
Dynamic Controllability with Single and Multiple Indirect Observations

Paul Morris
NASA Ames Research Center

Moffett Field, CA 94035, U.S.A.

Arthur Bit-Monnot
University of Sassari

Sassari, Italy

Abstract

A recent paper introduced a transformation-based approach
for determining dynamic controllability of Simple Tempo-
ral Networks with Uncertainty (STNUs) extended to have
variably-delayed observations of uncontrolled timepoints. Al-
though the approach correctly determines dynamic control-
lability, it does not always provide the most flexible possi-
ble dynamic strategy. We show how to refine the approach
in a way that improves the flexibility, and further extend it
to a class of Partially Observable STNUs where the hidden
timepoints can be indirectly observed via a chain of contin-
gent links. We show how to construct a labeled distance graph
for these problems, leading to a complete solution. This ap-
proach handles “single-headed” chained contingent links. For
“multi-headed” problems, we prove a theorem characteriz-
ing their dynamic controllability in isolation. This provides a
check on more general networks (and more general methods).
We also consider potential extensions of the single-headed
approach to multi-headed problems and point out some diffi-
culties that arise.

Introduction
The Simple Temporal Network (STN) formalism introduced
by Dechter, Meiri, and Pearl (Dechter, Meiri, and Pearl
1991) has proved very fruitful for reasoning about tempo-
ral plans. It has been extended in various directions includ-
ing the STNU formalism that deals with external events
whose timing is uncertain (Vidal and Fargier 1999; Mor-
ris, Muscettola, and Vidal 2001; Hunsberger 2009; Morris
2014), and effective algorithms have been developed to han-
dle these problems. An additional extension (Moffitt 2007)
introduced the Partially Observable STNU (POSTNU) for-
malism that may include uncontrolled timepoints that can
be observed only indirectly, through their subsequent effects
on other timepoints that are observable. In this paper, the un-
controlled timepoints that cannot be directly observed may
conveniently be called hidden timepoints.

A recent paper (Bhargava, Muise, and Williams 2018) in-
troduces a related extension of STNU, called Variable De-
lay STNU, where an uncontrollable event is determined to
have occurred only after some delay whose duration is itself
uncertain. It was noted that a Variable Delay STNU can be
modeled as a special case of a POSTNU where the obser-
vational delay is represented as a separate contingent link

that is activated by the uncontrollable event that is being ob-
served. Thus, viewed as a POSTNU, the network involves
two chained contingent links. The uncontrolled timepoint
that is observed only indirectly (via the chained link) is a
hidden timepoint. The Variable Delay paper considers net-
works that may have additional requirement constraints on
the hidden timepoints. It introduces novel methods to tran-
form such Variable Delay STNUs into an STNU where con-
tingent timepoints are either instantaneously observable or
never observable. The result is essentially a POSTNU with-
out chained constraints, which allows dynamic controllabil-
ity to be determined by existing methods (Bit-Monnot, Ghal-
lab, and Ingrand 2016). It also presents an execution strategy
for networks that are found to be dynamically controllable.

The method presented in the Variable Delay paper cor-
rectly determines dynamic controllability and presents a
valid execution strategy. However, the strategy presented is
not always the most flexible possible, as we will show by
an example. This can be remedied by a “doubling” strat-
egy where the timepoint following a hidden timepoint is
split in two. We will show how the doubling arises natu-
rally in a first principles analysis. Also, for a Variable De-
lay STNU viewed as a POSTNU, a hidden timepoint acti-
vates at most one chained constraint. This may be described
as a “single-headed” chained constraint. We will consider
“multi-headed” cases where several contingent links are ac-
tivated by the same hidden timepoint, and prove a theorem
relating the dynamic controllability of a multi-headed net-
work fragment to a relationship between the “slack” (upper
bound minus lower-bound) of the requirement and contin-
gent constraints involved. This result can be used as a check
on the validity of transformation methods. Our results ex-
tend the set of cases where algorithms for DC checking of
POSTNU are complete.

STNUs and Extensions
A Simple Temporal Network (STN) (Dechter, Meiri, and
Pearl 1991) is a graph in which the edges are annotated
with upper and lower numerical bounds. The nodes in the
graph represent temporal events or timepoints, while the
edges (refered to as links) correspond to constraints on the
durations between the events. For instance a link A [2,5]−−−→ B
imposes that at least 2 time units and no more than 5 time



units elapse between the occurrence of A and the occurence
of B. Each STN is associated with a distance graph where
each link A [x,y]−−−→ B is replaced by two edges A

y−→ B and
A −x←−− B. An STN is consistent if and only if the distance
graph does not contain a negative cycle.

