
Memoise: A Tool for Memoized Symbolic
Execution

Guowei Yang and Sarfraz Khurshid
The University of Texas at Austin

Corina S. Păsăreanu
CMU Silicon Valley and NASA Ames

Abstract—This tool paper presents a tool for performing
memoized symbolic execution (Memoise), an approach we
developed in previous work for more efficient application of
symbolic execution. The key idea in Memoise is to allow re-use
of symbolic execution results across different runs of symbolic
execution without having to re-compute previously computed
results as done in earlier approaches. Specifically, Memoise
builds a trie-based data structure to record path exploration
information during a run of symbolic execution, optimizes the
trie for the next run, and re-uses the resulting trie during the next
run. Our tool optimizes symbolic execution in three standard
scenarios where it is commonly applied: iterative deepening,
regression analysis, and heuristic search. Our tool Memoise
builds on the Symbolic PathFinder framework to provide more
efficient symbolic execution of Java programs and is available
online for download. The tool demonstration video is available at
http://www.youtube.com/watch?v=ppfYOB0Z2vY&feature=plcp.

I. INTRODUCTION

Symbolic execution [4], [6] is a path-based program check-
ing technique, which, in recent years, has been the focus of
a number of research projects on automated input generation
and bug finding [3], [5], [9], [10], as well as various other
applications [7], [11]. The technique systematically explores
the program paths (of interest) and for each path, builds
a path condition, i.e., constraint (on program inputs) that
represents the branching conditions on the path. The feasi-
bility of these path conditions is checked using off-the-shelf
constraint solvers as the conditions are encountered during
symbolic execution to detect infeasible paths (if possible)
and to enumerate test inputs that execute feasible paths. In
principle, the technique can check rich functional correctness
properties of code, e.g., with respect to given assertions.
However in practice, the technique faces important challenges
due to its inherent high computational complexity. There are
two key factors that determine its cost: (1) the number of paths
to explore; and (2) the cost of constraint solving.

In previous work [13] we introduced memoized symbolic
execution (Memoise), an approach that addresses both these
cost factors to enable more efficient applications of symbolic
execution. Our key insight is that applying symbolic execution
often requires several successive runs of the technique on
largely similar underlying problems, e.g., running it once to
check a program to find a bug, fixing the bug, and running it
again to check the modified program. Memoise leverages the
similarities to reduce both the number of paths to explore by
pruning the path exploration as well as the cost of constraint

solving by re-using path feasibility results that were previously
computed during constraint solving, thereby reducing the total
cost of applying symbolic execution.

Memoise maintains and updates the state of a symbolic
execution run using a trie [12] — an efficient tree-based
data structure — which provides a compact representation of
the symbolic paths visited during a symbolic execution run.
Specifically, the trie records the choices taken when exploring
different paths, together with bookkeeping information that
maps each trie node to the corresponding condition in the code.
Maintenance of the trie during successive runs allows re-use of
previously computed results of symbolic execution without the
need for re-computing them as is traditionally done. Constraint
solving is turned off for previously explored paths and the
search is guided by the choices recorded in the trie. Moreover,
the search is pruned for the paths that are deemed to be no
longer of interest for the analysis.

Memoise keeps its overhead low using two key operations
on the trie: compression (to discard “un-interesting” trie branch
sequences) and merging (of compressed tries constructed
during successive runs of Memoise). Experimental results for
three standard application scenarios for symbolic execution,
namely iterative deepening, regression analysis, and heuristic
search, validate the relatively small overhead for storing and
retrieving the trie. Moreover, the experiments demonstrate the
benefits and re-use Memoise enables.

This paper presents our tool embodiment of Memoise
for Java programs. Memoise uses the Symbolic PathFinder
tool [9], which is a part of the Java PathFinder (JPF) open-
source framework. Memoise is publicly available for download
at: https://hostdb.ece.utexas.edu/∼gyang/memoise.

To our knowledge, Memoise is the first tool to provide
re-use of symbolic execution results across different runs of
symbolic execution. Memoise opens a new exciting avenue
for mitigating the path explosion problem that in inherent
in symbolic execution. We believe the Memoise approach
will substantially increase the practicality of using symbolic
execution for larger code-bases.

