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Abstract. Polyglot is a tool for the systematic analysis of systems in-
tegrated from components built using multiple Statechart formalisms.
In Polyglot, Statechart models are translated into a common Java rep-
resentation with pluggable semantics for different Statechart variants.
Polyglot is tightly integrated with the Java Pathfinder verification tool-
set, providing analysis and test-case generation capabilities. The tool has
been applied in the context of safety-critical software systems whose in-
teracting components were modeled using multiple Statechart formalisms.
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1 Introduction and Tool Overview

Polyglot is a unified environment in which multiple variants of Statecharts [1],
a popular modeling formalism for the dynamics of reactive systems, can be exe-
cuted and verified against properties. The work on Polyglot has been motivated
by large programs such as human space exploration, that involve multiple sys-
tems that interact via safety-critical protocols. These systems have been designed
using different Statechart formalisms to build models from which code is auto-
matically generated. Determining the impact of using different formalisms on
the reliability and safety of such model-based software has been a daunting task
with little prior tool support available.

Polyglot performs the analysis of the different models (e.g. expressed in Mat-
lab Stateflow or Rational Rhapsody) by translating them to a common inter-
mediate representation, which is then translated into Java code that represents
the “structure” of the model (see Figure 1). The semantics are provided as sepa-
rate “pluggable” modules. Currently, Polyglot includes modules that implement
the semantics of Matlab Stateflow, Rational Rhapsody, and UML Statemachines;
the framework can be extended easily with other Statechart semantics. The Java
code representing the structure of the model is combined with one of these se-
mantic modules, resulting in an executable component. We have also developed
a formal description for the various Statecharts semantics using the structural
operational semantics formalism (SOS) [2] to provide confidence in our imple-
mentation. Properties of interest are expressed using specification patterns [3]
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Fig. 1. The Polyglot tool.

which are automatically translated into checking code similar to observer au-
tomata [4]. The analysis is performed using Java Pathfinder (JPF) [5]. JPF
is a mature open-source tool-set for the verification of Java bytecode, that in-
corporates model checking and powerful test-case generation (i.e. the symbolic
execution tool Symbolic PathFinder – SPF [6]) and compositional verification
capabilities [7]. Polyglot is written in Java and it is freely available from [8].

The clear separation between the model structure and the different semantics
provides several advantages. First, it provides the basis for analyzing interacting
models that operate under different semantics. This is crucial to finding interop-
erability and interface errors early in the design phase, since e.g. previous findings
show that the majority of errors in NASA’s Apollo and Skylab software were
interface errors [9]. Furthermore, this approach allows users to verify whether
model properties are preserved across different variants of Statecharts, ensuring
that there are no misunderstandings in requirements and design development
due to semantical differences. Moreover, Polyglot allows a user to understand
and analyze the behavior of models across different tools in a single framework.

Verification and validation techniques exist for several individual modeling
formalisms, and supporting tools offer features such as test-input generation and
model checking (see below). However, existing modeling languages and analysis
tools are limited to a single Statechart formalism and have limited verifica-
tion capabilities. What distinguishes Polyglot from other related approaches is
its extensibility both in terms of Statechart semantics that are supported (via
“pluggable” semantics) and analyses that can be performed, via the extensible
JPF verification framework or custom analysis.
Related Tools The analysis of Simulink/Stateflow models is supported by com-
mercial tools such as Mathworks’ Design Verifier, used for model checking and
test case generation, and Reactive System’s Reactis and T-VEC’s tester, used
for test generation and coverage. Similarly, for UML Statecharts, there are a
wide variety of research tools. However, we believe that the ability to analyze
multiple semantics in one environment is a major benefit to our approach.

Polyglot is similar to the heterogeneous model analysis from [10], which is
based on a common “inframodel” and a set of rules describing the semantics and
interactions between multiple formalisms. The work is concerned with high-level



Polyglot: Systematic Analysis for Multiple Statechart Formalisms 3

model descriptions and it would take considerable effort to use those rules to
capture the semantic details for the Statecharts that are the focus here. Also
that work does not address property preservation under different semantics.

The Ptolemy environment [11] is a laboratory for experimenting with differ-
ent models of computation for component based systems. Ptolemy implements
polymorphic components whose behavioral semantics depend on an “execution
engine” (“director” in Ptolemy) similar to our “pluggable semantics”. Our work
addresses different Statechart variants and formal semantics with particular fo-
cus on model checking and systematic test case generation, while Ptolemy’s goal
is simulation.

The parametric semantics from [12–14] provide powerful semantic frame-
works for many Statecharts variants as well as process algebras. While quite
flexible, they can not fully capture the behavior of any of the three notations
considered here (see [15] for details).

