
A Verification-Driven Approach to
Traceability and Documentation for

Auto-Generated Mathematical Software

Ewen Denney
SGT / NASA Ames

Moffett Field, CA 94035
Ewen.W.Denney@nasa.gov

Bernd Fischer
School of Electronics and Computer Science

University of Southampton, England
B.Fischer@ecs.soton.ac.uk

Abstract

Model-based development and automated code generation
are increasingly used for production code in safety-critical
applications, but since code generators are typically not
qualified, the generated code must still be fully tested,
reviewed, and certified. This is particularly arduous for
mathematical and control engineering software which re-
quires reviewers to trace subtle details of textbook formulas
and algorithms to the code, and to match requirements
(e.g., physical units or coordinate frames) not represented
explicitly in models or code. Both tasks are complicated
by the often opaque nature of auto-generated code. We
address these problems by developing a verification-driven
approach to traceability and documentation. We apply the
AUTOCERT verification system to identify and then verify
mathematical concepts in the code, based on a mathematical
domain theory, and then use these verified traceability
links between concepts, code, and verification conditions to
construct a natural language report that provides a high-
level structured argument explaining why and how the code
uses the assumptions and complies with the requirements. We
have applied our approach to generate review documents for
several sub-systems of NASA’s Project Constellation.

1. Introduction

Model-based development and automated code generation
have moved beyond simulation and prototyping and are
increasingly used for actual production code generation, in
particular in mathematical and engineering domains. For
example, NASA’s Project Constellation uses MathWorks’
Real-Time Workshop for its Guidance, Navigation, and
Control (GN&C) systems. However, code generators are
typically not qualified [24] and there is no guarantee that
their output is correct, so that the generated code must still
be fully tested and, for safety-critical applications, reviewed
and certified. This is difficult for two reasons in particular:

• Generated code is often difficult to understand, and
requires reviewers to match subtle details of textbook
formulas and algorithms to model and/or code.

• Common modelling and programming languages do not
allow important domain requirements to be represented
explicitly (e.g., units, coordinate frames, quaternion
handedness [16], [28]); consequently, such require-
ments are generally expressed informally and the gen-
erated code is not traced back to them.

The central problem for reviewing and certification is to
disentangle the complexity of the generated code, in order
to provide a comprehensible explanation in terms of high-
level domain concepts. This in turn requires comprehensive
traceability links that connect the code not only to the model
or to verification artifacts, but also to abstract concepts and
requirements such as quaternion handedness. The central
challenge is to recover these traceability links: we cannot
rely on the code generator to provide them, and, furthermore,
we cannot even rely on the correctness of any links that
are provided. In fact, we need explicit assurance that the
traceability links–whether provided or recovered—are cor-
rect, because any documentation derived from them would
be misleading otherwise, and nothing would be gained.

In this paper, we thus describe a new verification-driven
approach to traceability and documentation. Our goal is to
to construct verified, natural language safety documentation
that explains why and how automatically generated code
complies with specified requirements. The central insight of
our approach is that verification and documentation need the
same links, and that we can combine methods from program
understanding and program verification to recover verified
traceability links. We use the recovered links to construct
documentation that lists and explains the external assump-
tions on the code (e.g., the physical units and constraints on
input signals), the dependencies between variables, and the
algorithms, data structures, and conventions (e.g., quater-
nion handedness) used by the generator to implement the
model. It also shows how assumptions and requirements are
related through the code, in particular, the complete chain
of reasoning which allows the requirements to be concluded
from the assumptions, which assumptions are used to show a
specific requirement, and which assumptions remain unused.
The documentation is hyper-linked to both the program and



the verification conditions, and so gives traceability between
verification artifacts, documentation, and code.

The documentation generation tool described here is based
on the AUTOCERT code analysis tool [5], [6], which takes
a set of requirements, and uses a Hoare logic approach to
formally verify that the code satisfies them. AUTOCERT can
verify both execution-safety requirements (e.g., variable ini-
tialization before use, array bounds, etc.), as well as domain-
and mission-specific requirements such as the consistent use
of Euler angle sequences and coordinate frames. Here we re-
use two of AUTOCERT’s basic components, the annotation
inference algorithm [5], [6] and the schema compiler [8].
However, we significantly improve over this infrastructural
basis. In particular, the very ideas of verified traceability link
recovery and generating safety documentation are new. In
addition, this work also required substantial changes to the
schema compiler and the development of the proof analysis
and the document generation.

Tools such as the MathWorks’ Model Advisor do pro-
vide support for inspections at the model level, but formal
approaches to certification and inspection of source code
are much less common. There has been much work on
recovering high-level traceability information from both for-
mal artifacts, such as code [1], and informal artifacts using
probabilistic methods [20]. Much of this work, however, is
aimed at program comprehension rather than certification
and we are not aware of any verifiable approach.

Our approach, both to the formal verification and to the
construction of the review reports, is independent of the
particular generator used, and we have applied it to code
generated by several different in-house and commercial code
generators, including MathWorks’ Real-Time Workshop. In
particular, we have applied our tool to several subsystems of
the navigation software currently under development for the
Constellation program, and used it to generate review reports
for mission-specific requirements such as the consistent use
of Euler angle sequences and coordinate frames.

2. AUTOCERT

Generator Assurance. The many benefits promised by
model-based design and automated code generation, such
as higher productivity and elimination of coding errors
[3], [13] can only be realized if the generated code can
be assured to be correct. Ideally, code generators should
be formally verified, but due to their complex nature this
is generally too laborious and complicated. Testing and
qualifying the generator can require detailed knowledge
of the (often proprietary) transformations it applies [26].
Moreover, qualification is limited to the use of the generator
within a given project, and needs to be repeated for every
project and for every version of the tool. Also, even if a code
generator is generally trusted, it often requires user-specific

modifications and configurations, which still require that the
generated code is fully tested and certified [10].

