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ABSTRACT  

Linear Distributed Parameter Systems are governed by partial differential equations. They are linear infinite dimensional 
systems described by a closed, densely defined linear operator that generates a continuous semigroup of bounded 
operators on a general Hilbert space of states and are controlled via a finite number of actuators and sensors. Many 
distributed applications are included in this formulation, such as large flexible aerospace structures, adaptive optics, 
diffusion reactions, smart electric power grids, and quantum information systems. Using a recently developed normal 
form for these systems, we have developed the following stability result: an infinite dimensional linear system is Almost 
Strictly Dissipative (ASD) if and only if its high frequency gain CB is symmetric and positive definite and the open loop 
system is minimum phase, i.e. its transmission zeros are all exponentially stable. In this paper, we focus on infinite 
dimensional linear systems that are non-minimum phase because a finite number of transmission zeros are unstable. 
Several methods to compensate for this issue modify the output of the infinite dimensional plant and then control this 
modified output rather than the original control output. Here we use a finite dimensional residual mode filter to modify 
the output to produce a fully minimum phase system. Then direct adaptive control for the infinite dimensional plant can 
use this modified output rather than the original output, to achieve ASD and produce asymptotically stability of the states 
on the Hilbert space. These results are illustrated by application to direct adaptive control of general linear systems on a 
Hilbert space that are described by operators with compact resolvent. 
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1. INTRODUCTION  

Linear Distributed Parameter Systems are governed by partial differential equations. They are linear infinite dimensional 
systems described by a closed, densely defined linear operator that generates a continuous semigroup of bounded 
operators on a general Hilbert space of states and are controlled via a finite number of actuators and sensors. Many 
distributed applications are included in this formulation, such as large flexible aerospace structures, adaptive optics, 
diffusion reactions, smart electric power grids, and quantum information systems. Using a recently developed normal 
form for these systems, we have developed the following stability result: an infinite dimensional linear system is Almost 
Strictly Dissipative (ASD) if and only if its high frequency gain CB is symmetric and positive definite and the open loop 
system is minimum phase, i.e. its transmission zeros are all exponentially stable. 

In this paper, we focus on infinite dimensional linear systems that are non-minimum phase because a finite number of 
transmission zeros are unstable. Several methods to compensate for this issue modify the output of the infinite 
dimensional plant and then control this modified output rather than the original control output. Here we use a finite 
dimensional residual mode filter to modify the output to produce a fully minimum phase system. Then direct adaptive 
control for the infinite dimensional plant can use this modified output rather than the original output, to achieve ASD 
and produce asymptotically stability of the states on the Hilbert space. These results are illustrated by application to 
direct adaptive control of general linear systems on a Hilbert space that are described by operators with compact 
resolvent. 
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2. ADAPTIVE DISTRIBUTED PARAMETER SYSTEM CONTROL 

Let X  be an infinite dimensional separable Hilbert space with inner product ( , )x y  and corresponding 

norm ( , )x x x . Let A  be a closed linear operator with domain ( )D A  dense in X . Consider the Linear Infinite 

Dimensional System: 

        

0

1

( ) ( ) ( ), (0) ( )

( ) ( ), ( , ( )), 1...

m

i i
i

i i

x
t Ax t Bu t x x D A

t

Bu bu

y t Cx t y c x t i m



     

 

   




    



   

  (1)                             

where ( ) ( )x t D A   is the plant state, ( )ib D A   are linearly independent actuator influence functions, ( )ic D A   

are linearly independent sensor influence functions, u(t), ( )y t RM  are the control input and plant output M-vectors 

respectively. The closed linear operator A with dense domain ( )D A  dense in X  generates a 0C  semigroup of 

bounded linear operators ( ) on U t X  . The dynamics stated above will be assumed to be minimal in the sense that they 

are fully realized in the corresponding infinite dimensional plant transfer function: 
1( ) ( )P s C sI A B    , and 

there are no hidden plant dynamics. 

Now for this paper, we want to describe the plant in (1) as being decomposed into an infinite dimensional subsystem 

( , , )A B C  and a finite dimensional stable subsystem ( , , )Q Q QA B C . The subsystem ( , , )A B C  will be assumed to be 

Almost Strictly Dissipative as defined in later sections of this paper.   So we rewrite (1) as 
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where A generates a 0  C  semigroup of bounded linear operators U(t) on X and QA  is a stable finite dimensional 

bounded linear operator on QX . 

