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Abstract

Coordinating the actions of agents in multiagent systems presents a challenging problem,

especially as the size of the system is increased and predicting the agent interactions becomes

difficult. Many approaches to improving coordination within multiagent systems have been

developed including organizational structures, shaped rewards, coordination graphs, heuristic

methods, and learning automata. However, each of these approaches still have inherent limitations

with respect to coordination and scalability. We explore the potential of synergistically combining

existing coordination mechanisms such that they offset each others’ limitations. More specifically,

we are interested in combining existing coordination mechanisms in order to achieve improved

performance, increased scalability, and reduced coordination complexity in large multiagent

systems.

In this work, we discuss and demonstrate the individual limitations of two well-known

coordination mechanisms. We then provide a methodology for combining the two coordination

mechanisms to offset their limitations and improve performance over either method individually.

Here, we combine shaped difference rewards and hierarchical organization in two domains with

up to 10,000 sensing agents. We show that combining hierarchical organization with difference

rewards can improve both coordination and scalability by decreasing information overhead,

structuring agent-to-agent connectivity and control flow, and improving the individual decision

making capabilities of agents. We show that by combining hierarchies and difference rewards,

the information overheads and computational requirements of individual agents can be reduced

by as much as 99% while simultaneously increasing the overall system performance within two

variations of the Defect Combination Problem. Additionally, we demonstrate the robustness of

this approach to handling up to 25% agent failures under various conditions.

1 Introduction

Coordinating the behavior of agents in multiagent systems such that they collectively optimize

a system level objective is a complex control task. Problems of scaling (number of agents in
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the thousands to tens of thousands), information handling (agents have limited computing capa-

bilities), and robustness (unreliable components) make methods developed for small multiagent

systems comprised of reliable devices inadequate (Panait and Luke, 2005; Tumer, 2005). A number

of approaches have been presented to address these issues including organizational structures,

shaped rewards, learning automata, and coordination graphs (Horling and Lesser, 2005; Kok and

Vlassis, 2006; Tambe et al., 2005; Vrancx et al., 2008; Xu et al., 2005). Although significant

progress has been made towards improving coordination and scalability with each of these

methods individually, relatively little work has focused on leveraging the complementary benefits

of these approaches. We propose combining two of these methods (hierarchical organization and

reward shaping) together in order to decrease coordination complexity, improve performance,

and increase scalability in large multiagent systems. In particular, we combine hierarchical

organization to reduce each agent’s communication overhead with reward shaping techniques

that attempt to make optimal use of information locally available to agents in order to improve

agent-to-agent coordination, increase scalability, and improve performance in large multiagent

systems.

Reward shaping has been shown to drastically improve coordination, scalability, and perfor-

mance in multiagent systems (Agogino and Tumer, 2008; Grzes and Kudenko, 2010; Williamson

et al., 2009). The specific shaped rewards studied in this work are based upon the difference

reward structure, which has been shown to be robust to scaling in a number of domains

including air traffic control, rover navigation, and distributed sensor networks (Agogino and

Tumer, 2008; Agogino et al., 2012; HolmesParker et al., 2012; Knudson and Tumer, 2010; Tumer,

2005). Difference rewards are designed to promote coordination and scalability by filtering the

information each agent receives, extracting only information relevant to each agent specifically.

However, as scaling increases, the amount of information each agent must process increases,

reducing the effectiveness of the filter provided by difference rewards. We address this shortcoming

by introducing hierarchical organization into the system, which reduces the amount of information

each agent must receive and process.

Hierarchies have shown a lot of promise in decreasing information sharing and processing

requirements, improving robustness, and increasing performance in large multiagent systems

(Horling and Lesser, 2005; Mehta et al., 2008). These structures focus primarily upon organizing

the control flow to reduce information sharing and processing overheads, which reduces the

coordination complexity between agents in the system (Horling and Lesser, 2005). However,

controlling these factors alone is not always enough to achieve good system performance, as

they do not dictate the underlying decision making process for agents in the system. Just as the

structure of relationships and control flow impact system performance, the underlying decision

making process of each agent also heavily impacts the system performance. To address this, we

combine hierarchichal organization with learning agents using shaped difference rewards which

promote good agent decision making.

Although both hierarchical organization and reward shaping methods have been heavily

researched, relatively little work has been done to demonstrate the complementary nature of

these two approaches. Generally speaking, hierarchies establish the system control flow and

reduce the amount of information that each agent must receive and process (Horling and Lesser,

2005). Shaped rewards on the other hand attempt to optimize each agent’s decision making

given that information (Tumer, 2005). Thus, in a learning-based system, hierarchical organization

would dictate the amount of information each agent receives as well as the control flow, while

shaped rewards would be used in agent decision making to optimize system performance given the

information available to them. In this work, we demonstrate the complementary nature of these

approaches in two variations of the Defect Combination Problem (DCP) described in Section 3.1

(Challet and Johnson, 2002).

The key contributions of combining shaped difference rewards and hierarchical organization

demonstrated in this paper are as follows:
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• Reduced information sharing and processing requirements for agents.

• Increased scalability.

• Robustness to increased problem complexity.

• Robustness to various agent failures.

The remainder of this paper is organized as follows. Section 2 provides background material

on hierarchical systems, reward shaping, and the Defect Combination Problem (DCP). Section

3.1 describes the two variations of the Defect Combination Problem. Section 4 describes the

learning algorithms, rewards, and hierarchical organization used in this work. Section 5 contains

experimental results, empirically demonstrating the benefits of coupling hierarchies and shaped

rewards with regards to decreasing the information overheads and processing requirements for

agents, as well as improving overall system performance and robustness. Finally, Section 6

provides a discussion of this work.

2 Background and Related Work

Previous work involving the Defect Combination Problem (DCP) utilized statistical physics to

determine the theoretical optimal performance based upon the number of sensors (Challet and

Johnson, 2002). This work derived the theoretical optimal performance of anN sensor system and

the corresponding ratio of active sensors, but it did not include a non-exhaustive search method

for finding the actual subset of sensors to use. Using learning agents with difference rewards

in a nonhierarchical setting was proposed as a method for finding a good subset of devices in

Tumer, 2005. In that work, difference rewards were shown to improve system performance in

the DCP in a nonhierarchical setting involving up to 1000 sensors (Tumer, 2005). However, as

our work shows, difference rewards alone are not sufficient to address the increased coordination

complexities and increased signal noise present when scaling increases in such large systems.

To address this shortcoming, we couple difference rewards with hierarchical organization which

restricts the amount of information each agent in the system receives and reduces the agent-

to-agent coordination complexity. We apply a hierarchy, which structures the agent-to-agent

relationships and reduces the amount of information individual agents must receive and process

during the decision making process, and difference rewards which attempt to make globally

optimal decisions based upon the information that is locally available to each individual agent.