Product-Oriented Certification. In contrast to approaches
based on directly qualifying the generator or on testing of
the generated code, we follow a product-oriented approach,
in which every generated program is certified individually. In
order to certify a program, AUTOCERT is thus given a set
of formal assumptions and requirements. Assumptions are
typically constraints on input signals to the system, while
requirements are constraints on output signals. AUTOCERT
then formally verifies that the generated code complies with
the specified requirements. It is implemented as a generator
plug-in, but since it only analyzes the code and not the model
or the generation process, the generator remains a black box.

However, certification requires more than black box ver-
ification of selected properties, such as an explanation of
why and how the code satisfies the requirements, otherwise
trust in one tool (the generator) is simply replaced with trust
in another (the verifier). The work presented here addresses
this problem.

Code Analysis. We use automated theorem provers (ATPs)
to verify the requirements; however, to achieve full automa-
tion without access to the code generator internals, we need
annotations, i.e., logical assertions of program properties,
at key locations in the code. Hence, we split certification
into an untrusted annotation construction phase that uses
a post-generation inference technique, and a simpler but
trusted verification phase, where the standard machinery of
a verification condition generator (VCG) and ATP is used
to prove that the code satisfies the required properties.

The annotation inference exploits the idiomatic nature
of auto-generated code and is driven by a generator-
and property-specific set of idioms. We distinguish several
classes of idioms, in particular uses, which refer to loca-
tions where the property is required (i.e., a requirement
materializes), and definitions, where the relevant properties
are ultimately established. The inference algorithm builds
an abstracted control-flow graph (CFG), using the patterns
to collapse the code idioms into single nodes. It then
traverses the CFG from variable use nodes backwards to
all corresponding definitions and annotates the statements
along the paths as required. For further technical details of
the verification process omitted here see [4], [6].

Browsing. The user can view the verification results via
a certification browser [9] integrated into Matlab. This
displays the generated code along with the verification
conditions (VCs) and the review document, and allows users
to trace between lines of code and associated VCs, as well
as code and concepts.

Customization. AUTOCERT is independent of the particular
generator used, and need only be customized to a domain via



Figure 1. From concepts to documentation

an appropriate set of annotation schemas, which encapsulate
certification cases for matching code fragments; we will give
examples of schemas in the next section. The schemas use a
generic pattern language to describe code idioms. They also
contain actions which construct the annotations needed to
certify a code fragment, and can record other information
associated with the code, such as the mathematical conven-
tions it follows. A schema also has a textual description
which can be parametrized by the variables in the pattern,
and slots for recording concepts. These are used during the
document generation process. Hence, schemas are central
to achieving our goal of a unified approach to verification,
documentation, and tracing.

An annotation schema compiler (see [8]) takes a col-
lection of annotation schemas tailored towards a specific
code generator and domain, and compiles it down into
customized annotation templates, documentation templates,
and concept relations drawn from a domain ontology. The
annotation templates are then applied using a combination
of planning and aspect-oriented techniques to produce an
annotated program. Figure 1 illustrates this use of schemas
for multiple purposes in the code assurance process.

3. Encoding the Domain Knowledge

3.1. Guidance, Navigation, & Control Domain

We will illustrate our approach over the GN&C domain,
which is challenging from a verification perspective due to
its complex and mathematical nature; more precisely, we use
the verification of several requirements for an attitude sub-
system of a spacecraft GN&C system, which is a necessary
(and safety-critical) component of every spacecraft.

The attitude sub-system takes several input signals that
represent different physical quantities, and computes output
signals representing other quantities, such as Mach number
or angular velocity and position. Signals are generally repre-
sented as floating point numbers or as quaternions and have
an associated physical unit and/or frame of reference. Here
we consider the vehicle-centered systems North-East-Down

(NED) and wander azimuth (Nav), and the earth-centered
systems Earth-Centered Inertial (ECI) and Earth-Centered
Earth Fixed (ECEF).

-cosλ sinφ -sinλ -cosλ cosφ
-sinλ sinφ cosλ -sinλ cosφ

cosφ 0 -sinφ


 cos(H−A) sin(H−A) 0

-sin(H−A) cos(H−A) 0
0 0 1


Figure 2. DCM matrices: (top) NED-to-ECEF
(bottom) NED-to-Nav

At the conceptual level, a transformation between two
different frames can be represented by a direction cosine
matrix (DCM) [28]; Figure 2 shows the different structure
of two example DCMs transforming from the NED frame
into two different target frames. However, GN&C systems
usually use quaternions to represent frames, so that, even
at the model level, these frame transformations involve
converting the quaternions to DCMs, applying some matrix
algebra, and then converting them back to quaternions. Other
computations are defined in terms of the relevant physical
equations. Units and frames are usually not explicit in the
model, and instead are expressed informally in comments
and identifier names. At the code level, equations and
transformations are expressed in terms of the usual loops,
function calls, and sequences of assignments. Depending on
the optimization settings of the generator, the resemblance
to the model can be tenuous. Variables can be renamed
and reused, and structures can be merged (e.g., via loop
fusion) or split (e.g., to carry out common sub-expression
elimination).

For the certification of frame safety (i.e., all measurements
are transformed into the right frames before they are pro-
cessed) we need to be able to distinguish between different
DCMs, but the code generated by Real-Time Workshop
uses temporary variables to store the elements, and the
matrix (represented as a vector) is updated using these
(see Figure 3). Note that additional temporaries are used to
factor out common subexpressions. In order to identify the
sequence of array updates as the DCM-NED-to-Nav idiom,
and to distinguish it from the structurally equivalent DCM-
NED-to-ECEF idiom, we thus need to analyze the content
of the variables on the right-hand sides.

