
6/17/09

1

SCSC 2009 June 17, 2009 0

Introduction to Brahms

Modeling, Simulation and Development

of

Multi-Agent Systems with Brahms

Maarten Sierhuis, Ph.D.

Carnegie Mellon University

Silicon Valley

NASA Ames Research Center

SCSC 2009 June 17, 2009 1

Seminar Topics

•! Applications 8:30am - 9:30am

•! Break 9:30am - 9:45am

•! Brahms the Language 9:45am - 10:45 am

•! Break 10:45am - 11:00am

•! Brahms the Tool (demo) 11:00 - 12:00am

SCSC 2009 June 17, 2009 2

Brahms Tutorial

Application

of

Human-Centered Work System

Design using Brahms

SCSC 2009 June 17, 2009 3

System Centered

The focus is on

designing the

systems

Users come

secondary

6/17/09

2

SCSC 2009 June 17, 2009 4

Human Centered

The focus is on

the work of

people

Technology in

support of the

work system

W
hat is the delta?

W
hat is the delta?

W
hat is

 th
e delta

?

W
hat is

 th
e delta

?

SCSC 2009 June 17, 2009 5

Brahms

•! How people work together

•! How people get to participate in a

collaborative activity

•! Role of the environment / use of

space

•! How communication happens

•! The tools and artifacts used

•! Individual motives, history and

culture

•! Not just problem-solving

activities

•! Brahms is a agent-based modeling and

simulation environment

•! Simulation as a work system design/

analysis tool

•! Agents represent social and

collaborative Humans

•! Agents are situated, deliberative,

cognitive and reactive

•! Understanding how people really work

•! Developing multi-agent systems

Theoretical Practical

SCSC 2009 June 17, 2009 6

2

4

6

8

10

TRL

1992 1996 2000 2004 2008

NYNEX

JPL

JSC

APOLLO

VICTORIA

JSC MOD OCAMS
PROJECT

BRAHMS – HISTORY OF APPLICATIONS

ISS

Surface
Hab

Mobile*
Agents

* Supported ExPOC

and Scout robot and

crew in Sept’06 field
test & Pogo Test in
July ‘07

Aeronautics
CTFM

PROJECT

SCSC 2009 June 17, 2009 7

Applications

•! Mobile Agents: Human-Robot & Human-Agent

Interaction

•! OCAMS: M&S of OCA Flight Controller in

Mission Operations at JSC

6/17/09

3

Mars Desert

Research Station

Near Hanksville, Utah •!

HabCom

and

Hab Robot Operator

The EVA

Robotic Assistant

The Satelite Dish

back to Earth’s

internet
The EVA Astronaut

H => A and A => A
Brahms Hosting Environment

Data
Distribution

Service

Directory
Service

Keystore

Truststore

Transport
Service

Agent Model

CA

S
S
L

U
D
P

S
S
L

T
C
P

U
D
P

T
C
P

Brahms Hosting Environment

Data
Distribution

Service

Directory
Service

Transport
Service

Agent Model

CA

S
S
L

U
D
P

S
S
L

T
C
P

U
D
P

T
C
P

Transport Layer (TCP , SSL , UDP / Multicast)

Keystore

Truststore

Collaborative Infrastructure

6/17/09

4

Multi-Agent!

Simulation to Implementation: !
A Practical Engineering !

Methodology for Designing !
Space Flight Operations"

William J. Clancey, Maarten Sierhuis, Chin Seah, "

Chris Buckley, Fisher Reynolds, Tim Hall, Mike Scott#

NASA Ames Research Center,

CA"

& Johnson Space Center, TX#

15

Outline

!! Problem: Earth-Orbit Communications

!! Approach: Simulation-to-Implementation

!! Model of Current Operations Work System

!! Model of Future Operations Work System

!! Related Work

!! Implications for Software Engineering

6/17/09

5

16

Problem: OCA Console Operations

MAS Servers

Mirror LAN

(MCC)

Ops LAN (ISS)

MAS

PC
OCA

PC Mirror LAN

Laptop

OCA

(KFX)

Laptop

OCA Console

And, oh by the way…log everything you do!!!

17

Solution: OCAMS – OCA Mirroring System

MAS Servers

Mirror LAN

(MCC)

Ops LAN (ISS)

MAS

PC
OCA

PC Mirror LAN

Laptop

OCA

(KFX)

Laptop

OCA Console
During STS flight #118, files manually transferred:

Uplinked = 2,513 files or 268 MB
Downlinked = 8,411 files or 29.4 GB

18

Complex Work System

"! People & Organizations

"! Computer Systems

"! Communication Media

"! Space Comm Network

"! Geographic Distribution

"! Regulations

"! Work practices &

protocols

19

Approach: Simulation to Implementation

Implementation

Metrics

& Data

Current Ops

Simulation

Work

System

Design

Workflow

Tool

Observation

Operations

6/17/09

6

20

FolderOn

MirrorLAN

CA

File info

OCA

Officer

OCA Orbit

Shift Info

Mirror File

Type

File

info

Mirror File

Type

OCA Orbit

Shift Info

FolderOnPF1

Mirrored

File
Move

file

FolderOn

USB Drive

Move

file Move

file

Verify

Mirroring

EarthClock

Time
Schedule

Schedule

Info

KfxSummary_Nov2006.xls
(Parsed log of ISS file transfers

in Excel document)

NB:

