
Software Health Management: A Short Review of
Challenges and Existing Techniques

—Extended Abstract—
Knot Pipatsrisawat, Adnan Darwiche

UCLA
Email: thammakn@cs.ucla.edu
Email: darwiche@cs.ucla.edu

Ole J. Mengshoel
CMU SV

NASA ARC
Email: Ole.J.Mengshoel@nasa.gov

Johann Schumann
RIACS/USRA
NASA ARC

Email: Johann.M.Schumann@nasa.gov

I. INTRODUCTION

Modern spacecraft (as well as most other complex mech-
anisms like aircraft, automobiles, and chemical plants) rely
more and more on software, to a point where software failures
have caused severe accidents and loss of missions. Software
failures during a manned mission can cause loss of life, so
there are severe requirements to make the software as safe
and reliable as possible. Typically, verification and validation
(V&V) has the task of making sure that all software errors
are found before the software is deployed and that it always
conforms to the requirements. Experience, however, shows that
this gold standard of error-free software cannot be reached in
practice. Even if the software alone is free of glitches, its
interoperation with the hardware (e.g., with sensors or actua-
tors) can cause problems. Unexpected operational conditions
or changes in the environment may ultimately cause a software
system to fail. Is there a way to surmount this problem?

In most modern aircraft and many automobiles, hardware
such as central electrical, mechanical, and hydraulic compo-
nents are monitored by IVHM (Integrated Vehicle Health Man-
agement) systems. These systems can recognize, isolate, and
identify faults and failures, both those that already occurred
as well as imminent ones. With the help of diagnostics and
prognostics, appropriate mitigation strategies can be selected
(replacement or repair, switch to redundant systems, etc.).

In this short paper, we discuss some challenges and promis-
ing techniques for software health management (SWHM).
In particular, we identify unique challenges for preventing
software failure in systems which involve both software and
hardware components. We then present our classifications
of techniques related to SWHM. These classifications are
performed based on dimensions of interest to both developers
and users of the techniques, and hopefully provide a map for
dealing with software faults and failures.

II. CHALLENGES

In principle, there is no reason why software components
could not be “hooked up” to an IVHM system tailored for
software monitoring. Such an IVHM system could operate in
a similar way to a traditional IVHM system, but would focus

its attention on the software. However, there are substantial
differences between physical systems and software systems.
These differences calls for special approaches for preventing
software failure, which is the ultimate goal of SWHM. In
particular, the challenges stemming from differences between
physical and software systems include the following issues:
• Software errors do not develop over time, they are intro-

duced as flaws and errors in all stages of the software
life-cycle. Requirements errors, design flaws, and coding
errors are just a few examples. If errors are not detected
and removed during testing, they remain (dormant) in
the software system and can show up during operation.
Software errors also do not ”go away” on their own.

• Failures in software most often occur due to problematic
interoperation with the hardware. Hardware systems (and
their sensors) might behave differently than expected, and
thus could cause software failure. Such a different behav-
ior could be on purpose1, by accident during development
(e.g., replacement of a sensor or instrument shortly before
launch [1]), as a result of a hardware failure (broken
sensor cable), disabled sensor (e.g., broken capacitor on
Deep Space 1’s star tracker), or gradual degradation (e.g.,
signal noise increases beyond the specified level and
causes the software to behave erratically). Since physical
systems can misbehave in various ways, it is extremely
difficult to maintain software health in the presence of
physical anomalies.

• In contrast to many hardware failures, which occur grad-
ually (e.g., decrease in oil pressure due to a leak), most
software failures occur instantaneously. The reason for
this is that most of the software is discrete (state ma-
chines, decision logic) and usually cannot be described or
reasonably approximated by continuous modeling tech-
niques. So, systems dealing with software failure are
under more pressure to predict potential failures and to

1In Ariane V several software modules from the smaller Ariane IV had
been re-used. However, the range of certain sensor values was larger (due to
different physical dimensions and construction), which led to an uncaught
overflow error, causing the rocket to behave erratically and required its
destruction.



take swift actions in order to detect and recover from
failures.

• Fault detection and monitoring systems, as well as any
SWHM system, are implemented as software themselves.
Safety analysis has to ask: ”Quis custodiet ipsos cus-
todes?” (Juvenal) ”Who guards the guardians?” This
means that SWHM systems must be at least as safe and
dependable as the software components they monitor.

All these differences (and commonalities) between IVHM
of physical systems and software systems must be taken into
account when developing novel techniques for unified software
and hardware IVHM.