Another example is the equation for calculating the Mach
number in terms of velocity and speed of sound at a given
altitude, which is given by Ma = V/Sa, where V is velocity
and Sa is the speed of sound at altitude a. Although this
is a simple equation, the connection to the code is far from
obvious. Figure 4 shows the relevant fragments. In particular,
because of various optimizations, the code is distributed



c0:=0
c1:=1
· · ·
w0:=in6-in7;
w1:=sin(w0);
w2:=cos(w0);
· · ·
a[0]:=w2;
a[1]:=v1;
a[2]:=c1;
· · ·
a[8]:=c1;

Figure 3. DCM-NED-to-Nav code fragment

247 LookUp_real32_T_real_Treal32_T(
248 &(rtb_LookupSoS),
249 &AtmDataSoS_l[0],
250 NAV_MslAltitude,
251 &AtmDataSoS_u[0], 4U);
· · ·
438 for(k=0; k<3; k++) {
· · ·
452 V_body[k]=NAV_VelocityNED[k];
453 }
· · ·
455 sin_theta=norm((real32_T *)V_body);
· · ·
563 rtb_NAV_MachNum=sin_theta/rtb_LookupSoS;
· · ·
624 NAV_MachNum=rtb_NAV_MachNum;

Figure 4. Code fragment matching mach_ned

widely (or delocalized in the terminology of [17]). In the
code, the velocity is, of course, a vector, and must be given
in a specific frame of reference, in this case NED. The code
must also take the vector norm when computing the Mach
number. The lookup function is used to determine the speed
of sound at a given altitude above mean sea level (MSL).
It also takes pointers to tables of data that give the function
between altitude and speed of sound at various altitudes (the
actual value is calculated by interpolation). Note also the
misleading identifier sin_theta which is simply reused
from elsewhere in the code. Misleading names such as this
would prove a problem for IR-based traceability techniques.

These examples already show that the main verification
challenge is to disentangle code-level complexity and to
provide a comprehensible explanation in terms of higher-
level domain concepts. In practice, this semantic abstraction
can be seen as going up through several levels before
reaching the high-level mathematical concepts (e.g., in the
language of [16], [28]) appropriate for explanation. Figure 5
shows the relationships between these levels.

At the lowest level is the code itself along with primitive
arithmetic operators. This is, of course, the level at which
a code review is actually carried out. The purpose of

Figure 5. Levels of domain abstraction

comments in the code (and model) is generally to informally
explain the code at a more abstract level, so AUTOCERT can
be seen as formally checking these implicit conventions. At
the next level are mathematical operations, such as matrix
multiplication and transpose, while low-level datatypes such
as floats correspond, at the more abstract level, to physical
values of a given unit. These, in turn, are used to represent
navigational information in terms of quaternions, DCMs,
Euler angles etc., in various coordinate systems. This is the
level at which we explain the verification. There is a further
level of abstraction, at which domain experts think, namely
the principles of guidance, navigation, and control, itself, but
explanation at this level is currently beyond our scope.

3.2. Schemas

Annotation schemas characterize a domain at the imple-
mentation level. They have the following elements: name
and description (parametrized by pattern variables) used in
the safety document, policy, pattern category, annotation
pattern, matching condition (whether the pattern must be
matched exactly or whether intervening “junk code” can
appear), dependent variables (i.e., variables used by the
pattern which require further semantic information, hence
triggering further inference), pre- and post-actions (executed
before and after annotation), and concept list. Some of
these elements are optional and not shown in the examples.
Actions can modify the inference state and include looking
up and asserting extra-logical information used during infer-
ence, as well as computation of annotations. The concept list
gives a list of concept tokens (which can be parametrized by
pattern variables) associated with the schema, and is used to
generate facts later used in the tracing and documentation.

Figure 6 shows the schema used to capture the DCM-
NED-to-Nav idiom. It uses a specific constraint operator
~= that triggers a simple, approximate data-flow analysis
to infer possible symbolic values of program variables that
are then checked against the constraint pattern. During
verification, the precondition induces VCs that verify these



schema(dcm_ned_nav=[’a DCM from NED to Nav’]
, frame
, def(V)
, ((V[0] :=x0) :: (x0 ~= cos(H −A);

(V[1] :=x1) :: (x1 ~= -sin(H −A);
(V[2] :=x2) :: (x2 ~= 0);
(V[3] :=x3) :: (x3 ~= sin(H −A);
(V[4] :=x4) :: (x4 ~= cos(H −A);
(V[5] :=x5) :: (x5 ~= 0);
(V[6] :=x6) :: (x6 ~= 0);
(V[7] :=x7) :: (x7 ~= 0);
(V[8] :=x8) :: (x8 ~= 1)

) ← &(post has frame(V, dcm(ned, nav)),
pre ∃ ψ, φ · has unit(ψ, heading)

∧ has unit(φ, azimuth)
∧ x0= cos(ψ − φ) ∧ x1= -sin(ψ − φ)
∧ x2=0 ∧ x3=sin(ψ − φ)
∧ x4=cos(ψ − φ) ∧ x5=0
∧ x6=0 ∧ x7=0 ∧ x8=1),

, [dcmrep=vec(9)]
).

Figure 6. Annotation schema dcm_ned_nav

schema(mach_ned=[’Mach computation in’, M]
, frame
, def(M)
, (M := y :: (y ~= norm(V )/S, V :: vel(ned), S :: sos)

) ← &(post has unit(M, mach(alt)))
, [V, S]
, [eqn=mach(M,V,S), unit=vel(V), frame=ned(V)]
).

Figure 7. Annotation schema mach_ned

values and thus the results of the approximate analysis.
Hence, we get a proven match. The concept list states that
the matched code is associated with a DCM representation
as a 9-vector.

Figure 7 shows the schema for the Mach computation.
It is similar to the original equation, but explicit the con-
straints on the variables explicit, and declares the associated
concepts, recording that the Mach-equation was instantiated
for the variables M , V , and S, and that V has unit velocity,
and frame NED. AUTOCERT will match this against the
delocalized fragments given in Figure 4, inserting annota-
tions after the assignments to M , V , and S. After matching
M , the annotation algorithm continues on recursively to
generate annotations for the constraints on the dependent
variables V and S, as well as on any intervening code that
requires annotation. For example, the loop where V_body
is assigned NAV_VelocityNED will be given an invariant
and post-condition. This is all handled automatically, and
need not be stated in the schema.