A Simple Temporal Network With Uncertainty (STNU)
is similar to an STN except the links are divided into two
classes, requirement links and contingent links. Requirement
links are temporal constraints that the agent must satisfy,
like the links in an ordinary STN. Contingent links may be
thought of as representing causal processes of uncertain du-
ration, or periods from a reference time to exogenous events;
their finish timepoints, called here contingent timepoints, are
controlled by Nature, subject to the limits imposed by the
bounds on the contingent links. All other timepoints, called
executable timepoints, are controlled by the agent, whose
goal is to satisfy the bounds on the requirement links. The
start timepoint of a contingent link is called its activation
timepoint and can be either contingent or executable. Each
contingent link is required to have non-negative (finite) up-
per and lower bounds. An STNU may be thought of as de-
termining a family of STNs where the contingent links take
on each of their possible durations; the individual STNs in
the family are called projections.

In STNUs, the uncontrolled timepoints are assumed to be
either all unobservable or all observable, giving rise to dif-
ferent execution strategies. An STNU is Strongly Control-
lable if there is a single schedule that satisfies the require-
ments in all of the projections. An STNU is said to be Dy-
namically Controllable if there is a strategy for scheduling
each executable timepoint that depends only on observations
that are available (in the past) at the time it is scheduled.
Whether an STNU is Dynamically Controllable or not can
be determined by an algorithm that runs in cubic time (Mor-
ris 2014). The algorithm tightens some constraints in a way
that makes explicit limitations on the execution strategies
due to the presence of contingent links.

Some of the tightenings involve a temporal constraint
called a wait. Given a contingent link AB and another link
AC, a wait indicates that execution of the timepoint C is
not allowed to proceed until after either B has occurred
or some specified amount of time t has elapsed since A
occurred. More precisely, it corresponds to the constraint
C − A ≥ min(B − A, t). Note that a wait reduces to an
ordinary temporal constraint in a projection, since there the
value of B −A is fixed.

As mentioned, an STN has an alternative representation
as a distance graph (Dechter, Meiri, and Pearl 1991). Sim-
ilarly, there is a representation for an STNU called the la-
beled distance graph (Morris and Muscettola 2005) In the
labeled distance graph, each requirement link A [x,y]−−−→ B is
replaced by two edges A

y−→ B and A −x←−− B, just as in an
STN. For a contingent link A [x,y]===⇒ B, we have the same
two edges A

y−→ B and A −x←−− B, but we also have two ad-
ditional edges of the form A b:x−−→ B and A B:−y←−−− B. These
are called labeled edges because of the additional “b:” and
“B:” annotations indicating the contingent timepoint B with

which they are associated. Note especially the reversal in the
roles of x and y in the labeled edges. We refer to A B:−y←−−− B
and A b:x−−→ B as upper-case and lower-case edges, respec-
tively. Observe that the upper-case labeled weight B:-y gives
the value the edge would have in a projection where the con-
tingent link takes on its maximum value, whereas the lower-
case labeled weight b:x corresponds to the contingent link
minimum value. An upper case edge A B:−t←−−− C is also used
to represent the wait involving A,B,C considered earlier; it
is consistent with the lower bound on AC that would occur
in a projection where the contingent link has its maximum
value.

A POSTNU (Moffitt 2007) is essentially an STNU that
has both observable and unobservable (hidden) timepoints.
Thus, the controllability problem for a POSTNU may be re-
garded as a combination of Strong and Dynamic Controlla-
bility. Moffitt’s algorithm for checking the controllability of
a POSTNU is complete but not sound in that it might incor-
rectly label a POSTNU as controllable. Another algorithm,
also relying on the compilation to STNUs is provided by
(Bit-Monnot, Ghallab, and Ingrand 2016) that is sound but
only complete for a subclass of POSTNUs. A polynomial
sound and complete algorithm for assessing the controllabil-
ity of general POSTNU remains to be found. It is important
to note one particular point with respect to the semantics. A
contingent link may be activated by a hidden timepoint. In
that case, if the endpoint is observable, the POSTNU seman-
tics specifies that when it is observed, we learn only the time
of the endpoint, not the duration of the link that was acti-
vated by the hidden timepoint. Of course we do learn (or can
easily calculate) the time difference between the observed
endpoint and any previous known time. Other semantics are
possible, and may be useful in some applications, but will
not be considered in this paper.

Variable Delay
The Variable Delay STNU (Bhargava, Muise, and Williams
2018) formalism is an STNU extension that relaxes the con-
dition of instantaneous observation of contingent timepoints.
In this case, the end of a contingent link is not directly ob-
served; instead after some bounded delay (with upper and
lower bounds), it is learned that the contingent timepoint has
occurred. The duration of the delay is not observed, so the
time at which the contingent timepoint occurred is not di-
rectly known. However, bounds on the time of occurrence
can be inferred from the other observations.

A Variable Delay STNU may be regarded as a special
case of a POSTNU where the original contingent link is
chained with a separate contingent link that represents the
delayed observation process. The original contingent time-
point is treated as hidden. An example is shown in figure 1.
Here XE represents the original contingent link, E is hidden,
and EY represents the delayed observation. The link EZ is
a requirement that is imposed on the hidden timepoint. In
the example, X and Z are executable timepoints and Y is an
observable timepoint.