2.1 Hierarchical Organization

The hierarchical organization of a multiagent system can be defined as the collection of roles,

relationships, and authority structures which govern its behavior (Horling and Lesser, 2005). All

hierarchies have some form of these characteristics, although they may be implicitly present and

not formally developed (Horling and Lesser, 2005). The structure of a hierarchy guides how its

members interact with one another, influencing authority relationships, data flow, resource allo-

cation, coordination patterns, and other system characteristics (Hayden et al., 1999). Hierarchies

have been shown to improve system performance in a number of domains including distributed

sensor networks, autonomous aerial vehicle coordination, and rover coordination (Horling and

Lesser, 2005; Horling et al., 2004; Zhang et al., 2009). In many cases, hierarchical organization

reduces coordination complexity and increases system level performance by providing an explicit

structure and control flow (Horling and Lesser, 2005; Horling et al., 2004).1 Although hierarchies

establish the structure and control flow, they do not directly address decision making. In this work

we utilize reinforcement learning coupled with shaped difference rewards in a 2-layer hierarchy

to enable decision making and decrease coordination requirements for agents.

1A comprehensive list of organizational structures and methods can be found in (Horling and Lesser,
2005).
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2.2 Reward Shaping

Reward shaping is the practice of replacing an agent’s reward function with an alternative reward

that changes its learning (Devlin and Kudenko, 2011; Tumer, 2005). Frequently, reward shaping is

used to improve system performance or to make a problem easier to solve (Agogino and Tumer,

2008; Grzes and Kudenko, 2010). Reward shaping has been used to increase performance by

speeding up convergence rates and improving coordination in problems involving reinforcement

learning (Agogino and Tumer, 2008; Williamson et al., 2009). In Q-learning, reward shaping can

be represented by the following formula (Devlin and Kudenko, 2011; Ng et al., 1999):

Q(s, a)←Q(s, a) + α[r + F (s, s′) + γmaxa′Q(s′, a′)−Q(s, a)] (1)

where Q(s, a) is the Q-value associated with the agent taking action a in state s, r is the standard

reward, a′ is an alternate action, s′ is an alternate state, α is the learning rate, γ is the discount

factor, and F (s, s′) is the general form of the shaping reward. As seen, the shaping reward

F (s, s′) is an additional reward that is applied on top of the agents original reward r in order

to encourage better learning (Devlin and Kudenko, 2011; Ng et al., 1999). Reward shaping

techniques (e.g. Potential-based reward shaping) have been used to increase performance by

speeding up convergence rates and improving coordination in problems involving reinforcement

learning (Agogino and Tumer, 2008; Devlin and Kudenko, 2011; Grzes and Kudenko, 2010;

Williamson et al., 2009). Prior to introducing the shaped rewards used in this work, we will

introduce two key characteristics of shaped rewards and two metrics for shaped rewards.

2.3 Factoredness and Learnability

Ideally, a reward should provide an agent with two key pieces of information: 1) How its action

impacted the overall system performance, and 2) How its action impacted the reward it received.

Feedback on how its own actions impacted the system performance allows agents to make decisions

that are in-line with the system objective. Providing agents with feedback on how its individual

actions impacted the reward it received allows the agent to adapt its actions in order to benefit

both itself and the system.

This first property has been formalized for an agent j, by defining the degree of factoredness

(also presented in (Tumer and Wolpert, 2004; Wolpert and Tumer, 2001; Wolpert et al., 1999))

between the agent-reward gj and system reward G at state z, as:

Fgj =

∑

z

∑

z′

u [(gj(z)− gj(z
′))(G(z) −G(z′))]

∑

z

∑

z′

1
(2)

where the states z and z′ only differ in the state of agent j, and u[x] is the unit step function,

equal to 1 if x > 0. The numerator keeps track of the number of state pairs (z, z′) for which

the agent-reward, gj(z)− gj(z
′), and system reward, G(z)−G(z′), are aligned (have the same

sign). A high degree of factoredness means that agents improving their own local reward are

concurrently improving the system performance, while agents harming their local reward are also

harming system performance.

The second property has been defined as learnability, which is the degree to which an agents

reward, gj , was impacted by its own actions as opposed to the actions of other agents. The

learnability of a reward, gj, for agent j, evaluated at z can be quantified as follows:

Lgj =
||gj(z)− gj(z − zj + z′j)||
||gj(z)− gj(z′ − z′j + zj)||

(3)

where in the numerator z′ differs from z only in the state of agent j, and in the denominator

the state of all other agents is changed from z to z′. Intuitively, the learnability provides a ratio
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between the portion of the agents reward signal that depended upon its own actions (signal),

and the portion of its reward signal that depended upon the actions of all other agents (noise).

The higher the learnability, the easier it is for an agent to learn an accurate mapping between its

actions and its rewards.

2.4 Difference Rewards

Difference rewards were designed using the theory of collectives developed at NASA Ames

Research Center by Wolpert et al.(HolmesParker et al., 2012; Agogino and Tumer, 2006;

HolmesParker and Agogino, 2011; Tumer, 2005; Tumer and Wolpert, 2004; Wolpert et al.,

1999). A complete definition and description of the difference reward can be found in (Agogino

and Tumer, 2008; Tumer and Wolpert, 2004; Wolpert and Tumer, 2001; Wolpert et al., 1999).

Difference rewards have been shown to work well in a number of domains and conditions (Agogino

et al., 2012; HolmesParker et al., 2012; HolmesParker and Agogino, 2011; HolmesParker and

Tumer, 2012; Agogino and Tumer, 2008; Tumer, 2005). In this work, we focus on a particular

variation of difference rewards known as expected difference rewards, which have the following

form (Agogino and Tumer, 2008):

EDRj ≡G(z)− Ezj [G(z)|z−j ] (4)

where G is the system objective, z is the complete system state vector, z−j contains all the

variables not affected by agent j, and Ezj [G(z)|z−j ] gives the expected value of G over the

possible actions of agent j. Such rewards are factored because the second term does not depend

on j’s actions (Tumer, 2005). Furthermore, they usually have far better learnability than does

a team reward, because the second term of EDRj , which removes a lot of the effect of other

agents (i.e., noise) from j’s reward. This noise reduction is due to the subtraction which (to

a first approximation) eliminates the impact of states that are not affected by the actions of

agent j. There are two key advantages to using EDRj : First, because the second term removes

a significant portion of the impact of other agents in the system, it provides an agent with a

“cleaner” signal than G (Agogino and Tumer, 2008; Tumer, 2005). Second, because the second

term does not depend on the actions of agent j, any action by agent j that improves EDR, also

improves G (the derivatives of EDR and G with respect to j are the same) (Agogino and Tumer,

2008; Tumer, 2005).

Any system capable of broadcasting the system performance G or passing state-vector infor-

mation can be minimally modified to allow agents to independently calculate their own expected

difference reward (Tumer, 2005). This information is commonly shared within distributed sensor

networks, as there are intermittent data sinks that analyze, package, and re-broadcast data

(Williamson et al., 2009; Farinelli et al., 2008). Additionally, systems such as the Aegis Ballistic

Missile Defense System package system-level data and re-distribute it to individual nodes within

the system for decenralized decision making (Lamber and Sinno, 2011).

