootN (r)⇒ l(r) = g
(2) Connectors only leave strategies or goals: n→ m⇒ l(n) ∈ {s, g}
(3) Goals cannot connect to other goals: (n→ m)∧[l(n) = g]⇒ l(m) ∈ {s, e, a, j, c}
(4) Strategies cannot connect to other strategies or evidence:

(n→ m) ∧ [l(n) = s]⇒ l(m) ∈ {g, a, j, c}
By virtue of forming a tree, we ensure that nodes cannot connect to themselves, that
there are no cycles and, finally, that two nodes cannot connect to the same child node.
Additionally, we see that the two link types (is-solved-by and in-context-of ) have no
semantic content, but rather provide an informational role.

Now, we extend Definition 1 with an additional partial order relation≤ representing
hierarchical structure, where n < n′ means that the node n is encapsulated in n′. We
define a partial hierarchical safety case, i.e., hicase, such that we can always unfold all
the hierarchy to regain an ordinary safety case argument structure.

Definition 2. A partial hierarchical safety case is a tuple 〈N, l,→,≤〉. The set of nodes
N and labeling function l are as in Definition 1. The forest 〈N,→〉 is subject to the
same conditions as in Definition 1. The hierarchical relation ≤ fulfils the axioms of a
partial order and can thus also be viewed alongside N as a forest. Finally, we impose
the following conditions on the interaction between the two relations→ and ≤:
(1) If v is a local root (using →) of a higher-level node w (i.e. v < w), then l(w) =

g, if l(v) = g ∧ ∀v′ v′′. (v′ < w ∧ v′ → v′′ ∧ v′′ ≮ w)⇒ l(v′′) = s
s, if l(v) = s ∧ [∀v′ v′′. (v′ < w ∧ v′ → v′′ ∧ v′′ ≮ w)⇒ l(v′′) = g

∨ subtree rooted at v is not fully developed ]
e, if l(v) = s ∧ [@v′ v′′. (v′ < w ∧ v′′ ≮ w ∧ v′ → v′′)

∧ subtree rooted at v is fully developed ]

3 A safety case argument structure has a single root.



(2) Connectors will target the outer nodes: (v → w1) ∧ (w1 < w2)⇒ v < w2

(3) Connectors come from inner nodes: (v → w1) ∧ (w1 ≤ w2)⇒ v = w1

(4) Hierarchy and connection are mutually exclusive: (v ≤ w) ∧ (v →∗ w)⇒ v = w
(5) Two nodes which are both at the top level, or immediately included in some node,

means that at most one node has no incoming→ edge:
siblingsi(v1, v2) ∧ isroots(v1) ∧ isroots(v2)⇒ v1 = v2

Condition (1) formalizes our intuition that (a) a higoal must have a goal as root and any
nodes immediately outside the higoal must be strategy nodes, (b) a hierarchical strategy
must have a strategy as root, and either any nodes immediately outside the hierarchical
strategy must be goals, or the subtree rooted at v inside is not fully developed. The
latter accounts for the possibility that there are no outgoing goals, but the node is not
evidence; and (c) a hierarchical evidence node is the special case of a hierarchical stra-
tegy with no outgoing goals, but where the subtree with root at v is fully developed.
That is, we can view hierarchical evidence as a hierarchical strategy without outgoing
goals just as evidence is an axiomatic strategy. Conditions (2) through (5) are designed
to produce a mapping from a hierarchical argument structure to its ordinary argument
structure unfolding, i.e., its skeleton.

We note that a safety case argument structure 〈N, l,→〉 can be mapped to a hicase
〈N, l,→, idV 〉 where idV is the trivial partial order with only reflexive pairs. This or-
dering trivially satisfies all the well-formedness properties of a hicase. Conversely, we
define a skeleton operation (sk ), which maps hicases to ordinary safety case argument
structures, such that the tuple it constructs is well-formed with respect to the safety case
argument structure conditions (of Definition 1).

Theorem 1. The skeleton operation (sk ) which maps a hicase 〈N, l,→,≤〉 to a safety
case argument structure 〈N ′, l′,→′〉, where N ′ is the set of leaves of≤, l′ is the restric-
tion of the labeling function l, and v1 →′ v2 iff ∃w ∈ N | v2 ≤ w and v1 → w maps a
well-formed hicase to a safety case argument structure.

Proof sketch. The relationship between hiproofs [7] and hicases (as well as the cor-
responding relationship between safety cases and proofs) allows us to claim that the
mapping constructs the appropriate forest structure on 〈N ′,→′〉. We simply need to
show the well-formedness conditions (2) through (4) of Definition 1. For instance, con-
dition (2), i.e., (v1 → v2) ⇒ l(v1) ∈ {s, g}, comes for free since if v1 → w then it
already has this property for v1 →′ v2.

4 Related Work and Conclusions

Hierarchy in safety cases has been proposed as a basic (hierarchical) decomposition
represented as indentations in a spreadsheet-based argument structure [11]. This work
creates the equivalent of hierarchical evidence, but cannot hierarchically abstract stra-
tegies, as in our approach. Our notion of hierarchy considers ways in which to combine
nodes for meaningful abstraction, unlike the notion of argument structure depth. GSN
supplies a concept for modules and references to away nodes [10] that are complemen-
tary to hicases, though neither modules nor hicases subsume each other’s functionality.



Whereas away objects are simply references to a separate safety case fragment, higoals
are an additional node enclosing an existing argument structure. GSN modules do not
have an equivalent notion of a hierarchical strategy as an enclosure of (possibly) a com-
plex (unfinished) safety case fragment. Modules can be seen as a large segment of a
safety case, typically applied at a higher level, whereas we view hinodes as being vi-
able at all scales. Modules also have informal contracts that they must fulfill to be
well-formed, but hinodes do not enforce any semantic properties.

We have implemented hicases in our assurance case toolset, AdvoCATE [5], pro-
viding basic features for constructing, modifying, and viewing hinodes, e.g., we can
modify existing argument structures to add hinodes with open (white-box) or closed
(black-box) views. We can also generate a tree representation of a hicase and modify
its contents [8]. Our current definition for safety cases and hicases only accounts for
core GSN and potential meta-data extensions. In practice, most safety case argument
structures make use of either (or all) of the GSN modular extensions and pattern mecha-
nisms; we would like to give an account for each of these within our model, with careful
thought about the module language to ensure that no inconsistencies are introduced.

We would also like to investigate the formal notions of hicase view (a slice through
the hierarchy giving a safety case fragment), and hicase refinement (providing a mathe-
matical meaning for well-formed changes to the hicase); although both exist informally
in our tool implementation, we believe it is important to formalize these concepts.
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