Note that the semantics of Variable Delay STNU im-
plies that Y is a “terminal” timepoint, i.e., the corresponding



X E Y

Z

[0, 5]

[0, 10]

[5, 10]

Figure 1: Variable Delay as POSTNU

X E Y

Z

[a, b]

[u, v]

[g−, g+]

Figure 2: Generic Variable Delay

POSTNU may not impose any requirements on the time-
point representing the delayed observation, and it may not
activate a new contingent link. In addition, the delayed ob-
servation is “single-headed” in the sense that the POSTNU
can have only one contingent link that is activated by the hid-
den timepoint. In this paper, we will develop solution meth-
ods that encompass a wider (though still limited) range of
problems.

We now review a somewhat simplified description of the
Variable Delay solution procedure (Bhargava, Muise, and
Williams 2018), as expressed in terms of a POSTNU, for
a generic example (figure 2) that parallels the one used in
the Variable Delay paper. For the following discussion, as a
notational convenience, we define slack(AB) = q-p for any
link AB with bounds [p,q].

The solution procedure starts by checking whether
slack(XE) ≤ slack(EY). If so, it replaces EY by an infinite
delay, which essentially discards the EY observation from
the POSTNU.

Otherwise it applies the transformations in table 1, which
effectively moves the requirement from the unobservable E
to an observable Y’ as indicated in figure 3. We have rewrit-
ten Y as Y’ because, as we will see, it is not really the same
timepoint as Y. (More on this later.)

The iterated transformation process converts a Variable
Delay problem into one in which timepoints are either unob-
servable or have zero delays. This is essentially a POSTNU
in which all the activation timepoints are observable. These
are problems for which dynamic controllability can be
checked by previous methods (Bit-Monnot, Ghallab, and In-
grand 2016).

Original edges Replacement edge
X [a,b]===⇒ E [p,q]===⇒ Y X [a+q,b+p]======⇒ Y′

Z [a,b]←−−− E [p,q]===⇒ Y Z [a−p,b−q]←−−−−−− Y′

Table 1: Variable Delay transformations involving a hidden
timepoint E

X Y’

Z

[a + g+, b + g−]

[u− g−, v − g+]

Figure 3: Transformed Variable Delay

X E Y

Z

[0, 5]

[0, 10]

[0, 1000]

Figure 4: Suboptimal Strategy Example

The Variable Delay paper presents arguments that the
transformed problem is dynamically controllable if and only
if the original is also, which extends dynamic controllability
checking to a wider class of problems.

The paper also presents an execution strategy for the
transformed problem. The timepoint designated Y’ in fig-
ure 3 is treated as though it corresponds to an observation
of

(t ≥ a + g+) ∧ (Y ∨ t ≥ b + g−)
where t is the time as measured since X was executed. That
is, if Y was observed earlier than time a + g+, then Y’ is
considered to be observed at time a + g+. If Y is observed
between time a + g+ and time b + g−, then Y’ is observed
when Y is observed. If Y is not observed until after time
b+g−, then Y’ is considered to be observed at time b+g−.
We say Y’ is an observable derived from Y.

Improved Dynamic Strategy
The Variable Delay paper does correctly determine the dy-
namic controllability of a Variable Delay problem (as we
will later confirm by a different analysis), and it does present
a valid dynamic strategy. However, the dynamic strategy ob-
tained is not always the most general possible (in the sense
of preserving the greatest flexibility). Consider the example
in figure 4. The Variable Delay procedure would essentially
discard the Y observation as one that is “highly uncertain,”
and treat E as totally unobservable. Then, from XE and EZ,
we infer an XZ requirement of [5,10]. Notice however that
with the original network, if Y is observed at any time in
[0,5] we can immediately infer that E has happened, and so
it is safe to go ahead with Z. If Y is not observed, we can
nevertheless proceed with Z in [5,10]. This is more flexible
than [5,10] only.

As another example, suppose the EZ link had bounds
[990,1000] instead. Compiling away E would then impose
an XZ requirement of [995,1000]. However, if Y has not
finished at time 1000, it is nevertheless safe in the original
network to hold off on executing Z until Y finishes (since E
must still be within the allowed range), which is more flexi-
ble and potentially might not happen until 1005 after X.



X
Y’

Z
Y”

y : (a + g+)

v − g+ −(u− g−)

Y : −(b + g−)

Figure 5: Doubled Y Timepoint

For execution purposes, discarding the Y observation is
overly drastic since it can make a contribution to the dy-
namic strategy even though it is “highly uncertain.” How-
ever, if the Variable Delay paper did not perform this pre-
liminary step when slack(XE) < slack(EY), then the first
transformation in table 1 could produce a paradoxical con-
tingent link where the lower bound is greater than the upper
bound. (Note (b+g−)− (a+g+) = (b− a)− (g+− g−).)