III. CLASSIFICATIONS OF EXISTING APPROACHES

Of course, the idea of monitoring a piece of software and
reacting if something goes wrong is not new. Even basic
error-handling (“if error then abort”) could be considered
as an extremely simple—and usually not desirable—way of
monitoring the health of a piece of software. In this section, we
consider a number of software engineering techniques, which
try to address issues similar to SWHM. These techniques
are model-based design [17], goal-based design [8], aspect-
oriented programming [16], recovery-based computing [20],
software configuration management [10], software testing [4],
[13], model checking [7], theorem proving [23], redundancy-
based fault tolerance techniques [2], [21], checkpointing and
rolling back [9], runtime monitoring [22], trace analysis [5],
built-in tests [11], software rejuvenation [14], computer im-
munology [12], and self-healing software [15], [24]. We
analyze these techniques along the following axes of concepts:
• Software Life-cycle. Different techniques are used dur-

ing different stages of the software life-cycle. Although
SWHM generally is active after code deployment, there
are many tasks, which can and should be performed
during earlier stages of the software life-cycle to prevent
software failure during actual operation. As with humans,
preventive care (i.e., finding and removing software bugs
early) is an important prerequisite for an effective health
management system.

• Fault Handling. Different approaches are supposed to
deal differently with faults: there are techniques for
fault prevention, fault removal, and fault tolerance [3].
Whereas design techniques primarily help prevent the
occurrence of faults even before the system is built,
typical V&V tasks are used to remove faults. Traditional
fault tolerant approaches aim at keeping up functionality
of the original software in the presence of faults (e.g.,
by using redundancy); this notion, however, can easily
be extended to cover approaches like dynamic debugging
[6] or dynamic reconfiguration [18], where the software
is modified after the fault to avoid further problems.

• FDIR. System Health Management distinguishes its ap-
proaches into fault detection, fault isolation, and fault
recovery [19]. Fault detection is the identification of
the presence of fault. Fault isolation is the process of
identifying the fault source and isolating it from the rest

of the system. Based on the fault detection and/or fault
isolation steps, fault recovery takes corrective actions to
restore the system back to an operational state.

• Automation. Whereas several technqiues can be executed
fully automatically, others require a certain amount of
human interaction. Although, in general, automatic pro-
cessing is preferred (esp. in time-critical applications),
SWHM applications with humans in the loop can be
important, as such an architecture could lower the certi-
fication threshold (“the human is still making the critical
decision”).

• Resources. The surveyed technologies require a wide
spectrum of resources, both in setting up (e.g., developing
a fault model) and in computational resources during the
execution of the software. There is a clear trade between
the capability of the health management system and the
amount of CPU/memory it requires during execution of
the software.

• Completeness. Some of the methods can provide guaran-
tees (e.g., absence of deadlock or NULL-pointer deref-
erence), whereas others can produce false positives or
can fail to detect/manage certain faults. Again, other
approaches provide statistical estimates and failure prob-
abilities.

We use these dimensions to classify different SWHM tech-
niques in order to provide a map for dealing with software
faults and failures. Table I summarizes our classifications.

In this table, considered SWHM techniques are presented
according to the phases in the software life-cycle at which
they are typically utilized. The second column shows the
purpose of each technique in terms of fault handling and, when
appropriate, FDIR. The third column indicates the level of
automation usually associated with the techniques. The forth
column shows the amount of resources typically required by
different techniques. Finally, the last column addresses the
completeness of these approaches.

IV. CONCLUSIONS

We discussed challenges associated with different aspects of
SWHM and analyzed a large number of different software en-
gineering approaches, which can address some of the SWHM
issues according to the framework discussed above. Despite
the wide spectrum of available technologies, none of those
addresses all requirements for an SHWM system. The most
critical areas are:

• most approaches deal with faults as they occur or process
them in a post-mortem fashion, but they are not able to
perform any prognostic function or fault forecasting.

• many of these approaches are tailored toward discrete
software, like finite state machines, statecharts, or mode
logic. Monitoring of continuous calculations as they, e.g.,
occur in guidance, navigation, and control (GN&C), are
seldomly addressed.

• most of these techniques are for software and for soft-
ware only. This means that their performance is weak



Technique Fault handling FDIR Automation Resources Completeness
Design and programming methodologies (development phase)
Model-based design fault prevention N/A N/A N/A N/A
Goal-based operations fault prevention N/A N/A N/A N/A
Aspect-oriented programming fault prevention N/A N/A N/A N/A
Recovery-based computing fault prevention N/A N/A N/A N/A
Software configuration management fault prevention N/A N/A N/A N/A
Verification and Validation (V&V) (testing phase)
Testing fault removal N/A manual, semi-automatic adjustable No
Simulation fault removal N/A automatic moderate-high No
Debugging fault removal N/A semi-automatic varied No
Numerical analysis fault removal N/A manual low No
Model checking fault removal N/A automatic high In some cases
Theorem proving fault removal N/A automatic high In some cases
Runtime techniques (post-deployment phase)
Redundancy-based fault tolerance fault tolerance isolation,recovery automatic varied No
Checkpointing and rolling back fault tolerance recovery automatic varied No
Runtime monitoring fault tolerance detection automatic minimal No
Trace analysis fault tolerance detection automatic varied No
Built-in tests fault tolerance detection automatic minimal No
Software rejuvenation fault tolerance recovery automatic minimal No
Computer immunology fault tolerance detection,isolation automatic usually minimal No
Self-healing software fault tolerance detection,isolation,recovery automatic varied No

TABLE I
CLASSIFICATIONS OF SOFTWARE HEALTH MANAGEMENT TECHNIQUES.

with respect to the handling of faulty software-hardware
interactions.