Current Ops Model

simulates OCA officer &

uses one Com Agent to

interface with Excel;

delivered March 2007

OCA Current Operations Model

21

Current Ops: A Full Day Simulation

Orbit 1 Shift

Orbit 2 Shift

Orbit 3 Shift

OCA officer

arrives at

JSC

arrives

home

22

Current Ops: Mirroring Simulation

File types & folder

paths are
modeled to

facilitate later
automation

23

Future Ops Simulation:

OCAMS Prototype Tool

LEGEND:

CA

= Brahms Agent

= Communication
Agent (Java)

= External System
or Document

= Simulated File
System

OCA MAS PC

KFX Machine

Mirroring

Staging

Machine

KFX Log CA

/

Staging

Folders & Files

CA

CA

Mirror Log OCA Officer
Agent

CA

CA

CA Handover Log

- Messages
OCA

Personal

Agent

Mirroring

Monitoring

 Word

 Excel

 Outlook

 FTP

 Text

Folders & Files

To/From ISS

NB:

Future Ops Model

runs on one laptop;

delivered October ‘07

MirrorLAN

Folders & Files

MirrorLAN

6/17/09

7

24

Future Ops: Simulation GUI

(OCAMS Prototype Tool)

25

Statistics: Manual (current) vs.

Automated (future) OCA Mirroring

Current Operations:

Mirroring Activities

 ! > 5% shift time

Future Operations (with OCAMS):

Mirroring Activities

 ! < .5% shift time

Checking"
25%#

Communicating"
10%#

Configuring"
Resource"

3%#

Deleting"
3%#

Moving"
35%#

Verifying"
24%#

26

Related Work

"! Workflow Management Tools

!! Unit of Analysis: Activity vs. Task

!! Run-time Process: Identity vs. Function

!! Simulation fits Implementation-in-Practice

"! Agent-Based Modeling & Simulation

!! Cognitive Agents

•! Beliefs, Multiple Groups/Roles

•! Subsumption vs. Procedural Stack

!! Contextual Behavior fits Distributed Work System

27

Implications for

Software Engineering

"! Highly interdisciplinary methodology for

engineering complex distributed applications

!! Ethnography, Flight Ops (Aeronautics), Computer
Science/Networking, Space Science

"! Simulation-to-Implementation: Analysis, design,

development & verification of agent system

"! Agent-Based Systems Integration: Middleware

infrastructure for agent societies

6/17/09

8

SCSC 2009 June 17, 2009 28

BREAK

•! 15 minutes break!!!

SCSC 2009 June 17, 2009 29

Brahms Tutorial

The Brahms Language

SCSC 2009 June 17, 2009 30

Types of Agent Languages

NetLogo

Repast

Swarm

Swarm-based

Object Based

Brahms

BDI

Agent Oriented

Agent Simulation

Jade

JADEX Jack

BDI

Java-based

Object Based

Jason

3APL

Brahms

BDI

Brahms

Subsumption-

based

Reactive

Brahms

Organization

Model

Brahms

Geography

Model

Agent Oriented

Agent Languages

SOAR

ACT-R

Rule Based

Cognitive Modeling

Agent Based Modeling

SCSC 2009 June 17, 2009 31

Overview of Brahms

Agent Environment

Agent Environment consists of the following:

•! Brahms Agent Oriented Language

•! Composer for building models.

(or Integrated Development Environment).

•! Compiler for compiling models.

•! Virtual Machine for simulating models.

(or Simulation Engine).

•! Agent Viewer for viewing simulations.

6/17/09

9

SCSC 2009 June 17, 2009 32

Brahms Language

•! Agent Oriented / BDI

–! Agents are first-class citizens

–! Agents are belief based

–! Agents are intention based:

•! Beliefs become intentions that trigger reasoning- and/or situation-action rules

•! Organizational Modeling

–! Agents can be modeled within an hierarchical member-of inheritance structure

•! Object-based

–! Objects can represent physical artifacts, data and concepts to reason with

–! Integration of Java objects as data objects, Java activities and Java agents

•! Geography-based

–! Areas can be conceptual representations of locations

–! Areas can be located within other areas, creating a hierarchical environment model

–! Agents and objects can be located within an area

SCSC 2009 June 17, 2009 33

•! Agent Organization

–! Group membership inheritance hierarchy

•! Artifacts in the world as objects relevant in activities

–! Tools and artifacts people use

–! Class hierarchies

•! Data as objects

–! Information modeling

•! Environment and its state

–! Represented hierarchically as areas with sub-areas

–! Agents and objects are located within areas

–! World State (facts vs. beliefs of agents)

–! Detecting facts (reactive)

•! Behavior as situated activities that take time

–! Constraint on beliefs (workframes)

–! Primitive or composite (decomposed)

•! Goal-directed reasoning behavior as production rules within an activity that takes time

–! Forward-chaining rules that take no time (thoughtframes)

What Brahms Models Include

SCSC 2009 June 17, 2009 34

Anatomy of a Brahms Model

Language Concepts

Groups

Agents

Classes

Objects

AreaDefs

Areas

Paths

Conceptual Classes

Conceptual Objects

Attributes (OA-V)

Relations (ORO)

Beliefs

Facts

Activities

Workframes

Preconditions

Consequences

Detectables

Thoughtframes

agent-based!

object-based!

geo-based!

object flows!

mental state/world state!

activity-based/"

subsumption!

rule-based!

 reactive!

inferences!

