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Safety-critical industry

• Guaranteeing proper system behavior can be challenging 

• Very strict development process 

• High-level requirements are incrementally refined 

• Verification and validation at each level 

• Development process preserves the requirements
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Difficult to make a formal connection between specifications 
and software artifacts �4



Lockheed Martin Case Study

• LM Aero Developed Set of 10 V&V Challenge Problems 
• Each challenge includes:  

• Simulink model 
• Parameters 
• Documentation Containing Description and Requirements 
• Difficult due to transcendental functions, nonlinearities and 

discontinuous math, vectors, matrices, states 
• Challenges built with commonly used blocks 
• Publicly available case study
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Overview of Challenge Problems

• Triplex Signal Monitor 
• Finite State Machine 
• Tustin Integrator 
• Control Loop Regulators 
• NonLinear Guidance Algorithm 
• Feedforward Cascade Connectivity Neural Network 
• Abstraction of a Control (Effector Blender) 
• 6DoF with DeHavilland Beaver Autopilot 
• System Safety Monitor 
• Euler Transformation
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Finite State Machine Requirement Example

• Natural language requirement:  

Exceeding sensor limits shall latch an autopilot pullup when 
the pilot is not in control (not standby) and the system is 
supported without failures (not apfail). 
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Finite State Machine Requirement Example

• Natural language requirement:  

Exceeding sensor limits shall latch an autopilot pullup when 
the pilot is in autopilot. not in control (not standby) and the 
system is supported without failures (not apfail). 

autopilot = !standby & !apfail & supported
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First interpretation: if autopilot and limits are true at a time 
step, then pullup must always be true at the same time step 
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First interpretation: if autopilot and limits are true at a time 
step, then pullup must always be true at the same time step 
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• Natural language requirement:  

Exceeding sensor limits shall latch an autopilot pullup when 
the pilot is in autopilot. 
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Second interpretation: if autopilot and limits are true at a time 
step, then pullup must always be true at the next time step 

limits & autopilot limits & autopilot

Finite State Machine Requirement Example



• Natural language requirement:  

Exceeding sensor limits shall latch an autopilot pullup when 
the pilot is in autopilot. 

�18

limits & autopilot limits & autopilot

pullup pullup

Second interpretation: if autopilot and limits are true at a time 
step, then pullup must always be true at the next time step 
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• Natural language requirement:  

Exceeding sensor limits shall latch an autopilot pullup when 
the pilot is in autopilot. 
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Third interpretation: if limits and autopilot are true at a time 
step, then pullup and autopilot must be true at the next time step

autopilotlimits & autopilot
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Third interpretation: if limits and autopilot are true at a time 
step, then pullup and autopilot must be true at the next time step

autopilot

pullup

limits & autopilot
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• Natural language requirement:  

Exceeding sensor limits shall latch an autopilot pullup when 
the pilot is in autopilot. 
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Third interpretation: if limits and autopilot are true at a time 
step, then pullup and autopilot must be true at the next time step

autopilot

pullup

limits & autopilot

Finite State Machine Requirement Example



We formalized all three interpretations with FRET
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FRET for the elicitation, formalization, and understanding of system requirements

Dimitra Giannakopoulou Tom Pressburger Johann Schumann

FRET Team
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• Natural language requirement:  

Exceeding sensor limits shall latch an autopilot pullup when 
the pilot is in autopilot. 

�24

Finite State Machine Requirement

Atomic propositions in generated temporal formula. 
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Finite State Machine Requirement

Atomic propositions in generated temporal formula.  
Meaningless when it comes to the model!



• Natural language requirement:  
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Finite State Machine Requirement

Atomic propositions in generated temporal formula.  
Meaningless when it comes to the model!

Additional challenge: How to bridge the gap between 
requirements and analysis tools?



An Important Gap Remains

• Between  

• formalized requirements 

• model/code that they target 

• Atomic propositions of a formula must be connected to variable 
values or method executions in the target code. 