II. MEMOIZED SYMBOLIC EXECUTION

Given program p and execution depth bound b, memoized
symbolic execution (Memoise) addresses the problem of run-
ning symbolic execution on problem instance 〈p, b〉 given
that symbolic execution was already performed on problem
instance 〈pold, bold〉. Memoise leverages the results of running

https://hostdb.ece.utexas.edu/~gyang/memoise


Root

Ex.m(III)I, 5, 0 Ex.m(III)I, 5, 1

Ex.m(III)I, 17, 0 Ex.m(III)I, 17, 1 Ex.m(III)I, 31, 0 Ex.m(III)I, 31, 1

Ex.m(III)I, 31, 0 Ex.m(III)I, 31, 1

Fig. 1. Example trie

symbolic execution on 〈pold, bold〉 by caching them and re-
using them when running symbolic execution on 〈p, b〉. To
cache a symbolic execution run, Memoise builds an efficient
trie data structure [12] for representing compactly the global
state of a symbolic execution run, i.e. the choices taken during
symbolic execution. The trie t is complete for program p and
bound b if it encodes all the choices taken during the symbolic
execution of p up to bound b. Memoise has three basic steps:

• Initialization. An initial run of Memoise performs stan-
dard symbolic execution as well as builds the trie on-the-
fly and saves it on the disk for future re-use. Whenever
a conditional instruction is symbolically executed a trie
node is created, recording the location of the symbolic
conditional, i.e., method and the instruction offset, and the
choice taken by the execution. The trie stores just enough
information to guide symbolic execution in future runs
(through the stored choices) and to map back the nodes
to the program constructs (for e.g. regression analysis).
To facilitate future runs of symbolic execution, a subset
of the leaf nodes in a trie is partitioned into a set of
boundary nodes, which are leaf nodes because of the
chosen depth bound, and a set of unsatisfiable nodes,
which are leaf nodes due to unsatisfiable path conditions.
Fig. 1 shows an example trie (for depth 4). In this figure,
the two pink nodes are boundary node and the grey node
is an unsatisfiable node.

• Memoized analysis. The trie built during the initial-
ization run or a previous run of Memoise is loaded in
memory and it is used to guide analysis for iterative deep-
ening, regression analysis, or application of heuristics.
During the analysis, a new trie is built/updated on-the-
fly, which is saved back on the disk. As an optimization,
the memoized analysis performs a compression on the
input trie to remove the components that are irrelevant in
the context of the particular application scenario.

• Trie merging. The (compressed) trie built during mem-
oized analysis is (optionally) merged with the old trie to
obtain a complete trie for 〈p, b〉 .

A. Enabled Applications

Memoise can be used to optimize many applications [13].
We describe here three well-known applications of symbolic
execution that are supported by our tool: symbolic execution

with iterative deepening, regression analysis, and heuristic
search to enhance program coverage. Other applications, such
as continuous testing, load balancing for parallel execution,
partial symbolic execution, component certification are de-
scribed elsewhere [13].

For these applications, a key step is based on the trie and the
particular application scenario to compute paths (of interest)
that need re-executed in the new run of symbolic execution.

1) Iterative Deepening: In iterative deepening, the search
depth is iteratively increased until either an error is found
or the desired testing coverage has been achieved. For this
particular analysis, only paths bounded by the search depth
bound need to be re-explored during in the new iteration, since
other paths are ended naturally by execution.

Therefore, Memoise enables an efficient iterative deepening
approach by re-using the trie collected from smaller depths
when exploring paths at larger depths. The approach works as
follows. In one iteration, paths are explored exhaustively up
to a certain depth and the choices made during the symbolic
execution are stored in the trie structure. When the search
depth bound is hit, the current trie node at that point is a
boundary node. The paths that lead to boundary nodes are
then selected and, guided by the trie, are executed up to the
next depth bound. Note that other paths would not be re-
executed (e.g. the paths who ended at smaller depths can not
have successors at the new bigger depth). During re-execution
we turn off constraint solving for the portion of the path that
has been already explored in the previous iteration, and the
exploration is only guided by the choices recorded in the trie.
The process repeats until all paths are explored, or the new
bound is reached.