Furthermore ( , , )A B C  will be assumed to be Almost Strictly Dissipative (ASD) as defined in the next section. 

What we will mean here by asymptotic state regulation is the following:  



 
 

 

 

 0( ) 0 for all ( ) 
t

x t x D A   (2) 

This control objective will be accomplished using only the modified output feedback by a Direct Adaptive Control Law 
of the form: 

 cu Gy  (3a) 

The direct adaptive controller will have adaptive gains given by: 

 * ; 0c cG y y     (3b) 

where cy will be the new control output modified by an RMF to be described later. 

3. ALMOST STRICT DISSIPATIVITY 

This section will refer only to the subsystem ( , , )A B C  above. Since there can be some ambiguity in the literature with 

the definition of strictly dissipative systems, we modify the suggestion of Wen in [8] for finite dimensional systems and 
expand it to include infinite dimensional systems. 

Definition 1: The triple (Ac, B, C) is said to be Strictly Dissipative (SD) if cA is a densely defined ,closed operator on 

XAD c )(  a separable complex Hilbert space with inner product ),( yx and corresponding norm  ),( xxx  and 

generates a 0C semigroup of bounded operators )(tU ,and ),( CB  are (bounded) finite rank input/output operators with 

rank M where : mB R X  and : mC X R . In addition there exist Hermitian bounded operators P and Q on X  

such that 
2 2

min max0 ( , )p x Px x p x    and 
2 2

min max0 ( , )q x Qx x q x   , i.e. P, Q are bounded and 

coercive, and the infinite dimensional Kalman-Yacubovic Conditions:    
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   (4)        

We also say that ),,( CBA  is Almost Strictly Dissipative (ASD) when there exists *G  an mxm gain such that  

),,( CBAc  is SD with CBGAAc * . Similarly, ),,( CBA  is Almost Dissipative (AD) when 0Q . Our 

definition of ASD is an extension of the concept of m-accretivity for infinite dimensional systems; see [9] pp278-280. 

Note that if P=I in (4), by the Lumer-Phillips Theorem [10], p405, we would have min( ) ; 0 ; 0t
cU t e t q     .   

We will make the following set of assumptions:  

Hypothesis 1: Assume the following: 

i.)  ASD, is ),,( CBA  i.e. there exists a gain, *G such that the triple ),,( * CBCBGAAC  is SD 

ii.) A is a densely defined ,closed operator on XAD )(  and generates a 0C semigroup of bounded 

operators )(tU , 

iii.) ),Re( xxAC is bounded on bounded subsets of  XAD )( . 



 
 

 

 

From (3), we have 


GyyGGyu  * .
 And then, from (1), the Closed Loop System becomes 
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Since B and C are finite rank operators, so is *BG C . Therefore *cA A BG C   with  ( ) ,cD A D(A)  generates a Co 

semi-group Uc(t) because A does; see [9] Theo 2.1 p 497. 

From Appendix I in [30] using a Hilbert space version [16] of Lyapunov-Barbalat. We have the following Adaptive 
Stabilization Theorem  

Theorem 1: Consider the coupled system of differential equations where mxmx
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   (6)                         
 

where )(tG  is the  mxm adaptive gain matrix and   is any positive definite constant matrix, each of appropriate 

dimension. Under Hypothesis 1, we have asymptotic state (and output) regulation, i.e. the system state )(tx  globally 

asymptotically converges to zero, and the adaptive gain matrix )(tG  is bounded.
 

On close examination, Theo.1 in various forms is the essence of direct adaptive control stability proofs in finite 
dimensions, when adaptive output feedback is used [20]-[21], [28]. 

4. NORMAL FORM FOR LINEAR INFINITE-DIMENSIONAL SYSTEMS 

In this section we review the idea of a Normal Form for linear infinite dimensional systems ( , , )A B C .  

The High Frequency Gain of the transfer function of (1) is defined as the mxm matrix: )],[( ji bcCB  . 

In the special case that ( , ) ( , )i j i jc b b c  for all ,i j  then CBCB *)( and when CB is nonsingular we 

have 0CB . This is particularly true when icb ii  . In [30]-[31] we have shown that if CB is nonsingular then 

CCBBP 1
1 )(   is a (non-orthogonal) bounded projection onto the finite dimensional range of B, )(BR , along the 



 
 

 

 

null space of )(, CNC with 12 PIP   the complementary bounded projection, and ( ) ( )X R B N C  , as well 

as ( ) ( ) [ ( ) ( )]D A R B N C D A   . We see that },...,,{)( 21 mbbbspBR  and mBR )(dim . But )(CN  will be 

infinite dimensional, and in general  )()( BRCN . 