SCSC 2009 June 17, 2009 35

Brahms Agent

Engine

Beliefs
(atomic

formulas)

Desires
(workframes

thoughtframes

belief matching)

Plans
(workframes

Thoughtframes
activities)

Intentions
(workframes

thoughtframes
instantiations)

input

action

output

Beliefs-Desires-Intentions

6/17/09

10

SCSC 2009 June 17, 2009 36

Brahms: agent-oriented language

Symbolic Discrete Event BDI-like

System Production and Situation-action Rules

WF1 C1 and C2 and C3 => Detect F4, Activity1(t), B5, B7

WF2 C4 => Activity2(t), B6

WF3 C5 and C6 and C7 => Detect F8, Activity1(t), F9

F1, F2, F4 …..

Workframe Rule Memory

Belief Memory

Agent

World State

B1, B2, B3, ………..

Next time event

State at next time event

TF1 C1 and C5 => B2

TF2 C8 => B9

TF3 C9 and C6 and C8 => B10

Thoughtframe Rule Memory

SCSC 2009 June 17, 2009 37

Brahms Agent Engine

SCSC 2009 June 17, 2009 38

Brahms Virtual Machine

Agent

Engine

Discrete Event

Queue

Belief

RSN

Fact

RSN

Belief Set

Work Selector

Work Executor

World State

Fact Set

Real-Time Mode

Scheduler

Discrete

Event

Queue

Event

Distributor

SIM Mode

SCSC 2009 June 17, 2009 39

Brahms: Distributed MAS

Agent
Directory

Service

6/17/09

11

SCSC 2009 June 17, 2009 40

Brahms Groups, Agents and Attributes:

What is a Brahms agent?

•! Agents model human behavior.

•! Agents could be autonomous intelligent
systems

•! Attributes of an agent:
–! autonomy,

–! social ability,

–! reactivity,

–! pro-activeness,

–! mobility

–! bounded rationality.

SCSC 2009 June 17, 2009 41

Brahms Groups, Agents and Attributes:

What is a Brahms group?

•! A Brahms group describes the

abstract properties and

behaviors of a group of agents

•! Types of groups:

–! Functional

–! Organizational

–! Social

•! Groups can be members of multiple

groups

•! Agents can be members of multiple

groups

SCSC 2009 June 17, 2009 42

JSC MOD Org.

SCSC 2009 June 17, 2009 43

Brahms Groups, Agents and Attributes:
What are Brahms attributes?

•! Attributes represent a property of a group/class or agent/
object.

•! Attributes have values.

•! Currently, only allow single-valued attributes.
–! Recently added a Map collection-type attribute. Maps allow for the

assignment of multiple values to the attribute where each value is
addressable using an index or key.

•! Scope of an attribute:
–! Private – cannot be inherited.

–! Protected – access only for members of group.

–! Public – access by any group or agent.

•! Attribute values are assigned or changed by asserting new
beliefs or facts.

6/17/09

12

SCSC 2009 June 17, 2009 44

Brahms Facts & Beliefs:
What is a Brahms belief?

•! Represents an agent’s interpretation of a fact in the world.

–! “South Hall is 65 degrees but Alex believes its 80
degrees.”

•! Represents an agent’s conception of the world (s)he lives in.

–! “I am a student at University of California, Berkeley.”

•! Beliefs are “local” to an agent.

•! Agents can reason about their beliefs.

•! Agents can communicate their beliefs.

SCSC 2009 June 17, 2009 45

Beliefs versus

Object Attribute values

Object Orientation

object Alex instanceof class student {

Public Boolean male = true;

}

object Kim instanceof class student {

Public Boolean male = false;

}

Belief-based

agent Alex memberof Student {

 public boolean male;

 initial_beliefs:

 (current.male = true);

 (Kim.male = false);

}

agent Kim memberof Student {

 intial_beliefs:

 (Alex.male = false);

 (current.male = false);

}

SCSC 2009 June 17, 2009 46

Brahms Facts & Beliefs:

What is a Brahms fact?

•! Represent some physical state of the world.

–!Alex is male is true.

•! Facts are globally true in the world.

•! Agents do not reason with or act directly on

facts.

•! Agents can detect facts in the world (which

represents noticing or sensing).

SCSC 2009 June 17, 2009 47

Relationship between Brahms

Facts and Beliefs

World Facts

Beliefs of Agt A

Beliefs of Agt B

B
eliefs o

f A
g
t C

Beliefs of Agt D

6/17/09

13

SCSC 2009 June 17, 2009 48

Brahms Facts & Beliefs

World!

Fact: (It is 10:40AM)!

Fact: (It is Thursday Nov. 19, 1969)!

Fact: (the door of the SEQBay is closed)!

Fact: (AlBean is located in the SEQBayArea)!

Fact: (PeteConrad is located in the SEQBayArea)!

Agent "

Al Bean!

belief: (the door of the SEQBay is closed)!

belief: (AlBean is located in the SEQBayArea)!

Agent "

Pete Conrad!

belief: (AlBean is located in the SEQBayArea)!

belief: (PeteConrad is located in the SEQBayArea)!

belief: (PeteConrad is ready to offload the ALSEP)!

belief: (PeteConrad is located in the SEQBayArea!

detect!

open!

open!

belief: (the door of the SEQBay is closed)!