• This work proposes to bridge this gap 

• Bridging FRET and Analysis tools 

• Highly automatic approach 

• Interpretation of counterexamples both at requirements and 
model levels
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An automated analysis and code generation framework for Simulink and Stateflow models

Hamza Bourbouh Pierre-Loic Garoche

CoCoSim Team

… and many others from 
The University of Iowa, 
Onera - France, 
Carnegie Mellon University. 
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Our work supports…

• Automatic extraction of Simulink model information 

• Association of high-level requirements with target model 
signals and components 

• Translation of temporal logic formulas into synchronous 
data flow specifications and Simulink monitors 

• Interpretation of counterexamples both at requirement 
and model levels

�29



None of the three interpretations of the Finite State 
Machine requirement were satisfied by the model!
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Writing Requirements in FRET

• Users enter system requirements in a restricted English-
like language
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Writing Requirements in FRET Input in FRET

• Users enter system requirements in a restricted English-
like language

Component that the requirement refers to

e.g., Autopilot, Monitor
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Writing Requirements in FRET

• Users enter system requirements in a restricted English-
like language

The component’s behavior must conform to the requirement
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Writing Requirements in FRET

• Users enter system requirements in a restricted English-
like language

Either an action or a Boolean condition

e.g., satisfy autopilot_engaged
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Writing Requirements in FRET

• Users enter system requirements in a restricted English-
like language

The period where the requirement holds

e.g., in/before/after initialization mode
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Writing Requirements in FRET

• Users enter system requirements in a restricted English-
like language

A Boolean expression that further constrains when the 
response shall occur

e.g., if x > 0
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Unambiguous Requirements with FRET

FSM shall always satisfy (limits & autopilot) => pullup

• Clear, unambiguous semantics in many different forms 

• Metric Temporal Logic  

• Pure Past time  

• Pure Future time  

�38



FRET Semantic Patterns

• FRET generates semantics based on templates. 
• Each template is represented by a quadruple:

[scope,condition,timing,response] 

FSM shall always satisfy (limits & autopilot) => pullup

• [in, null, within, satisfaction] pattern 

• Pure FT formula: G (first_in_$scope_mode$ -> ((P | (last_in_$scope_mode$ | (X 
P))) | (F[<= $duration$] (P | (last_in_$scope_mode$ | (X P))))))

• Pure PT formula: H ((((!$post_condition$) & $scope_mode$) S (((!
$post_condition$) & $scope_mode$) & first_in_$scope_mode$)) -> 
(first_in_$scope_mode$ | (O[<= $duration$] first_in_$scope_mode$)))

�39



Exporting Simulink Model Information

• Can be directly imported into FRET 
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Linking requirement variables to Simulink signals

• FSM shall always satisfy (limits & autopilot) => pullup 
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Linking requirement variables to Simulink signals
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Translation of LTL to CoCoSpec

• Library of past time temporal operators  

�43



Generating CoCoSpec Contracts
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Importing CoCoSpec to CoCoSim
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Generating Simulink Observers
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FSM shall always satisfy (limits & autopilot) => pullup



Tracing Counterexamples
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FSM shall always satisfy (limits & autopilot) => pullup
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Challenge Problem Analysis Results
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Lessons Learned

• Domain expertise: It is needed 

• Frequently used patterns: used only 8/120 FRET 
patterns, mainly invariants 

• What we gained by using CoCoSpec: modes introduce 
structure 

• Reasoning for violated properties: two main ways 1) 
checking a weaker property; 2) check feasibility of 
stronger property. 
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Lessons Learned

• Incomplete Requirements: requirements were not 
mutually exclusive 

• Scalability of the approach: tool-set keeps model 
hierarchy, contracts deployed at different levels 

• Comparison of analysis tools: Kind2 faster usually than 
SLDV, also returned results in more cases due to modular 
analysis 

• Optimization of FRET generated formulas
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Thank you for your attention
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