Now for the above pair of projections ).( 21 PP  we will have 
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because 1
1( ( ) ) ;y Cx C B CB C x CP x    1 1

1 ( ) ( ) ;P x B CB Cx B CB y   1
2 ( ) 0;CP C CB CB C   and 

1
2 ( ) 0.P B B B CB CB     

From [30]-[31], we have the Normal Form Theorem: 
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This coordinate transformation puts (1) into normal form:  
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where the subsystem: ),,( 211222 AAA  is called the zero dynamics of (1) and  
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Also we define the Zero Dynamics Transfer Function as 21
1

2212 )()( AAIAZ   . 

5. TRANSMISSION ZEROS AND THE ZERO DYNAMICS OF LINEAR INFINITE 
DIMENSIONAL SYSTEMS 

Now it is possible to relate the point spectrum  1-1not  /)( 2222 AIAp    to the set  ),,( CBAZ  of transmission 

(or transmission blocking) zeros of ( , , ).A B C Analogous to the finite-dimensional case [16], we can see that  
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From [29], we have: 

Theorem 3: 

 1-1not  is /)(),,( 2222 AIACBAZ p    which is the point spectrum of 22A . So the transmission zeros of 

the minimal infinite-dimensional open-loop plant ),,( CBA  are the “eigenvalues (and limits of eigenvalues)” of its zero 

dynamics ),,( 211222 AAA . 

Finite dimensional versions of this result appear in for example [14]-[15]. 

In this section we review the fact, from Appendix II of [30], that the ASD property is equivalent to two simple open-loop 
properties of the infinite dimensional system ),,( CBA  involving the high frequency gain CB  and the transmission 

zeros ),,( CBAZ .  

Theorem 4: The Linear Infinite Dimensional System ),,( CBA is Almost Strictly Dissipative (ASD) if and only if the 

High Frequency Gain Matrix )],[( ji bcCB   is a Hermitian and Sign Definite matrix (either positive definite or 

negative definite) and the Transmission Zeros, ),,( CBAZ , are (exponentially) stable, i.e., the zero dynamic subsystem 

   ),,( 122122 AAA is (uniformly) exponentially stable or equivalently: for all 2 2 ,z S l   there exists a positive 

constant zδ  such that 
2

220
 zU (t)z dt δ


    where )(22 tU  is the 0C  semigroup generated by 22A . 

This result gives necessary and sufficient conditions for ASD in terms of two open-loop system properties on the high 
frequency gain and the transmission zeros; no closed loop information is required. Theo.4 uses results from [11] and 
[22]. 

For some applications, the high frequency gain )],[( ji bcCB   may be exactly known. If it is nonsingular, we can 

modify the input vCBu 1)(   in (1) and treat v  as the plant input or equivalently scale the gain in 

(3a): GyCBu 1)(  . This will replace CB  with the identity matrix mI  in the normal form (8). 



 
 

 

 

In finite dimensions, a number of versions of Theo. 4 appear [13], [24]-[28], although they are often not both necessary 
and sufficient. Ref [13] does give necessary and sufficient conditions for ASD and also for the weaker condition: Almost 
Dissipative (AD). Note: In finite dimensional theory, ASD is equivalent to Almost Strict Positive Real (ASPR) and AD 
is equivalent to Almost Positive Real. 

We have shown that modifying the transmission zeros of a linear infinite dimensional system by static or dynamic output 
feedback is not possible. Clearly coordinate transformations do not change the transmission zeros. 

Theorem 5 (Transmission Zero Invariance): The transmission zeros ),,( CBAZ  of the infinite dimensional plant (1) 

are invariant under dynamic output feedback: General Linear Infinite Dimensional Dynamic Output Feedback Controller 
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Proof: See [19]. 

6. ADAPTIVE CONTROL OF NONMINIMUM PHASE INFINITE DIMENSIONAL 
SYSTEMS USING A RESIDUAL MODE FILTER 

This section contains the main result of this paper. In the above we have assumed that the full plant model ( , , )A B C   in 

(1) is nonminimum phase, i.e., there are a finite number of unstable transmission zeros. Consequently it is not ASD and 

hence the results in Theo. 4 do not apply to ( , , )A B C  . However if ( , , )A B C  can be partitioned as in (1’), then we can 

modify the adaptive control law with a residual mode filter (RMF) so that the new system is ASD and then the results of 

Theo. 1 will apply. We must assume that the dynamics of the finite dimensional ( , , )Q Q QA B C are known, even though 

we only know the infinite dimensional dynamics ( , , )A B C  has relative degree one (CB>0) and is minimum phase (all 

transmission zeroes are stable). 