As it turns out, there is an alternative way of resolving
this issue that does not require discarding the Y observation.
The basic idea is to replace Y by two new timepoints Y’
and Y”, in which we separate the upper and lower bounds.
Otherwise, the transformation is essentially the same as in
the Variable-Delay paper. Here, we just indicate how this re-
solves the flexibility issue; later on, we will show how these
timepoints arise in a principled analysis.

Figure 5 shows the transformed network as a labeled
distance graph. This is semi-reducible if either Y’→Z or
Y’→Z→Y” is negative, i.e., if either v < g+ or (v − u) <
(g+ − g−). We then have a semi-reducible negative cycle if
the whole cycle is negative, i.e., if (v − u) < (b− a). (The
g+ and g− terms cancel.) This gives the same gross determi-
nation of dynamic controllability as the previous (Bhargava,
Muise, and Williams 2018) procedure but differs in terms of
the specific dynamic strategy. For the example, we get

X
Y’

Z
Y”

y : 1000

−990 0

Y : −5

and then, applying the usual STNU reductions, we end up
with X 10−→ Z and X Y:−5←−−− Z edges, which corresponds to
a dynamic strategy of “Wait for Y until time 5 after X, and
then execute Z before time 10 after X,” which is the more
flexible strategy we discussed earlier.

For the example where EZ has bounds [990,1000], the
Y’Z and ZY” bounds are the only ones affected, and we get
the situation depicted in the following figure.

X
Y’

Z
Y”

y : 1000

0 −990

Y : −5

Here, Y” observes the “Wait for Y until time 5 after X” con-
dition, and then Z is released 990 units later. We will see
later that the y:1000 bound on XY’ can be interpreted as an

upper bound of “Y or 1000 after X, whichever comes later,”
and then the same upper bound applies to Z. This strategy
also matches our intuition.

These examples underscore our understanding that Y’ and
Y” are NOT the same timepoint as Y, although they are de-
rived from it. The original Y timepoint in figure 2 has bounds
of [a + g−,b +g+] and these would need to be used, for ex-
ample, if we were to consider placing requirements on Y it-
self. (This is apparently not within the scope of the Variable
Delay formalism.)

In this section, to facilitate comparisons, we have used
variable names that approximate those used in the Variable
Delay paper. However, from now on we will adopt the con-
vention, in most cases, of using bounds [q−, q+] for any
link whose endpoint is Q. We hope this will be useful as
a mnemonic aid.

Single-Headed POSTNUs
The hidden timepoints in a POSTNU may be partitioned into
separate groups whose elements are connected to each other
by contingent links. A group is thus a connected component
of the undirected graph obtained by (i) removing all require-
ment links from the POSTNU and (ii) replacing contingent
links by their undirected variant. Since the STNU definition
does not permit two contingent links to have the same end-
point, each group, together with an activation timepoint, will
form a tree-like structure.

We now turn our attention to the special case where the
hidden timepoints occur in groups consisting of linear chains
of contingent links with a single non-hidden entrance and
single non-hidden exit. We will call these Single-Headed
POSTNUs.

For instance in a network A ⇒ E1 ⇒ E2 ⇒ B, E1 and
E2 are hidden timepoints that belong to the same hidden
group. (Notation convention: any Ei timepoint is hidden.)

Without loss of generality we may assume the entrance
timepoint is controllable since otherwise it could be replaced
by a controllable with a [0, 0] link to the original entrance.
The exit timepoint is necessarily observable.

In this paper, we exclude direct requirement links be-
tween two hidden timepoints,1 but otherwise the hidden
timepoints (and entrance and exit) may participate in re-
quirement links to other timepoints in the network. We then
assume without loss of generality that timepoints directly
linked to hidden timepoints are controllable, using [0, 0] link
replacement if necessary.

As shown in figure 2, the Variable Delay problems may
be regarded as a special case of Single-Headed POSTNUs,
with limitations on the hidden groups and requirement links.

Analysis From First Principles
In our analysis we will first restrict our attention to simple
Single-Headed POSTNUs, where the hidden groups each
contain only one hidden timepoint, and later relax that re-
striction.

In an earlier section, we described a “doubling” strategy
that enhanced the flexibility of execution. We now present

1For simplicity—the consequence of allowing them is unclear.



X E Y

Z

[e−, e+]

[z−, z+]

[y−, y+]

Figure 6: Generic Simple Problem

a first principles analysis in which the doubling arises nat-
urally. The analysis focuses on mathematical equivalences
that are independent of context. This eliminates some of the
contextual restrictions that applied in the Variable Delay set-
ting. As a side-benefit, the analysis sheds some additional
light on the semantics of the upper-case and lower-case la-
beled edges used in the STNU work (Morris 2014).

For a POSTNU, we may divide the projections into
groups that have the same values for their observable time-
points. We will call these groups macro-projections. The full
projections that also specify the hidden timepoint values will
be called micro-projections. Thus, each macro-projection
consists of a set of micro-projections. In effect, each macro-
projection, considered in isolation, may be regarded as a sep-
arate Strong Controllability problem whose projections are
its micro-projections. Then each hidden timepoint will have
a range of values within a particular macro-projection, and
this range will depend on the values of the observables in the
macro-projection.