2) Regression Analysis: Programs evolve during develop-
ment or maintenance. Reapplying full symbolic execution to
programs as they evolve may be impractical. In regression
analysis, program differences are utilized to make symbolic
execution more efficient on the subsequent program version.

Memoise enables regression analysis by only allowing the
paths impacted by the program change to be re-executed. A
change impact analysis is used to identify the impacted trie
nodes, which represent roots of sub-trees potentially changed
by the execution of the change during memoized execution.
Thus, only paths leading to the impacted trie nodes need to
be re-executed in this particular analysis. As before, for the
portion of the path up to the impacted node, constraint solving
is turned off, and only the part rooted at the impacted node
needs to be rebuilt while it is explored using constraint solving.

3) Heuristics-Guided Symbolic Execution: The iterative-
deepening approach described above can be further extended
to perform a heuristic search of program paths, as guided by
the testing coverage achieved so far. At each iteration, the
approach discovers those paths that may lead to increased code
coverage, and selects only those paths for re-execution up to
larger depths in subsequent iterations.



TABLE I
ITERATIVE DEEPENING RESULTS

Depth Sym Exe at Depth A Sym Exe at Depth B
Time (ss) Memory (MB) States #Solver calls Time (ss) Memory (MB) Trie (MB)

A B Reg Mem Reg Mem Reg Mem Reg Mem Reg Mem-p Mem-c Reg Mem-p Mem-c Mem-p Mem-c
24 25 35 38 304 367 17103 16756 12252 2942 47 46 45 413 263 395 0.9 0.8
29 30 86 87 419 333 33273 15250 25684 1540 92 45 45 413 345 263 2.0 0.9
34 35 96 97 419 345 35359 1476 27636 18 102 9 9 292 404 243 2.1 0.1

III. IMPLEMENTATION AND RESULTS

A. Tool Implementation

Memoise is built on top of Symbolic PathFinder (SPF) [8],
[9], an open source symbolic execution tool for Java bytecode.
SPF is part of the Java PathFinder verification tool-set [1]
which includes an explicit-state software model checker, and
several extension projects, one of them being SPF.

The procedures for building the trie, iterative deepening,
and regression analysis are implemented as JPF listeners,
which monitor the execution of the program inside SPF. When
building the trie, JPF’s search events such as “state advanced”
and “state backtracked” are monitored, so that whenever a
conditional instruction is symbolically executed a trie node is
created as a child of the current trie node, and the current trie
node is updated while the search is advanced or backtracked
correspondingly. Information including the conditional instruc-
tion bytecode offset, the choice taken by execution, and the
fully qualified method name, is collected at runtime and stored
in the trie. When the search depth bound is hit, the current trie
node at that point is marked as boundary. The saving/loading
of tries is implemented using the Java Serialization API, which
stores Object state to a file in disk.

B. Evaluation

We have performed experiments to evaluate Memoise for
several analyses, including symbolic execution with iterative
deepening, regression analysis and guidance heuristics [13].
We show here briefly some results for one of the analysis,
namely symbolic execution with iterative deepening.

Table I shows the results of applying Memoise with iterative
deepening for MerArbiter, a component of the flight software
for NASA JPL’s Mars Exploration Rovers (MER). MerArbiter
has been modeled in Simulink/Stateflow and it was automat-
ically translated into Java using the Polyglot framework [2].
The example has 268 classes, 553 methods, 4697 lines of code
(including Polyglot). We show the results of increasing the
depth from A to B for three experiments. At depth A we built
the trie while at depth B, we re-used and updated the trie. We
also conducted regular symbolic execution as implemented in
SPF at both depth A and depth B. Table I shows the time
and memory results for regular symbolic execution and for
Memoise. It also shows the number of states, the number
of constraint solver calls and the size of Trie that is saved
during Memoise at depth B. Reg represents regular symbolic
execution while Memoise represents Memoise for iterative
deepening. Mem-c and Mem-p respectively represent Memoise
with compression and without compression. For symbolic
execution at depth A, we find that the time cost of Memoise

is is similar to regular symbolic execution. For symbolic
execution at depth B, Memoise typically explores fewer states,
makes fewer solver calls, and correspondingly takes less time.
In MerArbiter when the depth is increased from 34 to 35,
the reduction is more than an order of magnitude. Moreover,
the reduction for the number of states, solver calls, and time
appears to get more significant when the depth goes deeper.
The table also shows that compression makes the trie smaller.