The DCM and Mach examples illustrate one particular
kind of complexity. Another kind, not shown here, comes
from loops. Our schema language also supports the anal-
ysis of (nested) loops, and generates the necessary loop

fof(transformation_composition, axiom,
! [F1, F2, F3, M1, M2] :
((has_frame(M1, dcm(F1,F2)) &
has_frame(M2, dcm(F2,F3)))
=> (has_frame(mmul(M2,M1), dcm(F1,F3))))

).

fof(transformation_application, axiom,
! [F1, F2, M1, M2] :
((has_frame(M1, F1) &
has_frame(M2, dcm(F1,F2)))
=> has_frame(mmul(M2,M1), F2))

).

fof(transformation_dcm_quat_equiv, axiom,
! [F1, F2, D, Q] :
((has_frame(D, dcm(F1,F2)) &
dcm_equiv_quat(D, Q))
=> has_frame(Q, quat(F1,F2)))

).

Figure 8. Typical Axioms of the Domain Theory

invariants, and we refer to [8] for examples. Note that
the schema complexity does not “bleed through” to the
generated documents, because these rely on the concepts.

3.3. Axioms

Axioms provide the logical formalization of a domain, and
are the basis for formal proofs. There are about 30 axioms
in the theory of coordinate systems, consisting of definitions
for the various transformation matrices and quaternions, and
their interaction with the operators of linear algebra, and
roughly the same number again for each of linear algebra
and elementary arithmetic. Some examples are given in
Figure 8, which uses the standard TPTP notation [27]. There
are more elaborate axioms, however, with nested quantifiers,
so we do need the full power of automated theorem provers.
There is also a smaller theory giving the relevant laws of
physics (such as the Mach equation) in logical form. The
programming language is not formalized axiomatically, but
rather via the VCG.

4. Verified Traceability Link Recovery

4.1. Link Categories

In model-based development, the concept of traceability
is generally equated with maintaining or recovering links
between model and code, or more precisely, from the indi-
vidual elements of the model (e.g., Simulink boxes) to their
representation in the generated code. Most commercial code
generators add origin information directly to the generated
code (usually as comments or embedded hyperlinks), and
academic research has worked on recovering these links after
model or code changes (see, e.g., [1], [23]).



However, this is not sufficient for our purposes, for two
different reasons. First, the certification process is driven by
a set of mission-specific requirements, and the documents
must be structured according to these; consequently, the
traceability links must go back to these requirements as well.
Second, the documents also need to explain the internal
conceptual structuring of the code; in particular, we need
to recover links reflecting the chains of implications from
the properties of one variable to the properties of one
or more “dependent” variables in order to show how a
requirement ultimately follows through the code from the
assumptions. Hence, internal traceability links are required
to relate different code locations to each other.

We can distinguish several link categories, depending on
the entities related to each other. However, since certification
is driven by the requirements, the links to and from these
are more important.

Requirement-to-concept links relate the individual re-
quirements to the concepts in the three upper tiers of
the domain abstractions (see Figure 5). They represent the
set of data structures, conventions, and operations used to
implement a given requirement, which is the most important
information from an understanding point of view.

Requirement-to-code links trace individual requirements
back to the lines of code implementing them. They are
commonly used to certify that the implementation does not
contain any superfluous functionality.

Requirement-to-assumption links make explicit on
which of the specified assumptions the validity of a require-
ment rest. This is the most important information from a
certification point of view.

Requirement-to-axiom links are similar but relate the
requirements to the specific domain theory axioms that are
used by the ATP to prove the VCs associated with the
requirement. Note that most ATPs treat assumptions and
axioms interchangeably, but in the certification they play
different roles. The assumptions are specific to the code, and
need to be established by other system components, while
the axioms are “hardened” over time and thus more trusted.

Requirement-to-VC links primarily serve book-keeping
(rather than understanding) purposes and show which re-
quirements are “at risk” if VCs have not been proven yet.
They are also used to compute the links in the two previous
categories, since the VCs give access to the proofs.

A number of complementary code-based links are used
to compute the requirements-based traceability links. Other
links, for example code-to-concept, can be derived from
those defined here, as can be the reverse links. However, not
all of those are currently supported by our implementation.

Code-to-code links reflect the internal conceptual struc-
ture of the code, not its syntax: two code locations are linked
if they are connected in the abstracted CFG built by the
annotation inference.

Simple code-to-VC links are provided by most formal

verification tools but more refined links based on a cat-
egorization of the VCs according to their purpose (e.g.,
establishing a definition or showing the safety of a use
location) allow a more fine-grained linking. These links can
also pinpoint the location of faults, if a VCs fails.

4.2. Link Recovery via Annotation Inference

The core traceability links required to generate meaningful
documentation are requirement-to-concept and code-to-code
links. Both are recovered by AUTOCERT’s annotation in-
ference. The code-to-code links are recovered as side effect
of the CFG traversal, but the crucial fact that allows the
recovery of requirement-to-concept links here is that, in
effect, the already schema tells us everything we need to
know about the code. This is based on the insight that
matching a schema against the code is actually performing
program understanding, and that the schema application
itself thus already reflects all domain concepts that can be
extracted from the matched code fragment. Since the match
is verified if all associated VCs are proven, the requirement-
to-concept traceability links are verified as well.

Consider for example the DCM-NED-to-Nav idiom again.
If the schema shown in Figure 6 is matched against the
code in Figure 3, and all VCs are proven, then we know
for certain that the code is related to the DCM concept and,
in particular, represents a DCM as a 9-vector. Hence, we
have recovered two verified code-to-concept links, and since
we know the requirement currently being certified, also two
requirement-to-concept links.