SCSC 2009 June 17, 2009 49

Brahms Thoughtframes

•! When student is

studying

–!Assess How Hungry

you are

–!Based on norms about

how much you want to

spend and how hungry

you are, determine how

much cash you need

–!Based on cash available

and costs of meals at

Blakes and Raleigh

SCSC 2009 June 17, 2009 50

Brahms Thoughtframes

thoughtframe thoughtframe-name {

 display: literal-string;

 repeat: truth-value;

 priority: unsigned;

 variables: variable declaration

 when(precondition-declaration)

 do {

 thoughtframe-body-element

 }

}

thoughtframe-name ::= name

thoughtframe-body-decl ::= do{[thoughtframe-body-element ;]*}

thoughtframe-body-element ::= CON.consequence

SCSC 2009 June 17, 2009 51

How long before I am

hungry?

•! IF an hour has gone by THEN my hunger level
goes up by 3

6/17/09

14

SCSC 2009 June 17, 2009 52

Need Cash To Eat?

•! IF amount of cash < $12 and preferred cash in pocket

THEN need cash

•! IF amount of cash >= $12 THEN don’t need cash

thoughtframe tf_cash_Needed {

 variables:

 forone(Cash) cs;
 forone(Diner) dn;

 when(knownval(current.needCash = false) and

 knownval(current.calculatedCash = false) and

 knownval(current.howHungry > 20.00) and

 knownval(current hasCash cs) and
 knownval(current.chosenDiner = dn) and

 knownval(cs.amount < 12.00) and

 knownval(current.preferredCashOut > 0.00))

 do {

 conclude((current.calculatedCash = true), bc:100);
 conclude((current.needCash = true), bc: 100);

 }

}

thoughtframe tf_cash_Not_Needed {

 variables:

 forone(Cash) cs;
 forone(Diner) dn;

 when(knownval(current.needCash = false) and

 knownval(current.howHungry > 20.00) and

 knownval(current.calculatedCash = false) and

 knownval(current hasCash cs) and
 knownval(current.chosenDiner = dn) and

 knownval(cs.amount > 11.00))

 do{

 conclude((current. calculatedCash = true), bc:100);

 conclude((current.needCash = false), bc:100);
 }

}

SCSC 2009 June 17, 2009 53

Which Diner?

•! IF amount of cash > $15 THEN can afford Blakes diner.

•! IF amount of cash <= $15 THEN cannot afford Blakes so

choose Raleigh

thoughtframe tf_chooseBlakes {

 variables:
 forone(Cash) cs;

 when(knownval(current hasCash cs) and
 knownval(cs.amount > 15.00) and

 knownval(current.checkedDiner = false) and

 knownval(Campanile_Clock.time < 20))
 do {

 conclude((current.chosenDiner = Blakes_Diner), bc:100);
 conclude((current.checkedDiner = true), bc:100);

 }

}

SCSC 2009 June 17, 2009 54

Forward Reasoning

Student.preferredCashOut

Init: T=0:

(Alex_Agent.preferred

CashOut = 8.0);

Student.preceivedTime

Cash.amount
T=24700: (Alex_Cash.amount = 10.00);

T=25200: (Alex_Agent.perceivedtime = 8);

Campanile_Clock.time
T=28800: (Campanile_Clock.time = 9);

tf_feelHungry

T=28800: (Alex_Agent.howHungry = 21.00);

T=28800: (Alex_Agent.perceivedtime = 9);

Student.howHungry
tf_cash_Needed

tf_cash_Not_Needed

T=28800: (Alex_Agent.needCash = true);

Student.needCash Student.checkedDiner

tf_ChooseRaleigh

tf_ChooseBlakes

Student.chosenDiner

T=28800: (Alex_Agent.chosenDiner = Raleigh_Diner);

T=28800: (Alex_Agent.checkedDiner = false);

SCSC 2009 June 17, 2009 55

Activities

Task

Activity

Goal

What are Activities?

•! socially constructed engagements,

•! situated in the real world,
•! taking time, effort and application of

 knowledge,

•! defined beginning and end,

•! NOT necessarily need goals in the

 sense of problem-solving tasks.
•! can be interrupted.

When in an activity people might articulate a task they are working on,

and the goal they want to accomplish (Clancey ’97)

Tasks and Goals are constructed within an Activity (Clancey ’97) (Kuutti

’96)

6/17/09

15

SCSC 2009 June 17, 2009 56

What are some of Alex’s

activities?

•! Studying in South Hall.

•! Walking to a restaurant.

•! Getting money from a

bank’s cash machine.

•! Eating food at diner.

Characterization:

•! has a duration

•! is situated in the real world
•! can be interrupted / resumed,

 but stay active

•! can be decomposed and/or

 subsumed

SCSC 2009 June 17, 2009 57

Brahms Activities
•! Primitive activities

–! Lowest level, user-defined, but not further specified.

–! Parameters are time, and resources

•! Predefined activities

–! Primitive activities with predefined semantics (communicate, move, etc.)

•! Composite activities

–! User-defined detailed activities

–! Decomposed in sub-activities

–! Describes what an agent does while “in” the activity

•! Java activities

–! User-defined primitive activities that are implemented in a Java class

–! Uses the Brahms API.