For example, with the POSTNU (where E is hidden)

X [0,10]===⇒ E [0,10]===⇒ Y

the macro-projection where XY = 15 consists of all the
micro-projections where XE and EY sum to 15, such as
6 + 9, 10 + 5, etc. Within this set of micro-projections,
E can range from 5 to 10 (after X). Notice while E can
vary, the lower and upper bounds of the range, Elo and
Ehi, are fixed within the macro-projection. As we will see,
their values can be expressed in terms of formulas involv-
ing the observables. Thus, we may regard them as virtual
timepoints that live within the macro-projection, or virtual
observables (although we only know their values after the
relevant real observables have been observed). If we now im-
pose a [z−, z+] requirement on EZ, where Z is an executable
timepoint, a worst-case analysis suggests we should enforce
that by adding constraints Z ≥ Ehi + z− and Z ≤ Elo + z+.
In contrast to the case for virtual observables, for the exe-
cutable timepoint Z, we do need to know these constraints
are satisfied by the time Z is scheduled.

Redirected Requirements We now consider this analy-
sis in more detail for the simple generic problem shown in
figure 6 (similar to Variable Delay). Here, X and Y are non-
hidden timepoints. Both of these give us information bound-
ing the occurrence of E as follows:

E-X ≥ e−

E-X = (Y-X)-(Y-E)
≥ (Y-X)− y+

Thus,
E-X ≥ max(e−, (Y-X)− y+)

Similarly,
E-X ≤ e+

E-X = (Y-X)− (Y-E)
≤ (Y-X)− y−

so
E-X ≤ min(e+, (Y-X)− y−)

It is not hard to see that these are tight bounds; they rep-
resent the minimum and maximum extent of E-X within the
macro-projection determined by X and Y. As discussed in
the example, we will designate the lower and upper virtual
observables by Elo and Ehi respectively.

It is convenient to simplify the formulas by writing Ẏ for
Y-X. Thus, the X to E link has inferred bounds of

[max(e−, Ẏ − y+),min(e+, Ẏ − y−)]

Given a particular macro-projection, a dynamic strategy will
need to specify a value for Z that works for all the associ-
ated micro-projections, i.e., for all the values of E within this
range. Thus, we require Z−E ≥ z− for each such E. It is not
hard to see 2 that this is true if and only if it is true for the
upper bound of the range, i.e., Z− Ehi ≥ z−. Similarly, the
lower-bound requirement is equivalent to Z− Elo ≤ z+.

We can rewrite these requirements as supplying a lower
bound for XZ of Ehi + z− or

min(e+ + z−, Ẏ + z− − y−)

and an upper bound of Elo + z+ or

max(e− + z+, Ẏ + z+ − y+)

Notice the min/max modifiers have become reversed with
respect to the lower and upper bounds. One consequence is
that the bounds now represent implicit disjunctions rather
than implicit conjunctions. However, we will see that the two
alternatives can be processed together in a way that avoids
an exponential blowup.

Observability Tightening These derived bounds may not
be directly observable. For example, (z− − y−) may be
negative in which case the value of Ẏ + (z− − y−) is un-
known until the later time when (Y-X) is actually observed.
If (z−−y−) is non-negative, then Ẏ +(z−−y−) is observ-
able and can be left unchanged. Otherwise, when executing
Z we must replace Ẏ +(z−−y−) by the observable Ẏ , which
gives a strictly tighter lower bound that guarantees the actual
bound will be satisfied. We call this process observability
tightening. It is important to note that we only apply it to
executable timepoints, which is where the dynamic strategy
applies.

When executing Z, the upper-bounds also need “observ-
ability tightening” but the process is different because of the
asymetry of observation with respect to time. For example, if
(z+−y+) is negative, then the strictly tighter bound derived

2Z−E ≥ z− for each E, implies Z−Ehi ≥ z−. Conversely, if
Z− Ehi ≥ z− then Z− E ≥ Z− Ehi ≥ z− for each E.



X
Y’

Z
Y”

y : (e− + y+)

z+− y+ −(z− − y−)

Y : −(e+ + y−)

Figure 7: Distance Graph

X E Y

Z

[0, 20]

[0, 10]

[0, 5]

−1

Figure 8: Cross Requirement Example

from Ẏ +(z+−y+) is “minus infinity”, which is equivalent
to dropping the Ẏ + (z+ − y+) term from the max expres-
sion. If (z+ − y+) is non-negative, then the term can be left
unchanged.

Derived Observables Rather than interpreting the bounds
on Z directly, we will pursue an alternative approach here,
and decompose them by introducing intermediates with re-
spect to the Elo and Ehi values. Although Elo and Ehi are
only virtual observables whose values may not be known un-
til later, we can form real observables from them by adding
approriate delay terms. For example, Ehi +y− = min(e+ +
y−, Ẏ ) corresponds to an observation of “Y or e++y− after
X, whichever is earlier,” and Elo + y+ = max(e− + y+, Ẏ )
may be paraphrased as “Y or e− + y+ after X, whichever
is later.” We will designate these derived observables as Y”
and Y’, respectively.