4.3. Link Recovery via Verification

The verification machinery also contributes to link re-
covery. Since the VCG processes the code, it is primarily
responsible for the code-to-VC links. It can add the relevant
source code locations to the generated VCs; however, these
need to be maintained by subsequent processing steps, e.g.,
simplification. Here, we use our previous work on semantic
labelling [7] to achieve the VC categorization and fine-
grained linking.

The requirement-to-assumption and requirement-to-axiom
links are extracted from the proofs of the VCs. This is in
principle a simple task, but it requires the ATP to provide
an explicit proof output. We are currently only analyzing
proofs in the standard TPTP proof notation [27], which
restricts us to using the ATPs E [25] and SPASS [30]. Since
AUTOCERT generates the complete proof tasks, we can
rely on naming conventions under its control to distinguish
between assumptions and axioms.

4.4. Tracing

The recovered traceability links between artifacts allow
a higher level of certification support. Rather than just



Figure 9. Tracing Between Artifacts

verifying the requirements we can trace the requirements to
the code, as mandated by DO-178B [24] and NASA-internal
standards (NPR 7150.2), but also to assumptions and VCs.

Indeed, the code review document generated by AUTO-
CERT can be seen as a structured high-level overview of
the traceability links recovered during verification. Figure 9
illustrates the different kinds of tracing provided by AUTO-
CERT within the larger Matlab environment. Matlab/RTW
already provides bidirectional linking between models and
code. To this, the AUTOCERT certification browser adds
bidirectional linking between code and VCs. The review
documents provide a further layer of tracing, linking code,
VCs, and external documents such as Matlab block docu-
mentation and Wikipedia articles on domain concepts.

5. Generating Review Documents

5.1. Documentation Purpose and Principles

The generated documents are intended as structured read-
ing guides for the code and the verification artifacts, showing
why and how the code complies with the specified require-
ments. However, the documents do not simply associate
source code locations with VCs; in fact, we delegate this
to the existing complementary code browser [9] sketched
above. Instead, the documents call out the high-level opera-
tions and conventions used by the generated code (which
might be different from those originally specified in the
model from which the code was generated, due to optimiza-
tions) and the relevant structures in the code (in particular,
the paths between the locations where the requirements
manifest themselves and where they are established) and
associates the VCs with these. This provides a “natural”
high-level grouping mechanism for the VCs, which helps re-
viewers to focus their attention on the artifacts and locations
that are relevant for each requirement, and thus conforms to
the usual requirements-driven certification process.

The document construction is based on the principle
that, once the assumptions and requirements have been
specified, all relevant explanatory information is reflected
by the traceability links recovered in the verification phase,
in particular by the annotation inference mechanism. The
document’s overall structure (see Section 5.2) reflects the
way the annotation inference has analyzed the program,
starting with the variables occurring in the original require-
ments. The applied schemas implicitly also indicate which
high-level conventions and operations are used by the code
(see Section 5.3), and the semantic labelling of the VCs [7]
allows us to associate only the small number of VCs with
the paths that actually contribute to demonstrating how a
given requirement holds along a path, as opposed to those
that are just coincidentally related to it (see Section 5.4).

5.2. Document Structure

The document consists of a general introduction and
a section for each certified requirement. The introduction
contains a natural language representation of the formalized
requirements and certification assumptions; see Figure 10
for an example.1 This allows the reviewers to check that
their formalization has not (inadvertently) introduced any
conceptual mismatches. The verbalization is based on an
analysis of the formula structure, and uses text templates to
verbalize the relevant predicates.

The introduction also represents the requirement-to-
assumption links recovered by the proof analysis, and calls
out assumptions that are not necessary (see Figure 10 again).

The requirements sections are automatically grouped into
categories which correspond to the particular logic which is
applied (i.e., the safety policy [4]); this information can be
derived from the structure of the given formalization of the
respective requirements. Each requirement section in turn
starts with a summary of the pertinent information, i.e.,
the relevant variables and the high-level conventions and
operations used by the code (see Section 5.3). The system
extracts from the given formalization the program variables
that correspond to the signals for which the requirement
has to hold, and then identifies the intermediate variables
(mostly corresponding to intermediate signals in the model)
that form the chain between the program locations where the
requirement holds and where it is established. The document
separately lists both the initial and the intermediate variables.
However, the system discards variables for which the formal
proof is below a certain threshold of complexity. This
reduces the lists to those variables to which reviewers need
to direct their attention.

1. For presentation purposes, we converted the excerpted HTML docu-
ment fragments into LATEX, but kept their structure and text; to improve
legibility, we also removed most HTML links, in particular those asso-
ciated with source code references and those introduced by the concept
lexicalization.



This document describes the results of the safety certification for
the code generated from the model Attitude. It consists of sections
establishing the following safety requirements:

1) DCMtoQuat_Single is a quaternion representing
a transformation from the NED to the body frame
· · ·

5) rty_3 is a quaternion representing a transformation
from the ECI to the NED frame

6) rty_7 represents Mach at MSL altitude
The assumptions for the certification are that

1) 7.29212e-05 represents angular velocity, which is used in
requirements 3 and 4.

2) PadLongAtLaunch represents a longitude.
3) PadLatAtLaunch represents a geodetic latitude.
4) BitwiseOperator_c is positive, which is used in re-

quirements 1, 2, 3, 4, and 5.
5) AtmScaleHt_MslAlt is a table of entries for altitude,

which is used in requirement 6.
6) TrueHeading_h represents a true heading, which is used

in requirements 1, 2, 3, and 4.
7) PlatformAzimuth_j represents a platform azimuth,

which is used in requirements 1, 2, 3, and 4.
8) AttitudeBodyToNav_o is a quaternion representing a

transformation from the body to the Nav frame, which is
used in requirements 1 and 3.

WARNING: The following assumptions are not used in the proofs
of any requirement:

2) PadLongAtLaunch represents a longitude.
3) PadLatAtLaunch represents a geodetic latitude.