SCSC 2009 June 17, 2009 58

Primitive Activities

primitive-activity ::= primitive_activity activity-name (

{ param-decl [, param-decl]* })

{

 { display : ID.literal-string ; }

 { priority : [ID.unsigned | param-name] ; }

 { random : [ID.truth-value | param-name] ; }

 { min_duration : [ID.unsigned | param-name] ; }

 { max_duration : [ID.unsigned | param-name] ; }

 resources : [param-name | OBJ.object-name]

 [, [param-name | OBJ.object-name]*;

}

primitive_activity Study (Books course_book)

{

 display : “Study for a Course” ;

 { priority : 10 ;

 { random : true ;

 { min_duration : 1800 ; /* 30 mins */

 { max_duration : 7200 ; } /* 2 hours */

 resources : course_book;

}

SCSC 2009 June 17, 2009 59

Predefined Primitive

Activities (1)

•! Move

–! Moves an agent/object

from one area to another

area.

•! Agent/object is moved

•! Contained objects/agents are
moved

•! Location beliefs/facts are

retracted/created

•! Location facts are created

•! Create Agent/Object/Area

–! Creates new agents/

objects/areas dynamically

•! Agent can be member of

multiple groups

•! Objects can be an instance of

a class

•! Can bind new agent/object to
a return parameter

•! Can give new agent/object a

name and location

6/17/09

16

SCSC 2009 June 17, 2009 60

Predefined Primitive

Activities (2)
•! Communicate

–! Communicates agent’s
beliefs from/to receiver
agent(s)

•! Agent needs to have the
beliefs to communicate

•! Can specify type of
communication (phone | fax |
email | face2face | terminal |
pager | none)

•! Can specify to which agents/
objects is being communicate

•! Can specify when to
communicate (start | end)

•! Broadcast
–! Communicates agent’s

beliefs from/to all agent(s)
in specific areas

•! Can specify areas and
subareas

•! Agent needs to have the
beliefs to communicate

•! Can specify type of
communication (phone | fax |
email | face2face | terminal |
pager | none)

•! Can specify to which agents/
objects is being
communicated

•! Can specify when to
communicate (start | end)

SCSC 2009 June 17, 2009 61

Predefined Primitive

Activities (3)

•! Get
–! Allows an agent or object to pick up or transfer one or more

objects and/or agents from an area, other agent or object, and carry
it with it while performing activities.

•! Put
–! Allows an agent or object to put down (drop) or transfer one or

more objects and/or agents, referred to as items, carried by the
agent or object performing the activity.

•! Gesture
–! The gestures as indicated by the gesture activity are visualized in

the virtual reality environment provided that environment supports
the specified gestures.

SCSC 2009 June 17, 2009 62

Move Activity

move PAC.activity-name (

{ PAC.param-decl [, PAC.param-decl]* })

{
{ display : ID.literal-string ; }

{ priority : [ID.unsigned | PAC.param-name] ; }

{ random : [ID.truth-value | PAC.param-name] ; }

{ min_duration : [ID.unsigned | PAC.param-name] ; }

{ max_duration : [ID.unsigned | PAC.param-name] ; }
{ PAC.resources }

location : [ARE.area-name | PAC.param-name] ;

{ detectDepartureIn : [ARE.area-name | PAC.param-name] [, [ARE.area-name |

PAC.param-name]]* ; }

{ detectDepartureInSubAreas : [ID.truth-value | PAC.param-name] ; }
{ detectArrivalIn : [ARE.area-name | PAC.param-name] [, [ARE.area-name |

PAC.param-name]]* ; }

{ detectArrivalInSubAreas : [ID.truth-value | PAC.param-name] ; }

}

move moveToRestaurant() {
 location: Telegraph_Av_2405;

}

move moveToSouthHall() {
 location: SouthHall;
}

move moveToLocationForCash(Building loc) {

 location: loc;
}

move moveToLocation(Building loc) {
 location: loc;

}

SCSC 2009 June 17, 2009 63

Activities and

Workframes

•! Activities describe what people do …

•! Workframes describe when people do what

they do …

•! Thus, they describe when activities are

performed …

6/17/09

17

SCSC 2009 June 17, 2009 64

Brahms Workframes

•! Workframes are situation-action rules:
–! Activities are associated with a conditional statement or constraint,

–! Workframes are different from production rules, in that they take time.

–! If the conditions of a rule are believed, then the associated activities are
performed.

•! We call these preconditions

–! Precondition match on the beliefs held by the agent

•! Workframes can be associated with groups/agents and classes/
object.
–! A workframe defines when an activity (or activities) of an agent/object may

be performed.

•! Having two or more agents with different workframes, performing
the same activity, can represent individual differences.

•! Conclusions are facts or beliefs or both that may be asserted when
a workframe is executed.

SCSC 2009 June 17, 2009 65

Workframe Syntax
workframe workframe-name

{

 { display : ID.literal-string ; }
 { type : factframe | dataframe ; }

 { repeat : ID.truth-value ; }

 { priority : ID.unsigned ; }

 { variables : [VAR.variable]* }

 { detectables : [DET.detectable]*}
 { when ({ [PRE.precondition] [and

PRE.precondition]* }) |

 do { [PAC.activity-ref | CON.consequence]* } }

}

activities:

 primitive_activity eat() {

 priority: 0;
 max_duration: 400;

 }

workframe wf_eat {

 repeat: true;
 variables:

 forone(Cash) cs;

 forone(Diner) dn;

 when(knownval(current hasCash cs) and

 knownval(current.location = dn.location))
 do {

 eat();

 conclude((current.howHungry = current.howHungry - 3.00), bc:100, fc:0);

 conclude((cs.amount = cs.amount - dn.foodcost), bc:100, fc:100);

 conclude((current.readyToLeaveRestaurant = true), bc:100, fc:0);
 }

}

SCSC 2009 June 17, 2009 66

Brahms Detectables

(for reactive behavior)
•! Associated with workframes and activities

•! Active while a workframe/activity is active

•! Used for:
–! Agents noticing states of the world, and being able to act upon

those

•! 3-steps: (i) detect fact, (ii) notice (fact becomes belief), (iii)
conditionally act on belief