IV. EXAMPLE

In this section, we use a small example program, Ex
as included in the example package of the jpf-memoise

repository, to illustrate how to use Memoise for iterative
deepening and regression analysis. We also describe how
Memoise supports heuristic search.

A. Initialization

An initialization run of Memoise is needed to build a trie
on-the-fly and store it on the disk for re-use. The following
code shows an example .jpf configuration to do so:

1 target=Ex
2 classpath=${jpf-memoise}/build/examples
3 symbolic.method=Ex.m(sym#sym#sym)
4 search.depth_limit=6
5 listener=gov.nasa.jpf.memoise.listener.TrieBuilder
6 memoise.new_trie_name=trie_ex.dat

The first four lines in the configuration specify the target
class, its class path, the method to execute symbolically, and
search depth bound; these lines are similar to writing a stan-
dard *.jpf configuration to run regular symbolic execution
with Symbolic PathFinder. Line 5 specifies the TrieBuilder
listener which serves to build a trie during memoized symbolic
execution, and line 6 specifies the name of the trie.

After running Memoise, a trie file is generated, which can
be printed to a dot graph for visualization using the util class
provided. The generated trie is shown as Fig. 1. The gray node
is an unsatisfiable node due to the unsatisfiable path condition,
and the two pink nodes are boundary nodes because of the
chosen depth bound.

B. Iterative Deepening

Suppose the user would like to increase the depth bound to
check more program behaviors. The following code shows a
.jpf configuration for Memoise:

1 target=Ex
2 classpath=${jpf-memoise}/build/examples
3 search.depth_limit=7
4 symbolic.method=Ex.m(sym#sym#sym)
5 listener=gov.nasa.jpf.memoise.listener.IDListener
6 memoise.old_trie_name=trie_ex.dat
7 memoise.new_trie_name=trie_ex_new.dat



Root

Ex.m(III)I, 5, 0 Ex.m(III)I, 5, 1

Ex.m(III)I, 17, 0 Ex.m(III)I, 17, 1 Ex.m(III)I, 31, 0 Ex.m(III)I, 31, 1

Ex.m(III)I, 31, 0 Ex.m(III)I, 31, 1

Ex.m(III)I, 31, 0 Ex.m(III)I, 31, 1

Fig. 2. Updated trie in iterative deepening

The depth bound is increased from 6 to 7, the IDListener
is applied for iterative deepening using Memoise. Memoise
uses the old trie to guide symbolic execution to explore the
new paths because of the increased depth bound, and updates
the trie accordingly. The last two lines specify the name of the
trie for reuse and the name of the updated trie, respectively.

After running Memoise, an updated trie shown in Fig. 2 is
generated. The trie shows that only nodes (paths) highlighted
in red color are re-explored, while the others that also exist in
the old trie are pruned during search. The two boundary nodes
(shown in pink color) are new, which are generated because
of the increased depth bound.

C. Regression Analysis

Suppose the user would like to change the program to
a new version, say due to a bug fix, and re-run symbolic
execution to check the new program version. The two versions
of our example program Ex are available in jpf-memoise

repository. The following code shows a .jpf configuration
for Memoise to do regression analysis:

1 target=Ex
2 classpath=${jpf-memoise}/version1
3 search.depth_limit=6
4 symbolic.method=Ex.m(sym#sym#sym)
5 listener=gov.nasa.jpf.memoise.listener.RSEListener
6 memoise.newClass=${jpf-memoise}/version1/Ex.class
7 memoise.oldClass=${jpf-memoise}/version0/Ex.class
8 memoise.old_trie_name=trie_ex.dat
9 memoise.new_trie_name=trie_ex_new.dat

Line 5 specifies that RSEListener is applied, and lines 6
and 7 specify the locations of the two versions of the EX
class. Memoise compares the two class files to compute the
change in control flow graphs, and map this information to the
trie to find impacted trie nodes. Only paths leading to those
impacted trie nodes are re-explored during symbolic exeuction,
whereas the other paths can be pruned from the search. After
running Memoise, an updated trie (Fig. 3) is generated. We
find that only one path, which is highlighted in red color is re-
explored. Because the change is made in the second executed
branch (choice 1) of this particular conditional (bytecode 17),
the highlighted path is the only path that could be potentially
impacted by the change. Since the change does not introduce
any new path, the updated trie remains the same as the before.

