
Bridging the Gap Between Requirements and
Model Analysis: Evaluation on Ten Cyber-
Physical Challenge Problems

Anastasia Mavridou

Robust Software Engineering Group
NASA Ames Research Center

�1

ti.arc.nasa.gov/tech/rse/

�2

https://ti.arc.nasa.gov/tech/rse/

Safety-critical industry

• Guaranteeing proper system behavior can be challenging

• Very strict development process

• High-level requirements are incrementally refined

• Verification and validation at each level

• Development process preserves the requirements

�3

Safety-critical industry

• Guaranteeing proper system behavior can be challenging

• Very strict development process

• High-level requirements are incrementally refined

• Verification and validation at each level

• Development process preserves the requirements

Difficult to make a formal connection between specifications
and software artifacts �4

Lockheed Martin Case Study

• LM Aero Developed Set of 10 V&V Challenge Problems
• Each challenge includes:

• Simulink model
• Parameters
• Documentation Containing Description and Requirements
• Difficult due to transcendental functions, nonlinearities and

discontinuous math, vectors, matrices, states
• Challenges built with commonly used blocks
• Publicly available case study

�5

Overview of Challenge Problems

• Triplex Signal Monitor
• Finite State Machine
• Tustin Integrator
• Control Loop Regulators
• NonLinear Guidance Algorithm
• Feedforward Cascade Connectivity Neural Network
• Abstraction of a Control (Effector Blender)
• 6DoF with DeHavilland Beaver Autopilot
• System Safety Monitor
• Euler Transformation

�6

Overview of Challenge Problems

• Triplex Signal Monitor
• Finite State Machine
• Tustin Integrator
• Control Loop Regulators
• NonLinear Guidance Algorithm
• Feedforward Cascade Connectivity Neural Network
• Abstraction of a Control (Effector Blender)
• 6DoF with DeHavilland Beaver Autopilot
• System Safety Monitor
• Euler Transformation

�7

Finite State Machine Requirement Example

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is not in control (not standby) and the system is
supported without failures (not apfail).

�8

Finite State Machine Requirement Example

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is not in control (not standby) and the system is
supported without failures (not apfail).

�9

Finite State Machine Requirement Example

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is not in control (not standby) and the system is
supported without failures (not apfail).

�10

Finite State Machine Requirement Example

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is in autopilot. not in control (not standby) and the
system is supported without failures (not apfail).

autopilot = !standby & !apfail & supported

�11

Finite State Machine Requirement Example

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is in autopilot.

�12

Finite State Machine Requirement Example

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is in autopilot.

�13

First interpretation: if autopilot and limits are true at a time
step, then pullup must always be true at the same time step

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is in autopilot.

�14

First interpretation: if autopilot and limits are true at a time
step, then pullup must always be true at the same time step

Finite State Machine Requirement Example

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is in autopilot.

�15

limits & autopilot limits & autopilot

First interpretation: if autopilot and limits are true at a time
step, then pullup must always be true at the same time step

Finite State Machine Requirement Example

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is in autopilot.

�16

limits & autopilot limits & autopilot

pullup pullup

First interpretation: if autopilot and limits are true at a time
step, then pullup must always be true at the same time step

Finite State Machine Requirement Example

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is in autopilot.

�17

Second interpretation: if autopilot and limits are true at a time
step, then pullup must always be true at the next time step

limits & autopilot limits & autopilot

Finite State Machine Requirement Example

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is in autopilot.

�18

limits & autopilot limits & autopilot

pullup pullup

Second interpretation: if autopilot and limits are true at a time
step, then pullup must always be true at the next time step

Finite State Machine Requirement Example

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is in autopilot.

�19

Third interpretation: if limits and autopilot are true at a time
step, then pullup and autopilot must be true at the next time step

autopilotlimits & autopilot

Finite State Machine Requirement Example

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is in autopilot.

�20

Third interpretation: if limits and autopilot are true at a time
step, then pullup and autopilot must be true at the next time step

autopilot

pullup

limits & autopilot

Finite State Machine Requirement Example

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is in autopilot.

�21

Third interpretation: if limits and autopilot are true at a time
step, then pullup and autopilot must be true at the next time step

autopilot

pullup

limits & autopilot

Finite State Machine Requirement Example

We formalized all three interpretations with FRET

�22

FRET for the elicitation, formalization, and understanding of system requirements

Dimitra Giannakopoulou Tom Pressburger Johann Schumann

FRET Team

�23

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is in autopilot.

�24

Finite State Machine Requirement

Atomic propositions in generated temporal formula.

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is in autopilot.