Figure 10. Requirements and Assumptions

Each requirements section then concludes with a series of
subsections that explain why and how each of the relevant
variables meets the requirement (see Section 5.4). The
subsections can contain explanations of fragments of code,
and can refer to the explanations for other variables, which
are cross-linked. Whenever the underlying certification tool
has carried out some analysis using the prover (e.g., that
a code fragment establishes some property), the document
provides links to the corresponding VCs (see Section 4.4).

5.3. Inferred Operations and Conventions

As part of its analysis, AUTOCERT effectively “reverse
engineers” the code, and identifies both the high-level math-
ematical structures that are used by the operations relevant
to the current requirement, e.g., DCMs and quaternions, and
the lower-level data structures used to represent these, e.g.,
matrices and vectors, including any underlying conventions
that manifest themselves in the lower-level data structures
(e.g., quaternion handedness). This analysis also identifies
cases where several lower-level data structures are used
to represent a high-level concept, such as three vectors
representing a DCM.

The report contains a concise summary of this infor-
mation as represented by the recovered traceability links,

The code relevant to this requirement uses the following data
structures:

• DCMs
• Quaternions

The data structures are represented using the following mathemat-
ical conventions:

• DCMs are represented as 9-vectors.
• DCMs are represented as three 3-vectors.
• The vectors eml_fv5, eml_fv6, and eml_fv7 together

represent a DCM.
• Quaternions are right-handed.

In order to certify this requirement, we concentrate on the following
operations used in the code:

• a coordinate transformation using a DCM from ECI to ECEF
• a coordinate transformation using a DCM from NED to ECEF
• a coordinate transformation using a DCM from NED to Nav
• conversion of a DCM to a quaternion
• conversion of a quaternion to a DCM
• matrix multiplication
• matrix transpose

Figure 11. High-level Conventions

going from the abstract mathematical structures to the the
concrete operations; see Figure 11 for an example. In
each category, the entries are grouped by sub-categories,
so that for example all extracted information concerning
the representation of DCMs is next to each other. This
sub-categorization is derived from the underlying concept
ontology and the concept lists of the applied schemas. It
highlights potential problems caused by different represen-
tations used in different parts of the model or by different
operations (e.g., the representation of DCMs as 9-vectors
and three 3-vectors), and directs the reviewers’ attention to
this for further inspection and clarification.2 Note that here
we choose to list the case where a high-level mathematical
structure’s representation is distributed over several variables
(i.e., eml_fv5, eml_fv6, and eml_fv7), but not to list
all the program variables and what they represent, since the
reuse of variables by optimizing generators makes this aspect
less useful. However, both decisions could easily be changed
by simply changing description lists in the schemas.

5.4. Explaining Inferred Program Structure

The backbone of the document is a chain of implications
from the properties of one variable to the properties of one or
more “dependent” variables, corresponding to the recovered
code-to-code links. The chain starts at those key variables
which appear in the requirement, and continues to variables
in the assumptions or input signals. Figure 12 shows one
step in this chain.

2. Note that different representations are not necessarily unsafe or un-
wanted (in fact, DCMs and quaternions can represent the same information),
but might nevertheless indicate deeper design problems.



The variable T_NED_to_body1 has a single relevant occurrence
at line 235 in file Attitude.cpp. Frame safety for this occur-
rence requires that T_NED_to_body1 is a DCM representing
a transformation from the NED frame to the body fixed frame
(Body), or, formally, that
has_frame(T_NED_to_body1, dcm(ned,body))

holds. Safety of this use gives rise to three verification conditions:
• Attitude frame 016 0025 (i.e., establish the postcondition at

line 235 (#1))
• Attitude frame 016 0026 (i.e., establish the postcondition at

line 235 (#2))
• Attitude frame 016 0027 (i.e., establish the postcondition at

line 235 (#3))
The frame safety is established at a single location, lines
200 to 203 in file Attitude.cpp by matrix multiplication
of T_nav_to_body1 and Reshape9to3x3columnmajor_o
using Util_Matrix_Multiply, as above. It relies, in turn, on
the frame safety of the following variables:

• T_nav_to_body1
• Reshape9to3x3columnmajor_o

The occurrence of T_NED_to_body1 at line 235 in file
Attitude.cpp is connected to the establishing location at
lines 200 to 203 in file Attitude.cpp by a single path,
which, beginning at this location, runs through the next six
statements, starting with the procedure Util_DCM_to_Quat at
line 205 in file Attitude.cpp, before it calls the procedure
Util_Matrix_Multiply at line 230 in file Attitude.cpp.
This path gives rise to two verification conditions:

• Attitude frame 018 0031 (i.e., establish the postcondition at
line 226 (#1))

• Attitude frame 018 0032 (i.e., establish the postcondition at
line 226 (#2))

Figure 12. Uses and Paths: A Step in the Argument

At this step in the justification, we need to show that the
variable T_NED_to_body1 is a DCM from NED to the
Body frame. First, we show that the information which has
been inferred at this point in the code does indeed give the
variable the required properties, themselves expressed as a
post-condition. Three VCs establish this (cf. “safety of this
use”). Second, the location where the variable is defined is
given, and the correctness of that definition is established,
i.e., that it does define the relevant form of DCM. In this
case, it turns out that that particular definition has been
explained earlier in the document, so a link is given to the
relevant section (cf. “as above”). We give an example of
a definition below. Third, we observe that this definition
– a matrix multiplication – depends, in turn, on properties
of other variables, i.e., the multiplicands, with which the
explanation continues later in the document. Fourth, we
show that the properties of the definition are sufficient to
imply the properties of the use, and that these properties are
preserved along the path connecting the two locations.