3 Domains

3.1 The Defect Combination Problem (DCP)

Many real world sensing applications require large sets of disparate sensing devices to coordinate

their actions in order to collectively optimize their network attenuation, coverage areas, and

sensing schedules (Farinelli et al., 2008; Rogers et al., 2010; Williamson et al., 2009). In this

work, a set of up to 10,000 sensing devices must coordinate their sensing schedules in order to

optimize their aggregated attenuation within a sensor network. This work focuses on the Defect

Combination Problem (DCP) domain introduced in (Challet and Johnson, 2002). This problem

assumes that there exists a set of imperfect sensors X which have constant attenuations due to

manufacturing defects or imperfections. Each of the sensors xi has an associated attenuation ai
(which can be positive or negative) in its reading, such that if it is taking a measurement of A
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(actual value) it measures A+ ai where ai is the device’s individual error. The problem then

becomes how to best choose a subset of the X sensors that minimizes the aggregated attenuation

of the combined readings:

G=

∣

∣

∣

∣

∣

N
∑

i=1

niai

∣

∣

∣

∣

∣

N
∑

i=1

ni

(5)

where G is the aggregated attenuation of the combined sensor readings, ai is the attenuation of

a particular sensor i, N is the number of sensors, and ni ∈ {0, 1} based upon whether the sensor

chooses to be “on” or “off”.

This is an NP-complete optimization problem (Challet and Johnson, 2002; Tumer, 2005) and

simply choosing the single sensor with the best attenuation is an inadequate solution, as is

choosing the best K sensors (1≤K ≤N).2 To illustrate this, consider the case where there are 6

sensing devices whose attenuations are a1 =−0.19, a2 = 0.54, a3 = 0.1, a4 =−0.14, a5 =−0.05,
and a6 = 0.21. Choosing only the best sensor a5 would yield an aggregated attenuation of |0.05|,
while choosing sensors a3, a4, and a5 will yield an aggregated attenuation of |0.03|, which is

better than the single best sensing device a5 alone. This is still not the optimal solution in this

6 sensor case however, as combining sensors a1 and a6 results in an aggregated attenuation of

|0.01|. In this problem, individual sensors acting independently without coordinating their actions

can drastically decrease the system performance. Consider the case where sensors a1 and a6 are

turned on in conjunction with sensor a2, the aggregated attenuation jumps to from |0.01| to
|0.18|. Finding good solutions requires a great deal of coordination between sensors, as any one

sensor can heavily impact the system performance.

3.2 The Time-Extended Defect Combination Problem (TEDCP)

Frequently, distributed sensor networks are comprised of battery-powered sensors which are

deployed within an envirnoment to make observations. In such settings, the individual sensing

nodes must not only coordinate in order to observe the environment, but they must also coordinate

their actions such that they conserve resources such as power (battery life). Here, the majority

of battery power is consumed on two key tasks: 1) transmitting information, and 2) taking

measurements. The transmission of information can be reduced by applying an organizational

structure (as is done in this work). Additionally, both the transmition of information as well

as the frequency of taking measurements can be reduced for each sensor by having the sensors

coordinate their sense/sleep schedules. In general, the goal would be to optimize the tradeoffs

between observing the environment and minimizing the number of measurements performed by

each individual sensing device.

In the original DCP problem (Equation 5) sensors must choose whether or not to participate

in sensing, which involves a decision to be “on” or “off” in order to optimize their aggregated

attenuations. We extend this one step further so that sensors must choose not only “if” they want

to participate but “when” to participate, adding an additional degree of coordination complexity.

Here, each agent may only participate in one of the M time steps per episode. This restriction

couples the time slots, making this a significantly harder problem than solving multiple parallel

versions of the DCP. In this setting agents try to optimize the average aggregated attenuation

over M time slots, where the attenuation of a single time slot m is given by gm:

2Statistical physics was used in (Challet and Johnson, 2002) to determine that the optimal percentage of
active devices in the DCP should be 50% to optimize attenuation. However, no non-exhaustive method
of selecting the optimal subset of devices was proposed.
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gm =

∣

∣

∣

∣

∣

N
∑

i=1

ni,mai

∣

∣

∣

∣

∣

N
∑

i=1

ni,m

(6)

in this equation ni,m ∈ {0, 1} corresponding to whether sensor i chose to be “on” or “off” during

time slot m (if agent i chose to participate during time-slot m, ni,m is 1, otherwise it is 0). Here,

gm represents the resultant attenuation for time slot m (analogous to Equation 5). Averaging the

aggregated attenuation over M distinct time slots, the time-extended system objective becomes:

GTE =
1

M

M
∑

m=1

gm (7)

where GTE is the time-extended system objective, gm is the aggregated attenuation of the sensors

on time-slot m, and M is the total number of time-slots. Here the objective is to optimize the

aggregated attenuation over M time steps.3 It should be noted that there is no sequence of

actions being taken in this case, instead, during each episode of learning agents are choosing

which time-slot of the M time-slots they want to participate in as their action.

4 Agents and Coordination

In this work, we used a multiagent approach in which each agent was an ǫ-greedy reinforcement

learner which used a standard value update (Sutton and Barto, 1998) (though alternatives such

as evolving neuro-controllers are also effective (Agogino and Tumer, 2004)). For complex delayed-

reward problems, relatively sophisticated reinforcement learning systems such as temporal

difference may have to be used. However, due to our agent selection and agent action set, the

domains modeled in this paper only need to utilize immediate rewards. As a consequence, table-

based immediate reward reinforcement learning is used. Our reinforcement learner is equivalent

to an ǫ-greedy Q-learner with a discount rate of 0 (Sutton and Barto, 1998). At every episode

an agent takes an action and then receives a reward evaluating that action. After taking action

a and receiving reward r an agent updates its Q table (which contains its estimate of the value

for taking that action (Sutton and Barto, 1998)) as follows:

Q(a)←Q(a) + α(r −Q(a)) (8)

where a is the agents’ action selection, r is the reward received for taking action a, α is the

learning rate, and Q is the value associated with taking action a. At every time step the agent

chooses the action with the highest table value with probability 1− ǫ and chooses a random

action with probability ǫ.

4.1 Teams and Hierarchical Organization

In this work, we utilized three types of organization: no teams, uncoordinated teams, and

hierarchically coordinated teams. This section includes descriptions of each type of organization

used.

4.1.1 No Teams
When there are no teams or organization present within a large multiagent system, all agents

must coordinate directly together. Here, the ability of agents to learn to coordinate their actions is

heavily impacted by the reward signal they receive. Throughout this work, agents receive learning

signals via two different reward structures: global and expected difference rewards.When no teams

3Equation 7 reduces to Equation 5 when there is a single time slot (M = 1).
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are present, global rewards provide agents with a learning signal that is equivalent to the system

performance. Such global rewards are in-line with the system objective, meaning that if agents

maximize their own rewards they concurrently optimize the system performance. Unfortunately,

global rewards provide agents with a noisy learning signal since each agent’s reward depends

directly upon the actions of all agents in the system. Here, all agents receiving a global reward

signal get the same feedback regardless of their actions, meaning that they may receive a good

reward for taking a poor action, or a bad reward for taking a good action (their rewards are

highly impacted by the actions of other agents). In the no teams setting, expected difference

rewards help address this shortcoming by filtering the noise off of the global reward signal and

providing agents with specific feedback on how their actions impacted the system performance

(Section 2.4).

Here, we derive the expected difference reward for the DCP problem when no hierarchies

or teams are present. When no teams are present, each agent is required to coordinate directly

with all other agents in the system. In this setting, the expected difference reward EDRj for

agent j is derived by combining Equations 4 and 5. Consider the case where the probabilities

are equivalent for each action “on” and “off”, Pnj=0 = 0.50 and Pnj=1 = 0.50, EDRj becomes

the following for the standard DCP problem (Section 3.1) :

EDRj =















































0.50

∑N
i6=j niai − aj
N
∑

i6=j

ni − 1

− 0.50

∑N
i=1

niai
N
∑

i=1

ni

, if nj = 1

0.50

∑N
i6=j niai + aj
N
∑

i6=j

ni + 1

− 0.50

∑N

i=1
niai

N
∑

i=1

ni

, if nj = 0

EDRj provides a clear learning signal: if it is positive, the action taken by agent j was beneficial

to system performance, and if EDRj is negative, the action was harmful to system performance.