Our tool Memoise can also be used in the context of
heuristic search using the following options:

Root

Ex.m(III)I, 5, 0 Ex.m(III)I, 5, 1

Ex.m(III)I, 17, 0 Ex.m(III)I, 17, 1 Ex.m(III)I, 31, 0 Ex.m(III)I, 31, 1

Ex.m(III)I, 31, 0 Ex.m(III)I, 31, 1

Fig. 3. Updated trie in regression analysis

• HRListener CT, which supports Counter heuristic that
favors paths with the maximum number of specific
branches;

• HRListener RC M, which supports Reachability heuris-
tic that favors paths that end in certain method;

• HRListener RC C, which supports Reachability heuristic
that favors paths that end in certain class;

V. CONCLUSIONS

We presented Memoise, a tool for memoized symbolic exe-
cution for Java programs. Memoise re-uses symbolic execution
results across different runs of symbolic execution without
having to re-compute previously computed results as done
in earlier approaches. Memoise’s current implementation sup-
ports symbolic execution in three standard scenarios where it
is commonly applied: iterative deepening, regression analysis,
and heuristic search. It reduces the analysis cost by using
the trie to quickly guide the search for previously explored
paths (with the constraint solving turned off) and by pruning
the paths that are not relevant for the current run. Our tool
Memoise builds on the Symbolic PathFinder framework and
is publicly available for download.

REFERENCES

[1] Java PathFinder Tool-set. http://babelfish.arc.nasa.gov/trac/jpf.
[2] D. Balasubramanian, C. S. Pasareanu, M. W. Whalen, G. Karsai, and

M. R. Lowry. Polyglot: modeling and analysis for multiple statechart
formalisms. In ISSTA, pages 45–55, 2011.

[3] C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
OSDI, pages 209–224, 2008.

[4] L. A. Clarke. A program testing system. In Proc. of the 1976 annual
conference, ACM ’76, pages 488–491, 1976.

[5] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated random
testing. In PLDI, pages 213–223, 2005.

[6] J. C. King. Symbolic execution and program testing. Communications
of the ACM, 19(7):385–394, 1976.

[7] S. Person, G. Yang, N. Rungta, and S. Khurshid. Directed incremental
symbolic execution. In PLDI, pages 504–515, 2011.

[8] C. S. Păsăreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet,
M. Lowry, S. Person, and M. Pape. Combining unit-level symbolic exe-
cution and system-level concrete execution for testing NASA software.
In ISSTA, pages 15–25, 2008.

[9] C. S. Păsăreanu and N. Rungta. Symbolic PathFinder: symbolic
execution of Java bytecode. In ASE, pages 179–180, 2010.

[10] K. Sen and G. Agha. Cute and jcute: Concolic unit testing and explicit
path model-checking tools. In CAV, pages 419–423, 2006.

[11] S. F. Siegel, A. Mironova, G. S. Avrunin, and L. A. Clarke. Combining
symbolic execution with model checking to verify parallel numerical
programs. ACM Trans. Softw. Eng. Methodol., 17(2), 2008.

[12] D. E. Willard. New trie data structures which support very fast search
operations. J. Comput. Syst. Sci., 28:379–394, July 1984.

[13] G. Yang, C. S. Păsăreanu, and S. Khurshid. Memoized symbolic
execution. In ISSTA 2012, pages 144–154, 2012.


	Introduction
	Memoized Symbolic Execution
	Enabled Applications
	Iterative Deepening
	Regression Analysis
	Heuristics-Guided Symbolic Execution


	Implementation and Results
	Tool Implementation
	Evaluation

	Example
	Initialization
	Iterative Deepening
	Regression Analysis

	Conclusions
	References