–! Control the execution of workframes and activities

•! Example: do act A until you notice fact F

•! Type: continue | impasse | abort | complete |
end_activity

SCSC 2009 June 17, 2009 67

Detectable Syntax

workframe workframe-name

{

 { display : ID.literal-string ; }
 { type : factframe | dataframe ; }

 { repeat : ID.truth-value ; }

 { priority : ID.unsigned ; }

 { variables : [VAR.variable]* }

 { detectables : [DET.detectable]*}
 { when ({ [PRE.precondition] [and PRE.precondition]* }) |

 do { [PAC.activity-ref | CON.consequence]* } }

}

detectable detectable-name {

 { when ([whenever | ID.unsigned]) }
 detect (([result-val-comp | PRE.rel-comp]) { , detect-certainty })

 { then continue | impasse | abort | complete | end_activity} ;
}

Defaults
* when = whenever

* dc = 100

* action = continue

6/17/09

18

SCSC 2009 June 17, 2009 68

Composite Activities

•! Decompose activities into sub-activities and
the workframes that can execute them.

•! Defines a workframe-activity hierarchy

•! Execution is different than traditional rule
hierarchies:
–!Subsumption hierarchy

–!While “in” an activity the higher-level activity
is still active.

SCSC 2009 June 17, 2009 69

Composite Activity Syntax

composite-activity PAC.activity-name (

{ PAC.param-decl [, PAC.param-decl]* })

{

{ display : ID.literal-string ; }

{ priority : [ID.unsigned | PAC.param-name] ; }

{ end_condition : [detectable | nowork] ; }

{ WFR.detectable-decl }

{ GRP.activities }

{ GRP.workframes }

{ GRP.thoughtframes }

}

composite_activity study() {
 activities:

 primitive_activity reading () {
 max_duration: 1500;

 } //end primact

 workframes:

 workframe wf_readingWhileStudying {
 do {

 reading();
 } //end do
 } //end wf

 thoughtframes:
 thoughtframe tf_needCashToEat {
 variables:

 forone(Cash) cs;
 when (knownval(cs.amount < current.preferredCashOut))

 do {
 conclude((current.needCash = true));
 } //end do

 } //end tf
…

} //end composite activity study

SCSC 2009 June 17, 2009 70

Workframe-Activity

Hierarchy

Workframe W
1

Activity A
1.1

(primitive)

Activity A
1.2

(composite)

Workframe W
1.2.1

Workframe W
1.2.n

...........

Activity A
1.2.1.2

(primitive)

Activity A
1.2.1.1

(composite)

...... Activity A
1.2.n.1

(primitive)

Workframe W
1.2.1.1.1

Activity A
1.2.1.1.1.1

(primitive)

Current Activity

Current Activity

Current Activity

Current WorkframeInstantiation

SCSC 2009 June 17, 2009 71

Activity Subsumption

 ACTIVITY 4 ACTIVITY 3 ACTIVITY 1

(other

activities)
WF 1

(other

activities)

ACTIVITY 2

WF 2

ACTION X

(other

workframes)

WF 4

(impasse)
WF 5

ACTIVITY 6

(other

activities)

6/17/09

19

SCSC 2009 June 17, 2009 72

Workframe/Activity States

NOT-AVAILABLE

AVAILABLE

INTERRUPTED WORKING

INTERRUPTED-WITH-

IMPASSE

DONE

highest priority

precondition true precondition false

not highest priority

impasse detectable

end workframe or

iabort | complete | end_activity detectable

highest priority

repeat = true

impasse resolved

SCSC 2009 June 17, 2009 73

Brahms Java Activities

A Brahms Java Activity is a primitive activity but its actual behavior
is specified in Java code.

–! Java code may cause an action to happen outside the Brahms model
completely (e.g. pop-up a dialog that say’s “hello world”)

–! Java code can generate the output values and assign them to unbound
variables in Brahms

–! Java code can generate new model objects within the Brahms model

–! Java code can generate beliefs/facts into objects/agents/areas within the
Brahms model

–! Java code can integrate Brahms beliefs to external systems

SCSC 2009 June 17, 2009 74

“Hello World” Java Activity

Used in a Brahms Workframe

java sayHelloWorld() {

 max_duration: 0;

 class: "gov.nasa.arc.brahms.atm.extern.HelloWorld";
 when: start;

} // sayHelloWorld

 workframe wf_hello {

 repeat: false;

 when()
 do{

 sayHelloWorld();

 }//do

 }//wf_hello

SCSC 2009 June 17, 2009 75

Brahms - FACET Integration

“Agentify” FACET

–!Wrap FACET as a

Brahms Agent

–!Design Agent

Communicative Acts

–!Create Java Interface

to FACET

6/17/09

20

SCSC 2009 June 17, 2009 76

Brahms External Agent

A Brahms External Agents are Brahms agents but its actual behavior
is specified in Java code.