Agents trying to maximize EDRj will implicitly maximize system performance simultaneously

(Section 2.4). EDRj rewards require very little information to compute and any system capable

of broadcasting G can be minimally modified to accommodate EDRj .

Though the simplest way to organize a multiagent system is to have no teams and no

hierarchical organization, as agent scaling increases, coordination can become too complex for a

nonhierarchical system to be effective. We address this shortcoming by incorporating teams and

hierarchical organization into the system.

4.1.2 Uncoordinated Teams

In contrast to the standard DCP problem approach in which all N agents observed each

other and acted as a single group, we introduced a team-based approach. Here, we randomly

partitioned the N agents into k teams, containing Ck agents, where each agent could only be a

member of a single team. Random teams were assigned due to the NP-complete nature of the

problem. The computational expense of intelligently assigning teams would be too high as it

would require exhaustive search. Additionally, since there are no obvious ways of decomposing

the system objective with respect to the teams, each team is treated as a separate DCP. The

goal of each team is to optimize the aggregated attenuation of its Ck sensing devices (Equation

9). Agents within each team attempted to optimize their aggregated team attenuation according

to the following:4

4In the team-based experiments (Sections 5.2-5.4), sensing agents’ global, difference, and expected
difference rewards were based upon the team objective (Equation 9).



Combining Reward Shaping and Hierarchies for Scaling to Large Multiagent Systems 9

Gck =
|Ack |
Nck

=

∣

∣

∣

∣

∣

Ck
∑

i=1

niai

∣

∣

∣

∣

∣

Ck
∑

i=1

ni

(9)

where Gck is the objective of team ck, Ack is the aggregated attenuation of team ck, Nck is

the total number of active devices in team ck, Ck is the number of sensing agents in team ck,

ni ∈ {0, 1} depending on whether sensor i chose to participate in sensing, and ai is the attenuation

of sensor i . A team approach is advantageous because it can reduce the coordination complexity

of individual agents within the system by reducing the number of devices with which each agent

has to communicate. Although this team formation approach reduces the coordination complexity

and information overhead of the system, it may not lead to good system performance. This is

because each team acts to optimize its own independent team objective Gck , without taking into

account how its actions impact the overall system performance. We test this method because each

team of Ck agents will have relatively low aggregated attenuations and by statistically averaging

many teams with low aggregated attenuations an even lower attenuation may result.

Algorithm 1 – Team Formation: Given a set of N sensing agents, partition the sensing

agents into equal teams. In the DCP, agents are randomly partitioned into teams due to the

NP-complete nature of the problem. Any method of intelligently assigning teams would require

extensive search and computational expense.

• Given: N sensing agents

• Initialize Agents

1. Randomly partition N sensing agents into M equal teams of size C

2. Assign a “local” team objective to each individual team (Equation 9):

Gck =

C
∑

i=1

niai

C
∑

i=1

ni

3. Assign agents individual rewards based upon their reward structures: Gck or EDRj,ck

We now derive the expected difference rewards for the team-based sensing agents in the

standard DCP. In this setting, as discussed above, the sensing agents are randomly partitioned

into teams and assigned team objectives Gck . Once assigned to teams, the sensing agents are

not attempting to directly optimize the overall system objective G (Equation 5), but instead are

actively attempting to optimize their team objective. This means that the expected difference

rewards of agents in the team setting are based upon Gck instead of G. Thus, the expected

difference rewards of team-based agents in the DCP can be derived by combining Equations 4

and 9. We derived the expected difference rewards for team-based sensing agents in the DCP by

combining Equations 4 and 9, yielding the following:

EDRj,ck =















































0.50

∑Ck

i6=j niai − aj
Ck
∑

i6=j

ni − 1

− 0.50

∑Ck

i=1
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Ck
∑
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, if nj = 1

0.50

∑Ck

i6=j niai + aj
Ck
∑

i6=j

ni + 1

− 0.50

∑Ck

i=1
niai

Ck
∑

i=1

ni

, if nj = 0
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where here we considered the case where the probability components of the expected difference

reward structure for each agent were equivalent for each action “on” and “off”, Pnj=0 = 0.50 and

Pnj=1 = 0.50. Here, EDRj,ck is the expected difference reward for agent j which is a member of

team ck, ni is an indicator which has a value of ni = 0 if sensing agent i chose to be off, and ni = 1

if sensing agent i chose to be turned on, and ai is the attenuation of sensor i. This reward provides

agent j with specific feedback on how it impacted the aggregated attenuation of team ck. This

will provide a positive learning signal if agent j was beneficial to the team’s performance and a

negative reward if agent j was detrimental to the team’s performance. EDRj,ck provides a clear

learning signal: if it is positive, the action taken by agent j was beneficial to team ck’s performance,

and if EDRj,ck is negative, the action was harmful to team ck’s performance. Agents trying to

maximize EDRj,ck will implicitly maximize team ck’s performance simultaneously (Section 2.4).

Additionally EDRj,ck rewards require very little information to compute. Any system set up such

that individual teams ck are capable of broadcasting their team objective, Gck , to its members

can be minimally modified to accommodate EDRj,ck .

4.1.3 Hierarchically Coordinated Teams

Figure 1: When no teams or hierarchical organization is present (left), agents are required to

coordinate directly with all other agents to optimize the global objective G. We reduce this

coordination requirement by adding in a two-layer hierarchical structure (right). Here, sensing

agents are partitioned into separate teams and coordinate to optimize their team objective Gck

(Equation 9). Then, a control agent is assigned over each team, and the control agents coordinate

to optimize the system level objective G (Section 4.1.3).

As seen in the previous section, creating teams can decrease agent-to-agent coordination

complexity and reduce information overhead. However, creating individual teams can be harmful

to system performance if these teams fail to coordinate their actions well. We address this problem

by superimposing a hierarchical control layer on top of each team (Algorithm 2). In this setting,

individual teams are treated as though they were a single sensor and each “team sensor” is

controlled by a single control agent. These top layer control agents are responsible for coordinating

the actions of the teams. This results in a 2-layer hierarchical network structure, which reduces

agent-to-agent coordination complexity and information overhead within the system (Figure 1,

right). As seen in the right side of Figure 1, the bottom layer consists of teams of C agents, as

described in Section 4.1.2. Each team acts independently to optimize its own internal objective,

which is simply to minimize its own attenuation. Here, the teams do not directly communicate,

instead they rely upon the top-layer control agents to choose when the team will and will not

participate in system-level sensing. Thus, the control agent placed over each team effectively

becomes a “high level sensor” whose attenuation is equal to the aggregate attenuation of the team

it controls. These control agents form their own group and coordinate in order to optimize the
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system-level attenuation by choosing when individual teams participate in system-level sensing

(Section 4.1.3).