2 Design Choices and Extensions

Design Choices We chose Java as the common language to represent and ana-
lyze Statecharts for several reasons. First, we needed an executable representation
for the models, to allow for quick validation and debugging. Java has a precise,
clear semantics, well-understood by many, so implementing a concise simple ex-
ecution engine for the Statechart variants (that is actually readable) is a good,
pragmatic approach to defining semantics. We also wanted a modular and ex-
tensible design for our framework, to allow for easy integration of new semantic
variants. Java is an ideal language for this purpose. Furthermore, we chose Java
to leverage the model checking and symbolic execution capabilities from JPF for
systematic analysis, automated test case generation (with SPF) and coverage
measuring.

We also note that the Statechart variants have large action languages. Fea-
tures like complex data types and function states, along with transitions con-
taining guards and actions that use these types and functions, would be difficult
to represent in simpler modeling languages, e.g. satisfiability modulo theories
(SMT) formulas that can be solved with off-the-shelf solvers. On the other hand,
there is a straightforward mapping from most action-language features into a
similar concept in Java.

We have designed the generated code and semantic modules so that they
work together to provide a clean input-output interface to the environment.
This interface allows us to simulate the models and also to connect them to
JPF, with JPF driving the execution non-deterministically or symbolically.
Extensions The integration of Polyglot with JPF enables us to take advantage
of the optimized analysis techniques that are already provided by JPF. To fur-
ther improve the performance of Statechart analysis in Polyglot, we have exper-
imented with two techniques [16]. The first is a multithreaded custom symbolic
execution engine for Polyglot, while the second technique is the application of
partial evaluation to optimize the generated Polyglot code with respect to partic-
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ular models and semantics. We note that the design of Polyglot, which decouples
the semantic modules from the “structure” of a Statechart model, lends itself
well to a multithreaded implementation.

Polyglot can be used as described above to execute and analyze both individ-
ual models and also systems with a simple communication that matches Stat-
echart semantics (i.e. event broadcast). This mechanism is insufficient for com-
ponents that execute in parallel and communicate asynchronously. The problem
could be addressed by modeling the communication protocol itself as another
Statechart and composing it with the other models. However this may be ineffi-
cient, as the protocols can be very large. We have therefore explored extending
Polyglot with features not inherent to the basic Statecharts paradigm. These
include a connector mechanism for communication and a scheduling framework
for sequencing the execution of individual components [17].

Polyglot comes with a library of connectors modeling lossless FIFO com-
munication and ARINC-653 1 ports. Instead of reading data from or sending
data directly to another component, data is read from or written to a connector.
Other communicating mechanisms, such as lossy communication and non-FIFO
message delivery, can be easily incorporated. The scheduler is responsible for or-
dering the component execution and for invoking the property checking. We have
developed a generic scheduler that can be instantiated with different schedul-
ing mechanisms, e.g. non-deterministic, priority-based, calendar-based, etc. By
default, Polyglot uses a non-deterministic scheduler. Currently, it is the responsi-
bility of the user to manually link the components via the connector and schedul-
ing mechanism. We intend to automate the process using the Generic Modeling
Environment (GME) [18], a graphical tool that already supports our interme-
diate representation and in which we can describe a system’s architecture and
automatically generate the code for connector and scheduler instances.

3 Tool Usage

Polyglot has been applied to medium-sized models of flight software, including
an example modeling a component from NASA/JPL’s Mars Exploration Rovers
(MER) [15]. The MER software consists of a Resource Arbiter and several user
components, serving specific applications, such as imaging, controlling the robot
arm, communicating with earth, and driving. The arbiter moderates access to
shared resources, preventing potential conflicts between resource requests and
enforcing priorities; e.g., a communication session with Earth can not be started
while the rover is driving. Each user has 2 pseudostates, 4 atomic states, 1
compound state and 9 transitions (259 LOC in the Java representation), while
the arbiter has 33 pseudostates, 15 atomic states, 2 orthogonal states and 58
transitions (1788 LOC). Polyglot was used for checking safety properties and
generating test cases for this model, where the semantics of User 1 was changed
from Stateflow into UML and Rhapsody. Table 1 shows the results for analyzing

1 Avionics Application Standard Software Interface, Aeronautical Radio, Inc.
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Table 1. Experimental results.

Semantics, Seq. size Total # Test Cases Property Memory, Time

U1 Stateflow, 4 125 true 20 MB, 43 s

U1 Stateflow, 5 412 true 22 MB, 2 m 04 s

U1 Stateflow, 6 1343 true 24 MB, 6 m 46 s

U1 UML, 4 57 false 21 MB, 21 s

U1 UML, 5 155 false 21 MB, 53 s

U1 UML, 6 579 false 23 MB, 2 m 50 s

U1 Rhapsody, 4 57 false 21 MB, 21 s

U1 Rhapsody, 5 155 false 21 MB, 55 s

U1 Rhapsody, 6 579 false 23 MB, 2 m 45 s

the models with increased number of time steps, corresponding to sequences of
sizes 4, 5 and 6.