Consider the finite dimensional RMF: 
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And the modified control output: 

 ˆc Qy y y   (10) 

We note that the RMF is a finite dimensional state estimator for the ( , , )Q Q QA B C  subsystem with estimator error 
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Since QA  is a bounded stable operator on the finite dimensional space 
QX , we have  the 
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The following is our Main Result: 

Theorem 6: Under the Hypotheses on the plant ( , , )A B C   in the above development including that the subsystem 

( , , )A B C  is ASD and the finite dimensional subsystem ( , , )Q Q QA B C  is stable, the direct adaptive controller with a 

residual mode filter RMF: 
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will produce globally asymptotic state regulation 0
t

x   with bounded adaptive gain G . 

Proof: Consider  
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From the definition of transmission zeros for infinite dimensional systems, form the operator 
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Since ( , , )A B C  is minimum phase and QA  is finite dimensional and stable, then ( , , )A B C  is minimum phase. Also 
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CB C C CB
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 Therefore ( , , )A B C  is ASD by Theo.4. Consequently by Theo.1 we have 
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 
 and the adaptive gain G  is bounded.  

This completes the proof of Theo. 6. 



 
 

 

 

7. ILLUSTRATIVE EXAMPLE: ADAPTIVE CONTROL OF LINEAR CAUCHY 
PROBLEMS 

We will apply the above direct adaptive controller with RMF on the following single-input/single-output Cauchy 
problem:  

 

0, (0) ( )  Hilbert Space

( , ),  with , ( )

x
Ax Bu x x D A X

t

Bu bu

y Cx c x b c D A
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
   


     



   

 (12) 

We will assume that A  is closed and densely defined operator with compact resolvent. This means A  has discrete 

complex spectrum:    
1k k

 


   and  

1
1

( , )  where { }k k k k k
k

Ax x   







  is an orthonormal (Schauder) basis of eigenvectors for X ; a special case for 

this occurs when A is self-adjoint [9] Theo 6.29 p187. 

Now we assume that (possibly with some rearrangement) that  
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( , ) ; ( , ) .Q Q Q Qy c x C x y c x Cx     Furthermore, we assume that ( , , )A B C is ASD. 

Then the Modified Adaptive Controller 
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will produce globally asymptotic state regulation with bounded adaptive gain via Theo.6. 

8. CONCLUSIONS 

In this paper we have examined the theory of Direct Adaptive Model Reference Control for nonminimum phase linear 
systems on infinite-dimensional Hilbert spaces. Our main stability result is Theorem 6 which is based upon relating 
almost strict dissipativity to the equivalent conditions of minimum phase open-loop (all transmission zeros are 
exponentially stable) and relative degree one (CB>0); see Theo. 4. These results show that a simple direct adaptive 
controller modified by a finite dimensional residual mode filter (RMF) can produce asymptotic state regulation while the 
adaptive gains remain bounded. 

The foundation for Theo 6 is the ability to partition the nonminimum phase infinite dimensional plant into the sum of a 
minimum phase infinite dimensional subsystem and a finite dimensional stable residual subsystem which is the basis for 
the RMF. At this time it is still an open question as to whether this can always be done for modal systems. What our 
results do show is that with a certain amount of trial and error, modal subsystems can be deleted one at a time from a 
distributed parameter model of a plant like a linear flexible structure to see if such a process will reveal a minimum 
phase subsystem. And from this a RMF modified adaptive controller can be created to provide globally asymptotic state 



 
 

 

 

regulation with bounded adaptive gains. This trial and error approach has worked for adaptive control of utility-scale 
wind turbines described by large scale structure approximations [34], which proves nothing but does suggest that finding 
such a partion of a modal system may not be as hard as it first appears. 

We have illustrated our results by applying them to infinite dimensional system Cauchy problems governed by an 
operator with compact resolvent on an arbitrary Hilbert space. It is reasonable to expect that these results can be 
extended to handle model tracking and mitigation of persistent disturbances for nonminimum phase infinite dimensional 
systems.  

Of course these results are valid for large-scale finite dimensional systems as well. 
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