• only few techniques can be demonstrated to be cor-
rect and reliable, addressing the issue that the SWHM-
software is a safety-critical piece of software itself.

We hope this work will shed light on some strengths and
weaknesses of SWHM approaches proposed in the literature
of related areas of study. The presented classifications should
also allow researchers and users to gain better understanding
of the current state of this new and exciting field.

V. ACKNOWLEDGEMENTS

This work is supported by a NASA NRA grant
NNX08AY50A “ISWHM: Tools and Techniques for Software
and System Health Management”.

REFERENCES

[1] Demonstration of autonomous rendezvous technology mishap investiga-
tion board review, Tech. Report RP-06-118, NASA Engineering and
Safety Center Technical Report, 2006.

[2] A. Avižienis, The n-version approach to fault-tolerant software, IEEE
Trans. on Software Eng. SE-11 (1985), no. 12, 1491–1501.

[3] Algirdas Avižienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr, Basic concepts and taxonomy of dependable and secure
computing, IEEE Transactions on Dependable and Secure Computing
1 (2004), no. 1, 11–33.

[4] Antonia Bertolino, Software testing research: Achievements, challenges,
dreams, FOSE ’07: 2007 Future of Software Engineering (Washington,
DC, USA), IEEE Computer Society, 2007, pp. 85–103.

[5] G.V. Bochmann, R. Dssouli, and J.R. Zhao, Trace analysis for confor-
mance and arbitration testing, Software Engineering, IEEE Transactions
on 15 (1989), no. 11, 1347–1356.

[6] G. M. Bull, Dynamic debugging in basic, The Computer Journal 15
(1972), no. 1, 21–24.

[7] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled, Model
checking, The MIT Press, January 2000.

[8] Daniel D. Dvorak, Michel D. Ingham, and J. Richard Morris, Goal-based
operations: an overview, Proceedings of AIAA Infotech@Aerospace
Conference, 2007.

[9] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B.
Johnson, A survey of rollback-recovery protocols in message-passing
systems, ACM Comput. Surv. 34 (2002), no. 3, 375–408.

[10] Jacky Estublier, Software configuration management: a roadmap, ICSE
’00: Proceedings of the Conference on The Future of Software Engi-
neering (New York, NY, USA), ACM, 2000, pp. 279–289.

[11] Donald Firesmith, Testing object-oriented software, TOOLS (11), 1993,
pp. 407–426.

[12] Stephanie Forrest and Catherine Beauchemin, Computer immunology,
Immunological Reviews 216 (2007), no. 1, 176–197.

[13] Bill Hetzel, The complete guide to software testing (2nd ed.), QED
Information Sciences, Inc., Wellesley, MA, USA, 1988.

[14] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, Software rejuve-
nation: analysis, module and applications, Proc. of 25th International
Symposium on Fault-Tolerant Computing (1995), 381–390.

[15] Angelos D. Keromytis, Characterizing self-healing software systems,
In Proceedings of the 4th International Conference on Mathematical
Methods, Models and Architectures for Computer Networks Security
(MMM-ACNS, 2007.

[16] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina V. Lopes, Jean M. Loingtier, and John Irwin, Aspect-oriented
programming, ECOOP, 1997, pp. 220–242.

[17] Mark Kordon, Steve Wall, Henry Stone, William Blume, Joseph Skipper,
Mitch Ingham, Joe Neelon, James Chase, Ron Baalke, David Hanks,
Jose Salcedo, Benjamin Solish, Mona Postma, and Richard Machuzak,
Model-based engineering design pilots at jpl, IEEE Aerospace Confer-
ence, 2007.

[18] J. Kramer and J. Magee, Dynamic configuration for distributed systems,
IEEE Trans. on Software Eng. SE-11 (1985), no. 4, 424–436.

[19] J. C. Laprie, Dependable computing and fault tolerance: concepts and
terminology, (1985), 2–11.

[20] David A. Patterson, Recovery oriented computing: A new research
agenda for a new century, HPCA, 2002, p. 247.

[21] B. Randell, System structure for software fault tolerance, Proceedings
of the international conference on Reliable software (New York, NY,
USA), ACM, 1975, pp. 437–449.

[22] B.A. Schroeder, On-line monitoring: a tutorial, Computer 28 (1995),
no. 6, 72–78.

[23] Johann M. Schumann, Automated theorem proving in software engineer-
ing, Springer-Verlag New York, Inc., New York, NY, USA, 2001.

[24] Jiwen Wang, Chenghao Guo, and Fengyu Liu, Self-healing based
software architecture modeling and analysis through a case study, Proc.
of IEEE Intl. Conf. on Networking, Sensing and Control, 2005, pp. 873–
877.