This motivates us to expand the lower bound for Z as

min(e+ + y−, Ẏ ) + (z− − y−)

and the upper bound as

max(e− + y+, Ẏ ) + (z+ − y+).

We will identify −min(u, Ẏ ) with the upper-case la-
beled weight Y:−u and max(v, Ẏ ) with the lower-case la-
beled weight y:v, as used in an STNU labeled distance
graph. (Morris 2014). (This will be justified later, but note
that semantically, min(u, Ẏ ) is the same as the Wait for Y
until u after X condition in an STNU.)

Introduction of the intermediate Y’ and Y” thus produces
the labeled distance graph shown in figure 7. This may be
compared with figure 5.

Example We reiterate that the Y timepoint is distinct from
the added Y’ and Y” timepoints. The correlation between
them is captured by the labeled weights in the distance
graph. Consider, for example, the network shown in figure 8.
If the YZ edge was not there, the network would be Dynami-
cally Controllable, since Z could be executed between 0 and

X

Y

Z

Y’ Y”

y : 5

5 0

Y
: −20

y : 0 Y : −25

−1

Figure 9: Cross Distance Graph

5 after Y is observed. However, the YZ edge prevents that
strategy by requiring Z to come before Y, so the full net-
work is not Dynamically Controllable. The distance graph
after the transformations is shown in figure 9. Notice the
Lower-Case reduction applied to XYZ produces an XZ edge
of weight−1, which then forms a semi-reduced negative cy-
cle with the ZY”X path.

Hidden Timepoint Elimination After the requirement
edges between Z and E are replaced by the correspond-
ing edges between Z and X, E will be free of “side” links.
At that point, the XE link can be composed with the EY
link, giving a combined contingent link of XY with bounds
[e− + y−, e+ + y+], and E can be eliminated.

Now we return to the general case where there is a chain
of hidden timepoints

X =⇒ E1 =⇒ . . . =⇒ En =⇒ Y

between X and Y. Consider the first timepoint E1. The anal-
ysis that produced Elo and Ehi depended only on knowing
the contingent bounds for XE and EY. Viewing E1 as if it
were E, we know the bounds for XE directly, and we can
compute bounds for EY by composing the contingent links
in the E1 =⇒ . . . =⇒ Y path. 3 We can then proceed as in the
single E case to eliminate E1. This process can be repeated
with the other hidden timepoints in the chain until they are
all eliminated.

At this point, what remains is a labeled distance graph
with no hidden timepoints, which is a form suitable for in-
put to a standard cubic Dynamic Controllability checking
algorithm for STNUs (Morris 2014). This leads us to the
following theorem.
Theorem 1 For the given class of Single-Head POSTNUs,
the transformation process followed by the standard cu-
bic Dynamic Controllability checking algorithm provides a
complete decision procedure.

Proof: We have seen that the first transformation step re-
places the original requirement constraints with equivalent
ones. Because of the equivalence, this necessarily leaves the
set of valid dynamic strategies unchanged. The observabil-
ity tightening step does restrict the network, but any strate-
gies eliminated by the step would be non-dynamic since they

3Requirements do not affect the domains of contingent links.



would depend on unobserved values. Thus, the set of dy-
namic strategies before and after the transformation process
is the same. (This may be empty if the network is not dy-
namically controllable.)

Next we justify the identification of the max/min expres-
sions with the labeled weights by showing they behave the
same with respect to the key reductions used by the Dynamic
Controllability checking algorithm. In the following, we as-
sume u > 0 and v ≥ 0 and W 6= Y .

Upper-Case Reduction
−min(u, Ẏ ) + v = −min(u− v, Ẏ − v)

= −min(u− v, Ẏ )
Lower-Case Reduction
−u + max(v, Ẏ ) = max(v − u, Ẏ − u)

= v − u
Cross-Case Reduction
−min(u, Ẇ ) + max(v, Ẏ ) = v −min(u, Ẇ )

= −min(u− v, Ẇ )
Label Removal
−min(−v, Ẏ ) = v

Note the use of the applicable observability tightening in
the Upper and Lower cases. The Cross-Case reduction ap-
plies the Lower and Upper derivations in succession. 4 Label
Removal follows from min simplification since Ẏ ≥ 0.

The theorem then follows from the completeness of
the (Morris 2014) algorithm. 2

Note that this result extends and unifies the previous
classes of POSTNU for which complete and tractable de-
cision procedures are known (Bit-Monnot, Ghallab, and In-
grand 2016; Bhargava, Muise, and Williams 2018).