Algorithm 2 – Establish 2-Layer Hierarchical Organization: First, a set of N sensing

agents are randomly partitioned into teams of equal size. Each team is assigned its own objective

function, which its members (sensing agents) attempt to optimize. Hierarchical control agents

are placed over each team and the control agents coordinate the actions of the teams in order to

optimize the overall system performance G.

• Given: N sensing agents, M control agents

• Initialize Agents

1. Randomly partition N sensing agents into M equal teams of size C

2. Assign a “local” team objective to each individual team (Equation 9):

Gck =

C
∑

i=1

niai

C
∑

i=1

ni

3. Assign one control agent over each team

4. Assign a team objective to control agents (Equation 10):

GH =

K
∑

k=1

Acknk

N
∑

i=1

ni

In the hierarchical setting, agents in the bottom layer attempted to optimize the attenuation

of their individual teams for a single reading (Equation 9), while the control agents dictated both

if and when each team would participate in the aggregated system sensor reading. Thus, instead

of turning “on” or “off” like the sensing agents, the control agents each turned an entire team on

or off (Algorithm 3). In the DCP, the top level control agents coordinated in order to optimize

the standard DCP system objective (Equation 5):

GH =

∣

∣

∣

∣

∣

K
∑

k=1

Acknk

∣

∣

∣

∣

∣

K
∑

k=1

Ncknk

=

∣

∣

∣

∣

∣

N
∑

i=1

niai

∣

∣

∣

∣

∣

N
∑

i=1

ni

(10)

where GH is the objective of the control agents in the hierarchical system for the standard DCP

(equivalent to the system objective in the DCP - Equation 5), Ack is the aggregated attenuation

of team ck, Nck is the total number of active devices in team ck, K is the total number of

teams (N/C), nk ∈ {0, 1} depending on whether the agent i governing team k chose to turn team

ck on or off. The goal of the control agents GH is to combine the team attenuations Ack and

participations Nck in such a way that they optimize the system level attenuation G. The objective

for the hierarchical control agents can be similarly derived for the TEDCP (it is a straight-forward

extensiton that directly optimizes the system objective of the TEDCP - Equation 7), however it

is excluded here for brevity.

In the standard DCP, the hierarchical control agents are attempting to optimize the system

performance, G, directly by coordinating the actions of individual teams in the system. In this

setting, expected difference rewards for control agents can be derived by combining Equations 4

and 10, as follows:
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EDRj,H =















































0.50

∑K
k 6=j nkAck −Acj

K
∑

k 6=j

nk − nj

− 0.50

∑K

k=1
nkAck

K
∑

k=1

nk

, if nj = 1

0.50

∑K
k 6=j nkAck +Acj

K
∑

k 6=j

nk + nj

− 0.50

∑K

k=1
nkAck

K
∑

k=1

nk

, if nj = 0

where EDRj,H is the expected difference reward of hierarchical control agent j, which is in

control of team cj (i.e. control agent j chooses whether or not team cj is turned “on” or “off”

with respect to the system objective G), k is an individual control agent, K is the total number

of control agents in the system, Ack is the aggregated attenuation of team ck, and nk is the total

number of sensors participating in sensing for team k.5

5 Experiments and Results

We conducted the following set of experiments:

1. The DCP with no teams (Section 3.1).

2. The DCP with uncoordinated teams (Section 3.1).

3. The DCP with hierarchically coordinated teams. (Section 3.1).

4. The DCP with failures using hierarchically coordinated teams (Section 3.1).

5. The Time-Extended DCP with no teams (Section 3.2).

6. The Time-Extended DCP with hierarchical teams. (Section 3.2).

There were four different types of agents used. The first type of agents are controlled by a single

centrallized algorithm, which simply selects turns on the single-best sensing device for each time

step (TBS). Although selecting the best sensor is conceptually simple, it is a centralized algorithm

and requires global coordination. Selecting the best single sensor is fundamentally different than

choosing the best subset of sensing devices such that their collective readings result in a better

attenuation than any single device can achieve independently (Section 3). In the TEDCP, the best

sensor becomes the average of the best M sensors, where each of the best M sensors participates

in exactly one time slot of sensing. Second, we consider the case where the behavior of the

agents is completely random (R). The next two types of agents are learning agents attempting to

optimize global (G) or expected difference reward (EDR) structures. These rewards were derived

separately for agents in the no teams, uncoordinated teams, and hierarchically coordinated teams

experiments (Section 4).

At the beginning of each experimental run the attenuations ai for each agent were drawn from

a Gaussian distribution of zero mean and unit variance. All experiments had 10,000 episodes,

were averaged over r = 100 statistical runs, and were plotted with the error of the mean σ/
√
r

(the error in the mean is plotted in Figures 2-8, but it is so small that it is frequently not

visible). The results are statistically significant as we performed a t-test with p= 0.05 for all

experiments. The learning rate was set to α= 0.05 (performance was not overly sensitive to α).

In the nonhierarchical team-free experiments, all agents had an exploration rate of ǫ= 1

N
, where

N was the number of sensing agents in the system. In hierarchical and team based experiments,

agents in the bottom layer had an exploration rate of 1

C
, where C is the number of agents per

team, and the top layer had an exploration rate of C
N

(exploration was inversely proportional to

the number of agents coordinating together in a particular group). All value tables and Q-tables

were initialized to zero. For all agents, for the first 20 time steps, learning was turned off and

agents chose random action selections. After the first 20 steps, learning was turned on for 60

5Expected difference rewards can be derived similarly for agents in the Time-Extended Defect Combina-
tion Problem, but have been excluded here for brevity.
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Algorithm 3 – Learning in Hierarchically Coordinated Teams: In the DCP, the sensing

agents and control agents were both ǫ-greedy reinforcement learners. Due to the sensitivity of

this domain, the learning for the sensing agents and the control agents were separated. First,

the sensing agents learned how to coordinate the actions of their individual teams while the

control agents behaved randomly. Then, learning was turned off for the sensing agents and they

followed their fixed learned policies while the control agents began to learn. The primary reason

for training these two types of agents separately is that due to the combinatorial nature of the

DCP, it is difficult if not impossible for the control agents to effectively coordinate the actions of

the teams until the teams are following fixed policies.

Given a set of N sensing agents and M control agents

Instantiate Hierarchical Organization (Algorithm 2)

for Run= 1→ RunMax do

for Episode= 1→ Episodemax

2
do

Sensing Agents Select Action (ǫ-greedy) // Sensing agents are learning

Control Agents Select Random Action // Control agents behave randomly

Calculate System Performance:

GH =

∣

∣

∣

∣

∣

∣

∣

∣

K∑

k=1

Ack
nk

∣

∣

∣

∣

∣

∣

∣

∣

K∑

k=1

Nck
nk

=

∣

∣

∣

∣

∣

∣

∣

∣

N∑

i=1

niai

∣

∣

∣

∣

∣

∣

∣

∣

N∑

i=1

ni

Calculate Sensing Agent Rewards: Gck or EDRck

Value Update for Sensing Agents (Equation 8) // Only sensing agents are learning

end for

for Episode= Episodemax

2
→Episodemax do

Sensing Agents Select Actions Greedily // Sensing agents use their fixed learned policies

Control Agents Select Action (ǫ-greedy) // Control agents are learning

Calculate System Performance:

GH =

∣

∣

∣

∣

∣

∣

∣

∣

K∑

k=1

Ack
nk

∣

∣

∣

∣

∣

∣

∣

∣

K∑

k=1

Nck
nk

=

∣

∣

∣

∣

∣

∣

∣

∣

N∑

i=1

niai

∣

∣

∣

∣

∣

∣

∣

∣

N∑

i=1

ni

Calculate Control Agent Rewards: GH or EDRH

Value Update for Control Agents (Equation 8)// Only control agents are learning

end for

end for

agents at a time until all of the agents were learning, in the mean time agents who had not been

switched on continued performing randomly.6

5.1 No Teams in the DCP

The first set of experiments shows the performance of agents solving the DCP problem using

learning without teams or hierarchical organization. Here, each agent must coordinate directly

with all other agents in the system. In these experiments (Figures 2-4) agents using random action

selections, R, utilizes approximately half of the sensors each time step, but performs poorly since

the selection of which sensors is completely random. Similarly, agents using a global rewardG turn

on approximately half of the sensing devices and make better decisions selecting which sensors

6Allowing all agents to begin learning simultaneously created a “spike” into the system which significantly
slowed down learning. The gradual introduction of the learning agents is softens this discontinuity in
learning (Tumer, 2005).
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Figure 2: 25, 50, 100, and 1000 agents in the DCP with no teams (Section 4.1.1). As seen in these

experiments, with up to 1000 sensing agents present in the system, agents using EDR rewards

significantly outperform other methods, including a centralized search algorithm which turns on

the most accurate sensing device in the system (TBS).

to turn on. This results in G outperforming R by approximately an order of magnitude in most

settings (Figures 2-4). However, agents using G still have difficulty differentiating the impact of

their own actions on their reward signal from the actions of other agents (in this setting, each

agent’s reward signal is directly impacted by the actions of all other agents). This is because with

G, all agents receive the system performance as their reward signal, regardless of how their own

actions impacted the system performance. This makes it difficult for these agents to coordinate

their actions, inhibiting system performance.

Expected Difference Rewards, EDR, address this shortcoming by effectively filtering out the

impact of other agents on an agents’ reward signal and accounting for each agent’s individual

contribution to the system performance. Expected Difference Rewards, EDR, gives an estimated

value of the agents cumulative impact on the system over time based upon its historic action

selections (Section 4.1.1), resulting in better performance than G in this case (Figures 3 and 4).

As seen, in this setting EDR significantly outperforms all other methods (Figures 3 and 4).

It is clear from this experiment that the way an agent handles the information it receives

drastically impacts the performance. Agents using G and EDR received the exact same

information, yet agents using expected difference rewards were able to routinely outperform

agents using a traditional global rewards by approximately two or three orders of magnitude.

Here, EDR rewards reduce the overall coordination complexity for individual agents by filtering

much of the noise of other agents’ actions from each agent’s reward signal (Section 2.4). EDR

rewards are designed to provide an agent with a view of how it impacted the system over multiple
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Figure 3: Scaling the number of sensing agents in the DCP with no teams. As seen, with up to

1000 agents presen in the system, agents using EDR rewards outperform all other methods by up

to nearly 3 orders of magnitude. When the system is scaled further, agents using EDR rewards

continue to outperform all other methods with up to 10, 000 sensing agents.

episodes. This reward explicitly accounts for the historical behavior of an agent and leverages that

information into obtaining how the agent’s behavior generally impacts the system performance. It

is interesting to note that although agents using EDR achieve good performance, they typically

use nearly 80% of the sensors in the system, which is far from the theoretical optimal number of

sensors, which was determined to be 50% in (Challet and Johnson, 2002).

These results tell us that shaped rewards alone may not be enough to optimize system

performance for this problem. The inability of agents to achieve an optimal solution stemmed

from the fact that each agent received information involving every other agent in the system.

Even though these difference rewards filter this information and improve performance, it is

clear from these results that these rewards alone are not enough to handle the coordination

complexities present in such large multiagent systems (Figure 4). Now that we have demonstrated

the shortcoming of using only reward shaping with difference rewards to scale to large multiagent

systems of up to 10,000 devices, we will implement two variations of system organization and

discuss the benefits and drawbacks of each. In particular, we will implement a non-hierarchical

team-based approach as well as a team-based approach involving 2-layer hierarchical organization.

5.2 Uncoordinated Teams in the DCP

In this set of experiments, we incorporated uncoordinated teams into a 10,000 sensing agent

version of the DCP (Section 4.1.2). Here, we conducted a set of four experiments, where we

randomly partitioned the 10,000 sensing agents into teams of C = 25, 50, 100, and 200 sensing

agents, respectively (Figure 5). In this setting, each sensing agent can only be a member of a

single team, and the goal of each team, Gck , is to optimize the aggregated attenuation of its

own C sensing agents (Section 4.1.2, Equation 9). In this setting, each team acts independently

to optimize its own attenuation and there is no coordination between the teams (there are no

control agents present to coordinate the actions of the teams together in order to optimize the

overall system performance G). By creating teams of agents, we effectively reduce the information
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Figure 4: 10,000 sensors Defect Combination Problem (no hierarchies). Agents must choose

whether to be “on” or “off”. As seen, agents using EDR obtain significantly better aggregated

attenuation than the best single sensor TBS (Section 5). Agents using EDR rewards perform

well because these rewards promote agent-to-agent coordination and decision making.

sharing, processing requirements, and coordination complexity for agents within the system.

Agents now only need to coordinate with the other sensing devices in their team. Unfortunately,

although team formation promotes scalability, failure to coordinate the actions of individual teams

can impede system performance. Here, small teams of agents attempt to optimize their own local

reward, Gck , but are not aware of the actual system reward, G, that needs to be optimized. This

is because individual teams are acting greedily with respect to their team objective, Gck , without

any feedback on how their actions are impacting the system performance G.

As seen in Figure 5, team based agents using Gck continue to perform worse than team

based agents using expected difference rewards EDRck , especially as the size of individual

teams is increased (this is because the larger the teams are, the more noisy the learning signal

is for agents using global rewards). Even the amount of information each agent receives is

reduced by approximately 99%, agents using Gck still have difficulty learning from their reward

signals. Additionally, the overall system performance suffers because although the information

overhead is reduced by approximately one hundred fold and it is easier for agents to deduce their

individual impact on their rewards, the teams are not working together in an organized way,

and are frequently interfering with each other. Agents using expected difference rewards EDRck

outperform Gck because these rewards attempt to leverage the information agents receive and

use it to make optimal action selections with respect to their teams’ performance. EDRck do not

perform as well as EDR did in the team-free non-hierarchical setting of Experiment 1 (Figure

4) because the teams are not coordinated; each team is individually trying to optimize its own

100 agent system objective Gck without accounting for how its actions impact the overall system

performance G.

Agents using EDRck do not perform as well as agents using expected difference rewards in

the team-free setting (Figure 4), because the actions of the teams are not coordinated; each

team is individually trying to optimize its own C agent team objective, Gck , without accounting

for how its actions impact the overall system performance G. In this setting, the agents are

optimizing their own C sensor team (effectively a C sensing agent instantiation of the DCP), but
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Figure 5: 10,000 sensors DCP with teams of C = 25, 50, 100, and 200 sensing agents (Section

4.1.2). Establishing teams reduces the amount of information each agent must receive and process

by approximately 99% for teams of C = 25 to 200, however agents perform even worse than they

did when no teams were present. This is because agents are directly attempting to optimize their

own team’s objective, without regard for how their actions impact the system-level performance

(Section 4.1.2). Even still, teams of agents using EDRck are able to outperform those using a

standard global reward Gck , and generally perform as well or better than the best single sensing

device (TBS).

the attenuations of the teams are then summed together in a suboptimal manner, resulting in

suboptimal performance. The performance could vastly be improved if the teams were allowed

to coordinate their actions to mutually benefit system performance. In the next experiment we

address this by superimposing hierarchical control agents onto each team.