The property holds for the Stateflow models, but it fails when we change the
semantics of one user to UML or Rhapsody. This is due to a semantic difference
between UML and Stateflow (outer transitions have higher priority over inner
transitions in Stateflow, but have lower priority in UML and Rhapsody). This
semantic difference is also reflected in the different number of test cases. Note
that the results for UML and Rhapsody are practically identical (since their
semantic differences are not exposed by the analyzed models).

The feedback produced at the Java-level has the form of test sequences that
have been used as inputs to drive the simulation of the models in the original
modeling environments. The generated test sequences can also be used for testing
the code that is generated from the models.

Polyglot has been used also to analyze models representing the interaction be-
tween the Ares launch vehicle and the Orion Crew Exploration Vehicle [17]. The
Ares-Orion communication during abort was formulated as a property derived
from the official flight software design documents and the software requirements
specification available for Ares I. The analysis confirmed problems suspected by
the engineer who developed the model, who had already submitted a request for
a change to the Ares I design document. Since then, the design has changed to
reduce the command echo dependency because of a bit-rate limitation. The ef-
fects of that change have not yet been investigated, but our tool can help answer
this for the future.

4 Conclusion

We have described Polyglot, a tool for the systematic analysis of model-based
software written with multiple Statechart formalisms. The tool has been applied
to the analysis of safety-critical systems whose interacting components were
modeled using multiple Statechart formalisms. We plan to further expand and
robustify the tool and use it for the analysis of the ground system in the GOES-R
project [19]. We also plan to explore the compositional techniques from JPF [7]
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for the component-based analysis of models in Polyglot. As model-driven devel-
opment is increasingly used in a diverse way for the design and implementation
of safety and mission critical systems, we believe that our tool will provide a key
capability for the verification and validation of such software.
Acknowledgments This work has been supported in part by NASA under
Cooperative Agreement NNX09AV58A. The authors would also like to thank
Michael Whalen for valuable discussions and feedback.
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Appendix: Tool Demonstration

The demonstration will focus on the following capabilities of Polyglot.

1. Simulating models with different semantic variants.
2. Defining properties with our pattern based specification system.
3. Executing models symbolically with SPF (the symbolic execution mode of

JPF) to identify property violations.
4. Generating test cases with symbolic execution, using the SPF tool.

The following sections describe each of these pieces in more detail.

Simulating models with different semantics

The demonstration will begin with a short example that highlights Polyglot’s
most distinguishing feature: quickly executing the same Statechart model using
different semantics. The model we will use is shown in Figure 2. This model
is interesting because the occurrence of event “e” results in a different state
configuration for Rhapsody, UML and Stateflow semantics. Using Polyglot to
demonstrate these differences involves the following steps.

1. Defining the model.
2. Translating the model to Java.
3. Running the model with different semantic variants.

Fig. 2. Simple model to show semantic differences.

We will perform the first step using Matlab Stateflow, although both the Ra-
tional Rhapsody tool and our intermediate language can also be used instead. For
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Stateflow, we use a mature translation tool, MDL2MGA, to generate the inter-
mediate language. MDL2MGA and the intermediate language have already been
used by several other large projects (with NASA and DARPA), and we reuse
them in Polyglot. MDL2MGA is described on Page 7 of the documentation in-
cluded with the Polyglot distribution. Note that our intermediate representation
(IR) is supported by the graphical environment GME, so that users can draw
the models using GME in the IR and then generate Java code from that.

The distribution also includes a tool called Rhapsody2MGA that we built
specifically for Polyglot that translates from Rational Rhapsody models into
our intermediate language. Instructions for using Rhapsody2MGA, along with a
sample Rhapsody model, are available in the “samples/rhapsodyex1” directory
in the distribution. Limitations of the Rhapsody2MGA translator are discussed
on page 26 of the Polyglot documentation.

Note that there is no such translation tool for UML. While there are many
tools for building UML models, the degree to which most of these tools conform
to the semantics described by the official OMG specification for State Machine
Diagrams is unclear. We made a strong effort to understand these semantics and
describe them using the SOS formalism, and then implement them in Polyglot.
To use the UML semantics, users can define models in Stateflow, Rhapsody or
the IR, and then translate the models to Java code and run them with the UML
semantic module.

The third step above, running the model with different semantic variants,
is performed by compiling the generated Java code and running it with the
semantic modules. Changing the semantic module with which the generated Java
code runs involves changing a command line parameter. We will run the model
with three different semantics (UML, Rhapsody and Stateflow) and compare the
final state configurations for each.

This example is included in the Polyglot distribution in the “samples/seman-
ticdifferences” folder.