–! Defined in your Brahms program as an external agent with a name

–! Java code implements the behavior of the agent

–! Java code to communicate (receive/send beliefs) from other Brahms
agents

–! Java code can access Brahms model

–! Java code can generate facts for objects/agents/areas within the Brahms
model

–! Java code can “agentify” external systems

SCSC 2009 June 17, 2009 77

Speech Dialog Agent

SCSC 2009 June 17, 2009 78

Brahms Libraries

•! Libraries are Brahms Groups/Classes
with domain-independent common
capabilities

•! Brahms comes with a number of
libraries

–! Also, we’re always extending Brahms
capabilities …

–! Libraries are a useful way to add
capabilities without the need to add to
the language

•! Most libraries provide generic
Activities developed as Java activities

•! User can create their own libraries

–! Add Libraries to ../AgentEnvironment/
Models/brahms

–! Use import statement, just like with
Java libraries

•! Current Libraries:

–! Calendar
•! Time and Date library

–! Communication

•! FIPA compliant Communicative
Acts Library for agent
communication

–! Input/Output

•! File IO library for copying/
deleting files

–! Java Utilities

•! Utilities for handling Java objects
for Brahms Agents and Objects

–! System Utilities

•! Some simple Java print activities
and string manipulation

SCSC 2009 June 17, 2009 79

BREAK

•! 15 minutes break!!!

6/17/09

21

SCSC 2009 June 17, 2009 80

Brahms Tutorial

The Brahms Tool + Demo

SCSC 2009 June 17, 2009 81

Overview of Brahms

Agent Environment

Brahms consists of the following:

•! Brahms Agent Oriented Language

•! Composer for building models.

(or Integrated Development Environment).

•! Compiler for compiling models.

•! Virtual Machine for simulating models.

(or Simulation Engine).

•! Agent Viewer for viewing simulations.

SCSC 2009 June 17, 2009 82

Where to download Brahms?

SCSC 2009 June 17, 2009 83

Brahms Download

•! Brahms development environment is
bundled into an application called the
“Brahms Agent Environment”.
–! Go to http://www.agentisolutions.com/download/index.htm

•! Requires MySQL 4.x. database to be
installed.

–!Go to http://www.mysql.com

–! Note: Read AgentViewer_Readme.html to set the appropriate
privileges for the anonymous database user.

•! Requires a Brahms License file.

6/17/09

22

SCSC 2009 June 17, 2009 84

Brahms Installation

Check out Brahms Files

Files created by the Brahms

installation are in:

C:\Program Files\ Brahms\

AgentEnvironment

SCSC 2009 June 17, 2009 85

Language Documentation

SCSC 2009 June 17, 2009 86 SCSC 2009 June 17, 2009 87

6/17/09

23

SCSC 2009 June 17, 2009 88

Brahms Tutorial

SCSC 2009 June 17, 2009 89

Tutorial Scenario Animated

What

is my

PIN?

Amount

of

Money?

Banking Institution

Blakes
Raleighs

SCSC 2009 June 17, 2009 90

The Composer

Import Brahms

Source into

Composer.

SCSC 2009 June 17, 2009 91

Brahms Composer

Groups and Agents
Geography

Beliefs and Facts

Workframes

Classes and Objects

Thoughtframes

6/17/09

24

SCSC 2009 June 17, 2009 92

Brahms Simulation Output:
Compile Model

SCSC 2009 June 17, 2009 93

Brahms Simulation Output:
Simulate

SCSC 2009 June 17, 2009 94

Brahms Simulation Output:
Parse History File

6/17/09

25

Workframe Interruption
group PrimitiveActivityPerformer {

 attributes:

 public boolean execute_PAC_1;

 activities:

 primitive_activity PAC_1(int pri) {

 display: "PAC 1";

 priority: pri;

 max_duration: 900;

 }

 primitive_activity PAC_2(int pri, int dur) {

 display: "PAC 2";

 priority: pri;

 max_duration: dur;

 }

 workframes:

 workframe wf_PAC_1 {

 repeat: true;

 when (knownval(current.execute_PAC_1 = true))

 do {

 PAC_1(1);

 conclude((current.execute_PAC_1 = false));

 }

 }

 workframe wf_PAC_2 {

 repeat: true;

 do {

 PAC_2(0, 1800);

 conclude((current.execute_PAC_1 = true), bc:25);

 PAC_2(0, 600);

 }

 }

}

Workframe-Activity Hierarchy

Wf_PAC_1

PAC_1(1)

Wf_PAC_2

PAC_2(0, 1800) PAC_2(0, 600)

Tn+1 = Tn + 1800

Tn+2 = Tn+1 + 900

Printing beliefs
group PrimitiveActivityPerformer memberof SystemGroup {

 attributes:

 public boolean execute_PAC_1;
 public int nr_pac_2;

 public int nr_pac_1;

 public double pac_1_2_ratio;

 initial_beliefs:
 (current.nr_pac_1 = 0);

 (current.nr_pac_2 = 0);

…….

 workframes:
 workframe wf_PAC_1 {

 repeat: true;

 variables:

 forone(int) i;
 forone(int) y;

 forone(int) i_plus_one;

 when (knownval(current.execute_PAC_1 = true) and

 knownval(current.nr_pac_1 = i) and
 knownval(current.nr_pac_2 = y) and

 knownval(i_plus_one = i + 1))

 do {

 PAC_1(1);

 conclude((current.nr_pac_1 = i + 1));
 printBelief(current, nr_pac_1, attribute);

 conclude((current.pac_1_2_ratio = i_plus_one / y));

 printBelief(current, pac_1_2_ratio, attribute);

 conclude((current.execute_PAC_1 = false));

 }
 }

 workframe wf_PAC_2 {

 repeat: true;

 do {

 PAC_2(0, 1800);

 conclude((current.nr_pac_2 = current.nr_pac_2 + 1));

 printBelief(current, nr_pac_2, attribute);

 conclude((current.execute_PAC_1 = true), bc:25);
 PAC_2(0, 600);

 }

 }

}

INFO : Starting virtual machine

INFO : Starting scheduler

INFO : Starting engine for 'Prim_Agt’
INFO : Virtual machine started...