Multi-Headed Observations
In the previous sections, we discussed problems where
bounds on the occurrence of a hidden timepoint could be
inferred from a single observation. In this section, we con-
sider the combined effect of multiple relevant observations,
the so-called “Multi-Headed Problem,” where there can be
multiple determinations that a hidden event has occurred,
each of which has its own bounds. This is illustrated in fig-
ure 10 for a two-headed problem.

In the figure, X and Z are executable timepoints, while E
is hidden, and Y and W are observables. The past occurrence
of E can be inferred from an observation of either Y or W,
which also provide (different) bounds on when E occurred.

In this section, we present some partial results concerning
these kinds of problems, and some possible approaches. A
complete solution remains a challenge for future work.

Local Dynamic Controllability
Although the ultimate goal is to develop transformation
methods that apply to POSTNU fragments independent of
context, a useful first step is to characterize Dynamic Con-
trollability for certain fragments in isolation. These can be
used as a check on the validity of more general approaches,

4Hint: first apply the LC derivation using u′ = min(u, Ẇ ).

X E

Y

W

Z

[e−, e+]

[z−, z+]

[y−, y+
]

[w
− ,w

+ ]

Figure 10: Two-Headed Problem

X E Yi

Z

[e−, e+]

[z−, z+]

[y−i , y+
i ]

Figure 11: Multi-Headed Problem

and thus help to guide further research. Here we prove a re-
sult of this kind. It also illustrates some distinctions between
the problem of checking Dynamic Controllability, and as-
pects regarding flexibility of execution.

The theorem applies to a problem with any number of
“heads.” Consider the generic example in figure 11 where
i is repeated from 1 to n. Here X and Z are executable time-
points, while E is hidden, and the Yi are separate observ-
ables.

Theorem 2 The network in figure 11 is Dynamically Con-
trollable if and only if either slack(EZ) ≥ slack(XE) or
slack(EZ) ≥ slack(EYi) for some i such that z+ ≥ y+

i .

Proof: If slack(EZ)≥ slack(XE), then z+ +e− ≥ z−+e+

and then executing Z in a way that satisfies XZ = [z− +
e+, z+ +e−] constitutes a dynamic strategy since the EZ re-
quirement will be satisfied no matter the outcome of the XE
contingent link. Note that XZ can be placed as a require-
ment even if z+ + e− and z− + e+ are negative since X is
controllable.

Also, if slack(EZ) ≥ slack(EYi) and z+ ≥ y+
i for some

i, then z+ − y+
i ≥ z− − y−i , and executing Z in a way that

satisfies Yi Z = [z−−y−i , z+−y+
i ] will constitute a dynamic

strategy since then the EZ requirement will be satisfied no
matter the outcome of the EYi contingent link. Note Z can
be scheduled to satisfy this YiZ since z+ ≥ y+

i and Yi is
observable.

Thus, the “if” direction is satisfied.
Conversely, suppose slack(EZ) < slack(XE) and, for all i,

either slack(EZ) < slack(E Yi) or z+ < y+
i .

Let Q be the set of i such that slack(EZ) < slack(E Yi).
Define q = min {slack(E Yi) : i in Q}. Then slack(EZ) < q.

We define two projections P1 and P2 as follows.

• In P1, XE has its maximum extent e+

• In P2, XE has extent e+ − q

• For i ∈ Q:
– In P1, EYi has its minimum extent y−i



– In P2, EYi has extent y−i + q

• For i 6∈ Q:
– For both P1 and P2, Yi has its maximum extent y+

i

Note that for i ∈ in Q, the observed XYi = XE + EYi has
the same extent e+ + y−i in both P1 and P2.

Also note that for i 6∈ Q, z+ < y+
i , so in both P1 and

P2, none of the Yi will have been observed by the time Z
reaches its upper bound, and must have been scheduled.

From the above we see that P1 and P2 cannot be distin-
guished by any dynamic strategy, so Z must be scheduled at
the same time in both projections.

Finally, we note that the value of E in P1 and P2 differs by
an amount q. But slack(EZ) < q and Z is fixed. It follows that
the EZ constraint must be violated in either P1 or P2, which
contradicts the assumption of a dynamic strategy. Thus the
network is not Dynamically Controllable, proving the “only
if” direction. 2

We remark that Theorem 2 is consistent with the Vari-
able Delay transformations, as well as the doubling strategy,
with respect to the determination of Dynamic Controllabil-
ity. A point of interest is that for determining Dynamic Con-
trollability, the property of importance is the existence of at
least one “head” (or activation “tail”) with less slack (i.e.,
uncertainty) than the requirement. However, we have seen
that flexibility of execution can be enhanced by opportunis-
tic use of observations whose slack may exceed that of the
requirement.

Global Dynamic Strategy
In this section, we explore a first principles approach similar
to that used in the single-headed case, and see what addi-
tional issues arise. In particular, we consider the two-headed
problem in figure 10.

In this two-headed example, the observables are X, Y, and
W. Each of the observations gives us information bounding
the occurrence of E. We can then derive overall bounds in
a manner similar to that used in the single-head case. This
results in the following inferred bounds for the X to E link.
(Recall that Ẏ abbreviates Y-X, and Ẇ abbreviates W-X.)