Defining properties

The next part of the demonstration will show how property specification and
checking are integrated into Polyglot. This part will use a Statechart model for
a cruise controller, shown in Figure 3. After describing the model, this part will
involve the following steps.

1. Defining two temporal properties.
2. Translating the model and properties into Java code.
3. Running the Java code in simulation mode.

The two temporal properties will state the following (the first is satisfied by
the model but the second is not).

– The “CC engaged” state must be active before the “CC paused” state.
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Fig. 3. Cruise controller model.

– The model should not be in the “CC on” state at the end of a step in which
the input command is “set speed”.

The first property is an example of the precedence pattern: a state or condi-
tion must be preceded by a certain combination of states and conditions. The
second property is an example of the absence pattern: a certain state or condition
should never happen during some scope of execution.

We have built a graphical extension for the Matlab Stateflow environment
that allows properties to be entered into dialog boxes using a pattern based
system. Figure 4 shows a screenshot of these dialog boxes with the two properties
above. Once the properties have been entered, they are automatically translated
into Java code that is integrated with Polyglot.

After the model and properties are translated into Java code, we will manu-
ally simulate the model and provide an input sequence that leads to a violation
of the second property. This will demonstrate how Polyglot can check properties
in simulation mode.

This example is included in the Polyglot distribution in the “samples/cruisec-
ontroller” folder.

Automatically finding property violations

This part of the demonstration will build on the previous step, in which the
property violation was discovered by manually entering inputs. In this phase,
we will use the same model and unsatisfied property and show how SPF can
automatically find input sequences that violate the property.

We will begin by showing how to configure SPF to analyze our model. This
consists of writing an SPF configuration file and specifying necessary parameters.
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Fig. 4. Screenshot of the property specification system.

After this, SPF will automatically explore different paths through the model and
report when it finds a path leading to a property violation.

Test-case generation

This part of the demonstration will show how Polyglot can use SPF to find input
sequences to reach states when a model has more complex arithmetic constraints
and actions. The Statechart model for this part is shown in Figure 5.

Fig. 5. Model with more complex constraints and actions.

The goal is to find an input sequence that reaches state C. The guard on the
transition to state C says that the value of internal variable i is 2 and the value
of the internal variable x is 20. However, at first glance, it is not obvious what
sequence of values to the input variable y will lead to these conditions being
satisfied.
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We will first show how to configure SPF to explore this model. Next, we will
execute this model symbolically using SPF. The relevant output is at the top
of listing 1.1. Line 2 is generated by SPF and shows a sequence of method calls
that can be given to the model in Polyglot to drive it to state C. Lines 5 through
14 show the state sequence and values for the variable x when this test-input is
provided to the model.

This example is included in the Polyglot distribution in the “samples/sym-
bolicex1” folder.

1 // Output from SPF
2 [ setData (1 ) , setData (0 ) , setData (18) , setData (−4) , setData (−1) ]
3
4 // Inpu t t i n g t h i s t e s t−sequence to Po l y g l o t
5 I n i t i a l cond i t i on :
6 cur rent s t a t e = A, value o f x = 0
7 After setData (1 ) :
8 cur rent s t a t e = B, value o f x = 1
9 After setData (0 ) :

10 cur rent s t a t e = A, value o f x = 1
11 After setData (18) :
12 cur rent s t a t e = B, value o f x = 20
13 After setData (−4) :
14 cur rent s t a t e = C, value o f x = 20

Listing 1.1. Data structure for a symbolic execution path.

Obtaining Polyglot

The Polyglot distribution is available for download at http://balasub.com/polyglot/.
All of the demo models described in this appendix are included as samples in
the distribution. The website also includes two sample videos showing Polyglot.

The distribution has the following structure; we comment only on the parts
relevant to this appendix. Full details are found in the readme.txt file in the
top-level directory.

– /bin: The MDL2MGA and Rhapsody2MGA translators, the Java code gen-
erator and a .jar file of the Polyglot libraries.

– /doc: The main documentation (pgdesign.pdf).
– /etc: The .xsd for our intermediate language.
– /samples: Includes all of the samples described in this appendix along with

additional examples.
– /src: The MATLAB files needed for defining temporal properties inside

MATLAB, and the Polyglot source code.

The prerequisites for running Polyglot are Windows 32-bit (for running the
code generation tools), version 6 or later of the Java JDK and JPF/SPF.



12 Balasubramanian et. al

If time permits, we will show an overview of the Polyglot code, and we will
demonstrate the use of connectors and the non-deterministic scheduler. In ad-
dition to the capabilities described here, we have implemented a multithreaded,
custom symbolic execution engine for Polyglot, which can improve the execu-
tion time of the symbolic analysis by more than an order of magnitude. Time
permitting, we would also like to showcase this as a highlight of how Polyglot’s
original design that uses pluggable semantics allows powerful extensions to be
built.