Explaining the definitions. Figure 13 gives an example
where a DCM has been identified and verified. It gives links
to the appropriate lines in the code and links to the VCs that

The frame safety of Reshape9to3x3columnmajor_o is
established at a single location, lines 177 to 189 in file
Attitude.cpp by definition as a DCM matrix from NED to
Nav. The correctness of the definition gives rise to two verification
conditions:

• Attitude frame 006 0009 (i.e., establish the postcondition at
line 189 (#1))

• Attitude frame 007 0010 (i.e., establish the precondition at
line 177 (#1))

Figure 13. Explaining Definitions

The proofs of requirement 1 use the following assumptions
4) BitwiseOperator_c is positive
6) TrueHeading_h represents a true heading
7) PlatformAzimuth_j represents a platform azimuth
8) AttitudeBodyToNav_o is a quaternion representing a

transformation from the body to the Nav frame
and the following elements of the domain theory:

• definition of a DCM from NED to Nav
• arithmetic reasoning
• composition of transformation of frames
• preservation of frames under conversion of a DCM to a

quaternion
• preservation of frames under conversion of a quaternion to a

DCM
• transposition of frames under matrix transpose

Figure 14. Proof Analysis Results

demonstrate the correctness of the definition. In this case
there are two VCs: a pre-condition, which states that there
exist heading and azimuth variables, and a post-condition,
which states that the constructed matrix does indeed satisfies
the textbook definition of a DCM from NED to Nav, with
entries equivalent to the appropriate trigonometric expres-
sions (cf. Figure 6). Structures that involve loops generally
have considerably more correctness conditions, with VCs
for inner and outer invariants, as well as pre- and post-
conditions.

5.5. Summarizing Proofs

Proofs found by ATPs are typically very big, even for
simple conjectures. It is thus necessary to summarize the per-
tinent information, instead of verbalizing the proofs them-
selves, as for example done in [12]. We thus only present
information from the corresponding traceability links, but
compress this even further. First, we tag each axiom with a
category (e.g., representing arithmetic reasoning) and only
list the categories. Second, we combine the output of entire
VC sets, again using recovered traceability links to identify
conceptually related VCs.

Figure 14 shows how we summarize the proofs for all VCs
corresponding to a requirement. Here, all arithmetic reason-
ing is hidden under a single entry, but the more relevant
axioms representing frame reasoning are individually tagged



as categories and thus listed individually. Since the axiom
names are internal and convey no meaning to a reviewer, we
associate explanatory texts with the categories.

5.6. Technical Approach

The generated documents are heavily cross-referenced
and hyper-linked, both internally and externally, so that
HTML/JavaScript is a suitable technical platform. Cross-
linking follows not only from the hierarchical document
structure (e.g., the links from the requirements summary to
the individual requirements sections, see Figure 10), but also
from the traceability links recovered by the analysis phase,
primarily the chains of implications from the properties of
one variable to the properties of one or more “dependent”
variables. Hyper-links are mostly traceability links to other
artifacts such as external documents, models, code, or VCs
that were constructed by the analysis and verification phases.
Further hyper-links can be introduced by the concept lexi-
calization; these usually refer to to external documents such
as RTW documentation or Wikipedia pages.

The actual document generation process is relatively
lightweight and does not require the application of deep nat-
ural language generation (NLG) technology [22]. Currently,
the document’s overall structure is fixed, so that content
determination and discourse planning are not necessary.
Concept lexicalization, however, relies on text fragments
provided by the annotation schemas (for the mathematical
and data structures and the operations) or stored in a fact
base (for the mathematical operations used in assumptions
and other formulas). This step can thus be customized easily.

The document generator contains canned text for the
remaining fixed parts of the document, and constructs some
additional “glue text”, to improve legibility. The combined
text is post-processed to ensure that the document is syn-
tactically correct. The generator currently produces directly
HTML, but changing the final output to XML to simplify
layout and rendering changes is straightforward.

6. Preliminary Evaluation

This work can be evaluated in two different ways. First,
we can ascertain the degree to which the generated doc-
uments and traceability links help reviewers understand
the code during code reviews; however, qualified domain
experts are hard to come by, so we have primarily anecdotal
feedback here. Second, we can measure the accuracy of the
technique itself in terms of the recovered links.

In an initial experiment, we showed the generated code
to a reviewer, along with the original models and the
requirements. The subject is familiar with code reviews and
the general GN&C domain, but not a domain expert. We first
asked the subject to manually trace a subset of the code to
the model, and to justify why some of the requirements hold.

Both tasks turned out to be very hard, due to optimizations,
in particular the reuse of identifiers for different purposes,
and the subject gave up after four hours without finishing
the task. We then asked the subject to repeat the task for a
different subset of code and requirements, but this time with
the help of the generated documentation. The subject found
that the generated documents simplified the overall tracing
task but that tracing from code to concepts was not supported
well enough by our prototype. The subject also suggested
to add more hierarchical structure to the documents, and a
complementary, forwards-oriented documentation style (i.e.,
from assumptions to requirements). Overall, however, the
subject confirmed the general approach.

In contrast to IR-based approaches to traceability, our
verification-based approach is inherently exact, and so tra-
ditional notions of precision and recall are not appropriate
means of evaluation. Instead, we evaluate the coverage of
explanations and VCs, analogously to test case coverage.

First, we analyzed unoptimized code (i.e., generated with
the optimization settings off), which comprised 201 non-
blank, non-comment lines. We certified five requirements
contributing to frame safety, which produced 80 VCs and
a document of 38 pages (measured as the length of the
HTML default printout). All 80 VCs were proven by a
combination of the ATPs E (V0.999) [25] and SPASS
(V3.0c) [30]. Of course, in general we will not achieve
perfection, because the domain theories can be incomplete,
the annotation schemas will contain bugs, and provers must
work with finite resources.