[max(e−, Ẏ − y+, Ẇ −w+),min(e+, Ẏ − y−, Ẇ −w−)]

As for the single-head case, we define virtual observables
Elo and Ehi in terms of these bounds, and add constraints
Z ≥ Ehi + z− and Z ≤ Elo + z+ to give an X to Z link with
lower bound

min{e+ + z−, Ẏ + (z− − y−), Ẇ + (z− − w−)}

and upper bound

max{e− + z+, Ẏ + (z+ − y+), Ẇ + (z+ − w+)}.

Observability tightening must again be applied since Z
is an executable timepoint. One difference from the single-
head case is that there are two observables in each bound,
and the tightening needed may be different in each case.
In particular, the upper-bound tightening (which potentially
drops terms from the max expression) may eliminate one
or both of the observable terms. If it eliminates both, this

leaves a single value, which is analogous to an application
of the Lower Case Reduction. If it eliminates only one, this
leaves what is effectively a single-head expression. It may
also drop no terms, leaving an expression with multiple ob-
servable terms.

At this point it is unclear how far the analogy to the single-
head case can be carried further. Considering just the lower-
bound expression, the values (z− − y−) and (z− − w−)
added to the Y and W observables may be different, so there
is no one term that we can “take outside,” leaving a “bare”
observable, as we did for the single-headed case. This makes
the approach of introducing intermediate observables un-
clear, and even if we did, the double-observable expressions
cannot be identified with conventional STNU labels. 5

However, if we could sidestep the problem of checking
Dynamic Controllability, the multi-observation bounds on
executable timepoints could in fact be interpreted in ac-
cordance with a dynamic strategy. For example, consider a
lower bound of min(10, Ẏ + 5, Ẇ ). (Note that after observ-
ability tightening, any quantities added to an observable will
be non-negative.) This can be interpreted as an observation
of “Y+5 or W or 5 after X, whichever is earlier.” Similarly,
an upper bound of max(20, Ẏ , Ẇ + 10) corresponds to “Y
or W+10 or 20 after X, whichever is later.”

Closing Remarks
We have built on previous work in the area of STNUs, espe-
cially Variable Delay, and extended it to a POSTNU setting.
By means of a detailed First Principles analysis, we have
shown how to achieve a more flexible dynamic strategy for
execution. The results provide for additional context in terms
of network configuration. For the “single-headed” class of
problems considered, the determination of Dynamic Con-
trollability is complete and correct, and the dynamic strategy
preserves the full flexibility. We have also explored multi-
headed problems and presented partial results in this area.

Since the Dynamic Controllability and Strong Controlla-
bility problems for STNUs are tractable, and since POST-
NUs are essentially a combination of the two, it is plau-
sible to think that the general POSTNU problem might be
tractable, although a general solution to this problem is un-
known at the present time. It seems to be a difficult problem
to analyze, but a very interesting one, in view of the “arrow
of time” with respect to the observables, but not the unob-
servables. The Variable Delay paper may be regarded as es-
tablishing a beachhead in terms of new approaches to this
problem, and the current paper makes further forays in this
area. We are hopeful that future advances may lead to the
sought-after general solution.

References
Bhargava, N.; Muise, C.; and Williams, B. 2018. Variable-
delay controllability. In International Joint Conference on
Artificial Intelligence (IJCAI’18).

5Of course, one could introduce an explicit disjunction and han-
dle the observables separately, but that seems to abandon the search
for a tractable algorithm.



Bit-Monnot; Ghallab, M.; and Ingrand, F. 2016. Which
contingent events to observe for the dynamic controllability
of a plan. In International Joint Conference on Artificial
Intelligence (IJCAI’16).
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61–95.
Hunsberger, L. 2009. Fixing the semantics for dynamic
controllability and providing a more practical characteri-
zation of dynamic execution strategies. In International
Symposium on Temporal Representation and Reasoning
(TIME’09).
Moffitt, M. D. 2007. On the partial observability of temporal
uncertainty. In AAAI Conference on Artificial Intelligence
(AAAI’07).
Morris, P., and Muscettola, N. 2005. Dynamic controllabil-
ity revisited. In AAAI Conference on Artificial Intelligence
(AAAI’05).
Morris, P.; Muscettola, N.; and Vidal, T. 2001. Dynamic
control of plans with temporal uncertainty. In International
Joint Conference on Artificial Intelligence (IJCAI’01).
Morris, P. 2014. Dynamic controllability and dispatchability
relationships. In International Conference on the Integration
of Constraint Programming, Artificial Intelligence, and Op-
erations Research (CPAIOR’14).
Vidal, T., and Fargier, H. 1999. Handling contingency in
temporal constraint networks: from consistency to control-
labilities. Journal of Experimental & Theoretical Artificial
Intelligence (JETAI) 11:23–45.