5.3 Hierarchically Coordinated Teams in the DCP

Next, we implement a 2-layer hierarchy into the DCP with 10,000 sensing agents (Section 4.1.3).

We conduct four experiments, where agents were randomly grouped into teams of C = 25, 50, 100,

and 200, respectively. A single control agent was then placed over each individual team and the

control agents coordinate the actions of the teams in order to optimize the system objective

(Section 4.1.3). Adding a 2-layer team-based hierarchical structure to this system reduces the

communication overhead for each agent by approximately 99% (each individual agent in the

system only has to coordinate directly with a fraction of the other agents in the system). This

reduces the amount of noise an agent has to deal with in regards to its own reward signal, resulting
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Figure 6: 10,000 sensors DCP with hierarchical organization and teams of C = 25, 50, 100, and

200 (Section 4.1.3). Agents are randomly partitioned into separate teams and control agents

are placed over the top of each team to coordinate how teams participate in the system. The

transition between team-based agents learning between episodes 0 to 5000 and the control agents

learning from after episode 5000 to episode 10,000 is the reason for the discontinuity in learning

performance around 5000 episodes in each graph involving hierarchical organization (Algorithm

3). Here, for the first 5000 episodes, performance improves as individual teams improve their

attenuations. Then, for the next 5000 episodes, performance increases as control agents learn

to coordinate the behavior of the teams in the system. As seen, shaped difference rewards

coupled with hierarchical organization (EDRH) outperform all other approaches (Figures 2-6).

The hierarchy dictates the control flow and reduces the information overheads, while expected

difference rewards improve agent decision making by making efficient use of locally available

information.

in a cleaner signal and better action selections. Additionally, the presence of a control layer on

top of the teams solves the team-based coordination problem from Section 5.2.

This hierarchical approach assigns a control agent for each team which determines how the

team participates in sensing. This approach addresses the two key issues that inhibited the

performance in the two previous nonhierarchical experiments. First, it reduces the agent-to-agent

coordination complexity by adding structure and organization to the system. Agents now only

need to coordinate with other agents in their team (agents in the top level of the hierarchy form

their own team). Secondly, the information sharing and processing requirements are reduced by

approximately 99% for all agents within the system. Here, individual sensing agents continue to

optimize their local team objective Gck , while the hierarchical agents directly optimize their own

reward GH (which is the DCP system objective G in these experiments). Here, the team-based
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sensing agents continued optimizing their individual team objective, Gck , while the top layer

control agents focused directly on coordinating the actions of the teams to directly optimize the

system objective (Equation 10).

Here, the top and bottom level teams were trained separately (Algorithm 3). First, the team-

based agents learned for 5000 time steps while the control agents took random actions and did

not learn. Then, the bottom level agents’ learning was turned off and they followed their learned

policies while the top layer agents’ learned for the next 5000 time steps. This was done for two

key reasons: 1) the actions of the agents in the bottom layer were independent of agents in the

top layer, and 2) due to the combinatorial optimization nature of the DCP, the control agents

could not make optimal decisions until the actions of the teams were set. The separate training

of the top and bottom levels of the hierarchy is responsible for the learning spike at 5000 time

steps in Figures 6-8.

As seen in Figure 6, hierarchical organization benefits agents using global and expected differ-

ence reward structures (GH and EDRH). In fact, these results show that coupling hierarchical

organization and expected difference rewards can outperform either approach individually by

orders of magnitude. Agents using the global and expected difference reward structures with

hierarchical organization all significantly improve their performance over both the team-free and

the uncoordinated teams settings (Figures 4-5). Observing the performance of random agents in

a hierarchical setting (RH) shows that although hierarchical organization can reduce information

overheads, reduce processing requirements, and dictate the control flow of the system, without a

good decision making algorithm, the sytem performs poorly. Similarly, observing the performance

of agents using traditional global reward based learning for decision making also achieve relatively

low performance (agents using global rewards and hierarchical organizationGH are barely able to

achieve the same performance as the best single sensing device in the system, TBS). This shows

that simply adding hierarchical organization to the system may not be enough to maximize system

performance. Adding a hierarchy reduces coordination complexity and information overheads, but

it does not attempt to optimize agent decision making given the information each agent receives.

Agents utilizing global rewards achieve nearly an order of magnitude better performance when

a hierarchical structure was added to the system compared to global rewards with no teams

and uncoordinated teams, respectively. This is because, in addition to reducing the information

overhead, the hierarchical structure allows teams to coordinate their actions together to improve

system performance. Through reducing the information overhead, agents are able to better

determine their own individual impact on their rewards. This allows them to make better

decisions when attempting to optimize their individual reward both in a team setting as well

as a control agent setting. Despite the benefits from the addition of a hierarchical structure,

agents using traditional global reward structures and hierarchical organization (GH) were still

unable to achieve the same performance as agents using shaped rewards without a hierarchical

structure (Figures 2-6). This is why agents using EDR rewards in a nonhierarchical setting

where the information overhead and coordination complexity remain high still outperform a

traditional global reward GH in a hierarchical structure. However, agents using a combination of

a hierarchical structure and shaped rewards outperform nonhierarchical approaches by orders of

magnitude (Figure 6), which supports the fact that hierarchical structures and shaped rewards

offer complimentary benefits in large scale multiagent systems. Hierarchical organization dictates

the control flow and reduces the information overheads, while shaped rewards improve agent

decision making given the information each received.

5.4 Hierarchically Coordinated Teams with Failures in the DCP

Now that we have established that a combination of shaped rewards and hierarchical organization

can dramatically improve the performance of large multiagent systems, we want to demonstrate

the robustness of such an approach to component failures. In the context of this experiment an

agent (controller or sensor) getting stuck on will constitute a failure. Since failures in the top
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Figure 7: 10,000 sensors DCP with hierarchical organization and teams of C = 25, 50, 100, and

200 (Section 4.1.3). 10,000 sensors solving the DCP with hierarchical teams (Section 4.1.3). 10%

of the bottom layer agents fail after 2500 time steps. The discontinuity at 5000 time steps is

due to hierarchical learning (Section 5.3). As seen, when 10% of the sensing devices fail, the

remaining 90% are able to coordinate to adapt their behavior and recover most of the lost system

performance when learning with EDR rewards.

and bottom layers of the hierarchy may impact the system differently, we perform a separate

experiment for each case. In the first set of experiments 10%− 25% of the bottom level sensors

fail after 2500 time steps (Figure 7), while the other sensors continue learning. In the next set

of experiments 10%− 25% of the top level control agents fail at time step 7500, while the others

continue learning (Figure 8). In both cases, the team-based agents learn for the first 5000 episodes

and the hierarchical control agents learn for the second 5000 episodes (Algorithm 3).