�25

Finite State Machine Requirement

Atomic propositions in generated temporal formula.
Meaningless when it comes to the model!

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is in autopilot.

�26

Finite State Machine Requirement

Atomic propositions in generated temporal formula.
Meaningless when it comes to the model!

Additional challenge: How to bridge the gap between
requirements and analysis tools?

An Important Gap Remains

• Between

• formalized requirements

• model/code that they target

• Atomic propositions of a formula must be connected to variable
values or method executions in the target code.

• This work proposes to bridge this gap

• Bridging FRET and Analysis tools

• Highly automatic approach

• Interpretation of counterexamples both at requirements and
model levels

�27

An automated analysis and code generation framework for Simulink and Stateflow models

Hamza Bourbouh Pierre-Loic Garoche

CoCoSim Team

… and many others from
The University of Iowa,
Onera - France,
Carnegie Mellon University.

�28

Our work supports…

• Automatic extraction of Simulink model information

• Association of high-level requirements with target model
signals and components

• Translation of temporal logic formulas into synchronous
data flow specifications and Simulink monitors

• Interpretation of counterexamples both at requirement
and model levels

�29

None of the three interpretations of the Finite State
Machine requirement were satisfied by the model!

�30

Writing Requirements in FRET

• Users enter system requirements in a restricted English-
like language

�31

Writing Requirements in FRET Input in FRET

• Users enter system requirements in a restricted English-
like language

Component that the requirement refers to

e.g., Autopilot, Monitor

�32

Writing Requirements in FRET

• Users enter system requirements in a restricted English-
like language

The component’s behavior must conform to the requirement

�33

Writing Requirements in FRET

• Users enter system requirements in a restricted English-
like language

Either an action or a Boolean condition

e.g., satisfy autopilot_engaged

�34

Writing Requirements in FRET

• Users enter system requirements in a restricted English-
like language

The period where the requirement holds

e.g., in/before/after initialization mode

�35

Writing Requirements in FRET

• Users enter system requirements in a restricted English-
like language

A Boolean expression that further constrains when the
response shall occur

e.g., if x > 0

�36

Writing Requirements in FRET

• Users enter system requirements in a restricted English-
like language

A Boolean expression that further constrains when the
response shall occur

e.g., if x > 0

�37

Unambiguous Requirements with FRET

FSM shall always satisfy (limits & autopilot) => pullup

• Clear, unambiguous semantics in many different forms

• Metric Temporal Logic

• Pure Past time

• Pure Future time

�38

FRET Semantic Patterns

• FRET generates semantics based on templates.
• Each template is represented by a quadruple:

[scope,condition,timing,response]

FSM shall always satisfy (limits & autopilot) => pullup

• [in, null, within, satisfaction] pattern

• Pure FT formula: G (first_in_$scope_mode$ -> ((P | (last_in_$scope_mode$ | (X
P))) | (F[<= $duration$] (P | (last_in_$scope_mode$ | (X P))))))

• Pure PT formula: H ((((!$post_condition$) & $scope_mode$) S (((!
$post_condition$) & $scope_mode$) & first_in_$scope_mode$)) ->
(first_in_$scope_mode$ | (O[<= $duration$] first_in_$scope_mode$)))

�39

Exporting Simulink Model Information

• Can be directly imported into FRET

�40

Linking requirement variables to Simulink signals

• FSM shall always satisfy (limits & autopilot) => pullup

�41

Linking requirement variables to Simulink signals

• FSM shall always satisfy (limits & autopilot) => pullup

�42

Translation of LTL to CoCoSpec

• Library of past time temporal operators

�43

Generating CoCoSpec Contracts

�44

Importing CoCoSpec to CoCoSim

�45

Generating Simulink Observers

�46

FSM shall always satisfy (limits & autopilot) => pullup

Tracing Counterexamples

�47

FSM shall always satisfy (limits & autopilot) => pullup

�48

�49

�50

�51

�52

�53

�54

�55

�56

Challenge Problem Analysis Results

�57

Lessons Learned

• Domain expertise: It is needed

• Frequently used patterns: used only 8/120 FRET
patterns, mainly invariants

• What we gained by using CoCoSpec: modes introduce
structure

• Reasoning for violated properties: two main ways 1)
checking a weaker property; 2) check feasibility of
stronger property.

�58

Lessons Learned

• Incomplete Requirements: requirements were not
mutually exclusive

• Scalability of the approach: tool-set keeps model
hierarchy, contracts deployed at different levels

• Comparison of analysis tools: Kind2 faster usually than
SLDV, also returned results in more cases due to modular
analysis

• Optimization of FRET generated formulas

�59

Thank you for your attention

�60

