
The Future of Software
Certification - a Roadmap

Ewen Denney
Robust Software Engineering
NASA Ames Research Center

California, USA

Autocode assurance issues

• Commercial code generators historically buggy
– despite extensive heritage, bugs still remain
– bugs often impossible to detect at model level or via

simulation
• Commercial code generators are black boxes
• Autocode difficult to understand and review
• Diverse sources of domain knowledge

– mathematical, algorithmic
– physical, engineering

• Models not good for expressing requirements

Autocode review documents
• Verification says that the code is safe
• Certification says why the code is safe
• Review document explains how code complies

with requirements:
– Chain of reasoning from assumptions to requirements

• Traces between code, documentation and V&V
artifacts

• Based on proof:
– for all possible inputs, if the safety assumptions hold
– then for all possible execution paths,
– the safety requirements hold.

Example: Coordinate systems

• Level 2 Coordinate Systems (CxP 70138):
“All pertinent geometric technical data … shall
be in the coordinate systems described in this
document.”

• Problem:
– Not directly represented in model or code
– Transformations involve mathematical

computations

AutoCert Demo

Summary
• AutoCert encodes and checks mathematical reqs
• Low to no false positives/negatives
• Make assumptions, data, equations explicit
• Traces code and model to verification artifacts
• Turns requirements into source code annotations
• Provides “oversight” of autocoder: IV&V
• Qualifiable: small kernel of trusted components
• Tight integration with Matlab tool suite

– Minimal impact to existing process

Future work
• Greater domain coverage

– More Simulink blocks/EML functions
– Control law analysis

• More extensive documentation
– Trace to external requirements
– Safety cases

• Test case generation
• NExIOM integration

Other properties

• Execution safety
– array bounds, variable initialization before use

• Representation conventions
– consistent use of physical units
– Euler angles: YPR vs RPY
– quaternion handedness
– time formats

• Dead code analysis

Traceability

• Traceability:
“the ability to link requirements back to rationales

and forward to corresponding design artifacts,
code, and verification artifacts”

• “why is this line of code safe?”
code → verification conditions → assumptions

• “how is this requirement satisfied?”
property → verification conditions → code