INFO : 1800: belief(Prim_Agt.nr_pac_2 = 1)

INFO : 4200: belief(Prim_Agt.nr_pac_2 = 2)

INFO : 5100: belief(Prim_Agt.nr_pac_1 = 1)

INFO : 5100: belief(Prim_Agt.pac_1_2_ratio = 0.5)
INFO : 7500: belief(Prim_Agt.nr_pac_2 = 3)

INFO : 9900: belief(Prim_Agt.nr_pac_2 = 4)

INFO : 12300: belief(Prim_Agt.nr_pac_2 = 5)

INFO : 13200: belief(Prim_Agt.nr_pac_1 = 2)

INFO : 13200: belief(Prim_Agt.pac_1_2_ratio = 0.4)
INFO : 15600: belief(Prim_Agt.nr_pac_2 = 6)

INFO : 18000: belief(Prim_Agt.nr_pac_2 = 7)

INFO : 20400: belief(Prim_Agt.nr_pac_2 = 8)

INFO : 21300: belief(Prim_Agt.nr_pac_1 = 3)

INFO : 21300: belief(Prim_Agt.pac_1_2_ratio = 0.375)
INFO : 23700: belief(Prim_Agt.nr_pac_2 = 9)

INFO : 26100: belief(Prim_Agt.nr_pac_2 = 10)

INFO : 28500: belief(Prim_Agt.nr_pac_2 = 11)

INFO : 30900: belief(Prim_Agt.nr_pac_2 = 12)

INFO : 33300: belief(Prim_Agt.nr_pac_2 = 13)
INFO : 34200: belief(Prim_Agt.nr_pac_1 = 4)

INFO : 34200: belief(Prim_Agt.pac_1_2_ratio = 0.3076923076923077)

INFO : 36600: belief(Prim_Agt.nr_pac_2 = 14)

INFO : 39000: belief(Prim_Agt.nr_pac_2 = 15)

INFO : 41400: belief(Prim_Agt.nr_pac_2 = 16)
INFO : 43800: belief(Prim_Agt.nr_pac_2 = 17)

INFO : 46200: belief(Prim_Agt.nr_pac_2 = 18)

INFO : 47100: belief(Prim_Agt.nr_pac_1 = 5)

INFO : 47100: belief(Prim_Agt.pac_1_2_ratio = 0.2777777777777778)

INFO : 49500: belief(Prim_Agt.nr_pac_2 = 19)
INFO : 51900: belief(Prim_Agt.nr_pac_2 = 20)

INFO : 52800: belief(Prim_Agt.nr_pac_1 = 6)

INFO : 52800: belief(Prim_Agt.pac_1_2_ratio = 0.3)

INFO : 55200: belief(Prim_Agt.nr_pac_2 = 21)

INFO : 57600: belief(Prim_Agt.nr_pac_2 = 22)
INFO : 60000: belief(Prim_Agt.nr_pac_2 = 23)

INFO : 62400: belief(Prim_Agt.nr_pac_2 = 24)

INFO : 64800: belief(Prim_Agt.nr_pac_2 = 25)

INFO : 65700: belief(Prim_Agt.nr_pac_1 = 7)

INFO : 65700: belief(Prim_Agt.pac_1_2_ratio = 0.28)

6/17/09

26

Composite Activities

Workframe-Activity Hierarchy

Tn+1 = Tn + 1800

Tn+2 = Tn+1 + 900

wf_PAC_1

PAC_1(1)

wf_PAC_1

PAC_2(0, 1800) PAC_2(0, 600)

Being_Alive()

wf_Being_Alive

Just_Breathing(10, 3600)

In_Coma())

wf_In_Coma

wf_Breathing

Det_Impasse
Impasse

SCSC 2009 June 17, 2009 101

Composite Activities

workframe wf_Being_Alive {

 repeat: true;

 detectables:

 detectable det_Impasse {

 detect((current.headTrauma = true))

 then impasse;

 }

 do {

 Being_Alive();

 }

}

workframe wf_In_Coma {

 repeat: true;

 when(knownval(current.headTrauma = true))
 do {

 In_Coma();

 conclude((current.headTrauma = false), fc:50, bc:50);

 printBelief(current, headTrauma, attribute);

 }
}

SCSC 2009 June 17, 2009 102

NASA ARC

Brahms Team

•! Co-PI - William J. Clancey, Ph.D.

•! Co-PI - Maarten Sierhuis, Ph.D.

•! Software Architect - Ron van Hoof

•! Software Developer - Mike Scott

•! Brahms Modeler - Chin Seah

•! Brahms Modeler - Peter Jarvis, Ph.D.

SCSC 2009 June 17, 2009 103

More Information …

•! E-mail: Maarten.Sierhuis-1@nasa.gov

•! Brahms URL:

http://www.agentisolutions.com

•! Brahms Papers in Publications on:

http://homepage.mac.com/msierhuis

http://Bill.Clancey.name