As seen in Figure 7, a combination of difference rewards and hierarchies is robust to failures

within each individual team. Here, a portion of the agents in each individual team fail after 2500

time steps and the remaining sensing devices need to coordinate their actions with these defective

devices in order to recover system performance. Due to the reduced coordination requirements

imposed by the hierarchical organization, team-based sensing agents only need to coordinate their

actions with 100 other agents. These reduced coordination requirements coupled with agents

using difference rewards enable them to coordinate in order to regain the performance lost due

to failures. In the next experiment (Figure 8), a portion of the control agents failed, each one

impacting an entire team of sensing agents. However, since the individual teams maintained

relatively low attenuations, when control agents failed and remained on, the remaining control

agents were still able to coordinate their actions in order to achieve good performance even in

the presence of failures.
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Figure 8: 10,000 sensors DCP with hierarchical organization and teams of C = 25, 50, 100, and

200 (Section 4.1.3). 10,000 sensors DCP with hierarchical teams (Section 4.1.3). 10% of top layer

control agents fail after 7500 time steps. The discontinuity at 5000 time steps is due to hierarchical

learning (Section 5.3) and the discontinuity at 7500 episodes is due to the occurence of failures.

As seen, a combination of shaped rewards and hierarchies proves robust to top layer failures.

Agents using EDRH far outperform agents using a standard global reward GH .

5.5 No Teams in The Time Extended Defect Combination Problem (TEDCP)

Next, we consider the Time-Extended version of the Defect Combination Problem. Here, the

agents must collectively choose both “if” and “when” to participate in sensing. This problem

presents a more complex coordination problem than the original DCP as it maintains the

combinatorial optimization nature of the DCP problem but now, while at the same time providing

agents with a significantly larger joint-action space. In these experiments, the TBS value is

obtained by simply choosing the best sensing device available for each of the 10 time-slots. As seen

here, agents using global rewards G have significant difficulty with this time-extended problem,

due to the added coordination complexity. Agents using EDR outperform all other techniques.

Agents using EDR continue to perform well as they are able to coordinate their actions and

make decisions based upon the rewards they can expect to receive for different actions based

upon previous experience. It is interesting to note however, that in the 10,000 sensor case agents

perform approximately as well as 1000 agents in the standard DCP, which is what we would

expect since there are effectively 1000 agents per time slot in this 10-slot version of the TEDCP.
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Figure 9: Agents solving a 10 slot version of the Time-Extended DCP when no teams are present.

We include experiments with N = 500, 1000, 5000, and 10000 sensing agents, respectively. In this

setting, the line TBS represents the centralized algorithm which activates the top 10 sensing

devices (one per time slot in the TEDCP). As seen, EDRH rewards drastically outperform

agents using GH , as well as the TBS algorithm. This is because these rewards promote agent

coordination and good decision making.

5.6 Hierarchical Teams in The Time Extended Defect Combination Problem (TEDCP)

Continuing with the hierarchical approach, we now consider the Time-Extended DCP problem,

where agents are trying to optimize GTE (Section 3.2). Here, the 10,000 sensing agents are

randomly grouped into teams of C = 25, 50, 100, and 200 devices, and a single control agent is

placed on top of each team (Figure 1). The agents in the bottom layer optimize the attenuation

of their team for the standard DCP (agents in the individual teams choose only whether to turn

on and off). Here, the control agents in the top layer choose both “if” and “when” their team

participates in sensing for the system (the control agents are responsible for choosing which time

slot each team will participate in sensing).

As seen in Figure 10, EDRH continue to outperform agents using GH . Agents using GH

perform worse than they did in the original DCP problem because the amount of information

they receive is the same and the coordination complexity of the problem has increased due

to the additional time slots. Agents using GH are still receiving too much information to

be able to remove the noise from other agents off of their reward signal and the problem

complexity is increased, resulting in poor performance. EDRH rewards perform well in this

problem, demonstrating that such rewards can be robust to increased problem and coordination

complexities. Difference rewards allow agents to filter the information they receive to make
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Figure 10: 10,000 sensing agents solving a 10 slot version of the Time-Extended DCP with

hierarchical organization and teams of size C = 25, 50, 100, and 200, respecitvely (Section 4.1.3).

EDRH rewards drastically outperform agents using GH and TBS. In addition to hierarchical

organization which structures control flow and establishes coordination requirements, EDRH

rewards benefit agent decision making to improve system performance.

good decisions. Meanwhile, hierarchical organization reduces the coordination and information

complexities. The combination of these two coordination methods results in significantly higher

performance than either method independently.

This time-extended version of the Defect Combination Problem demonstrates that combining

hierarchical organization with shaped difference rewards is not only resilient to scaling and

component failures as shown previously, but that it is additionally robust to increased problem

complexity. Here, the agents are responsible for coordinating not only “if” they should participate

in sensing, but also “when” they should participate in sensing. Again, the combination of

shaped difference rewards and hierarchical organization reduces the overall communication

and information overheads for the agents in the system by up to 99% (agents only need to

coordinate directly with a small fraction of their peers), while at the same time increasing system

performance. These results also suggest that the approach is fairly robust to variations in the

hierarchical organization of the system, as we show that similar performance is achieved for

varying team sizes. These properties suggest that this approach would be widely applicable to a

broad number of domains and applications.
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6 Discussion

In very large multiagent systems complete information sharing between agents to promote

coordination is often impractical. Even when complete information is available, there is frequently

too much information for each agent to process. In such systems, agents frequently encounter two

key problems: 1) increased coordination requirements, and 2) increased information sharing and

processing requirements (agents frequently receive more information than they can effectively

process). We address both of these issues by combining two well known coordination mechanisms,

hierarchical organization and shaped difference rewards. Hierarchies dictate the control flow and

information handling, lowering the ‘per agent’ coordination complexity in the system. Here,

hierarchical organization governed the control flow of the system and reduced the information

sharing and processing requirements of individual agents by approximately 99%. On the other

hand, difference rewards act to optimize information processing, serving as an information filter

(extracting only the specific information relative to a particular agent) and promote agent

coordination. Difference rewards filtered the information each agent received, extracting only

the specific information relative to that particular agent.

Although many coordination algorithms exist throughout the literature, they have primarily

been used independently and relatively little work has focused on the performance increases

attainable by combing them. Our results show that a combination of shaped difference rewards

and hierarchical organization can improve coordination, scalability, and performance in large

multiagent systems. We demonstrated the robustness of our approach in two domains under

varying conditions and in the presence of agent failures. Combining difference rewards and

hierarchical organization led to approximately three orders of magnitude improvement over

either method individually in the Defect Combination Problem and a Time-Extended version

of the Defect Combination Problem. This work showed the potential advantages of combining

coordination algorithms in ways that leverage their benefits, which can be utilized in other

domains including sensor networks, aerial vehicle coordination, and network traffic management.

This work showed the benefits of combining reward shaping and hierarchical organization.

However, it did not introduce a means of optimizing the organizational structure of the system.

Future work includes extending our algorithm into domains where the problem structure can

be directly exploited in order to establish optimal organization. Additionally, finding new

combinations of coordination algorithms that can be used to improve both agent-to-agent

coordination as well as overall scalability. In particular, selecting coordination mechanisms that

are synergistic and not only work well together but actually magnify each others benefits. We are

currently pursuing both extensions of this work.
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