We analyzed two of the five requirements. In both cases,
the relevant part of the document was 7 pages. For each
requirement, we manually determined the relevant fragments
of code, which was 50 and 100 LOC, respectively. We then
computed the VC and document coverage by counting up
which code lines were traced to. For the first requirement, the
11 VCs gave 100% coverage. In other words, each line had a
corresponding logical definition. The document explained all
but 14 lines, which gives a coverage of 72%. The omission
is because indirections in assignments do not get explained
(but they do get verified; in fact, the explanation of the
VCs—see [7]—traces to these missing lines as well). For the
second requirement, the VC coverage was again 100%, but
the document coverage was lower, 37%, for the same reason.
In general, we do not expect full VC coverage because VCs
can be simplified away, leaving “orphaned” lines of code
(i.e., lines not referred to by any VC); note that simplification
is in general necessary to ensure that all VCs can be proven
by the ATPs In this case, however, the complexity of the
domain meant that enough VCs were left.

Next we looked at optimized code, which was generated
from a different, earlier model of the same system. The code
size was larger because of inlining, amounting to 792 lines.
We certified two frame requirements, yielding 64 proven
VCs, and a document of 17 pages, evenly split between



both requirements. Note the similar size of the explanations
per requirement: the optimization only affects code size,
but not its conceptual complexity. The first requirement
corresponded to 31 VCs and 126 LOC; 124 of these were
covered by both by VCs and documentation. Here, VC
simplification orphaned a local variable initialization, and
the document did not cover a top-level conditional, because
this did not correspond to any schema. For the second
requirement we got very similar results.

7. Related Work

Early work on program comprehension recognized the
cognitive difficulty in understanding concepts that are dis-
tributed throughout the code. Plans [17] and focusing [19]
are approaches to recognizing such concepts and are similar
to weak forms of our schemas, though they do not verify
the selected fragments. The emphasis shifted later to more
probabilistic approaches based on information retrieval [20]
that seek to recover traceability links from informal artifacts.
The earlier exact approaches, however, are more relevant to
the problems we are addressing.

The various notions of concept have received considerable
attention in program understanding [21]. In this work, we
took concept to refer to the elements of a mathematical
domain theory, such as quaternion, or angular velocity.

Antkiewicz et al. [1] use code queries, which are approx-
imations to structural and behavioral patterns, in order to
reverse engineer framework-specific models from framework
code. It is similar to our work in the sense that we use
patterns to reverse engineer “logical structure”.

The problem of frame safety has been addressed by Lowry
et al. [18], who used a domain-specific type system to verify
the safety of abstract geometric calculations. The language
analyzed was quite simple, however, so that annotations
could be restricted to the declarations of the input variables,
with no need for the inference of patterns or intermediate
annotations. Although the underlying domain knowledge is
similar to that used in our example, this is a very specific
solution, in contrast to our “retargetable verifier”.

Most of the previous work on proof documentation has
focused on translating low-level formal proofs, in particular
those given in natural deduction style. [2] presents an ap-
proach that uses a proof assistant to construct proof objects
and then generates explanations in pseudo-natural language
from these proof objects. However, this is based on a low-
level proof even when a corresponding high-level proof was
available. The Proverb system [12] renders machine-found
natural deduction proofs in natural language using proof
reconstruction. It defines inference rules for an intermediate
representation called assertion level and abstracts machine-
found resolution proofs using these rules; these abstracted
proofs are then verbalized into natural language. Such an
approach allows atomic justifications at a higher level of

abstraction. In [11], the authors propose a new approach
to text generation from formal proofs exploiting the high-
level interactive features of a tactic-style theorem prover.
It is argued that tactic steps correspond approximately to
human inference steps. None of these techniques, though,
is directly concerned with program verification. There has
also been research on providing formal traceability between
specifications and generated code. [29] presents a tool that
indicates how statements in synthesized code relate to the
initial problem specification and domain theory. In [31],
the authors build on this to present a documentation gen-
erator and XML-based browser interface that generates an
explanation for every executable statement in the synthesized
program. It takes augmented proof structures and abstracts
them to provide explanations of how the program has been
synthesized from a specification.

The Whyline tool [14] supports interrogative debugging,
where techniques from program analysis are used to answer
user queries about program behavior. This is similar to our
work in that verification techniques are used to provide
explanations in terms of concepts from a domain.

8. Conclusion

We have described the review documentation feature of
AUTOCERT, an autocode certification tool which has been
customized (but is not limited) to the GN&C domain,
and have illustrated its use on code generated by Real-
Time Workshop from a Matlab model of an attitude sub-
system. We can also generate review documents for simpler
execution-safety style properties.

AUTOCERT automatically generates a high-level narrative
explanation for why the specified requirements follow from
the assumptions and a background domain theory, and pro-
vides hyperlinks between steps of the explanation, domain
concepts, and the relevant lines of code, as well as the
generated verification conditions. It also provides verifiably
correct tracing between requirements and assumptions, and
consequently, can detect unused assumptions. Traditional
approaches to tracing do not consider V&V artifacts. Future
work would be to also check for inconsistent requirements
and assumptions.

The tool is aimed at facilitating code reviews, thus in-
creasing trust in otherwise opaque code generators without
excessive manual V&V effort, and better enabling the use
of automated code generation in safety-critical contexts. By
verifying and providing insight into the code, it effectively
does this for the original model as well.

In our preliminary evaluation we found that misleading
identifiers can be a real problem, in particular when code
is developed by multiple contractors; this experience was
confirmed by domain experts. Addressing the reviewer’s
suggestion to present the explanations in a forwards manner



from assumptions to requirements would best be achieved
by making use of more systematic techniques from NLG.

We are currently working to automate linking of inferred
concepts to a mission ontology database, which has been
mandated by NASA’s Constellation program. The idea is that
by automatically annotating the code with inferred concepts,
engineers are relieved of this documentation chore. We also
plan to provide links to mission requirements documents and
other relevant project documentation.

It is clear that scaling will require better hierarchy and
abstraction mechanisms, and more top-level summaries.
Listing formulas and equations that are used in the code
would also be helpful for reviews, since ultimately these
need to be scrutinized by domain experts. Also, more
information could be gleaned from the proofs, such as the
use of constants and lookup tables. We also continue to
extend the underlying domain theory that is used to verify
the code. More ambitiously, we seek to further raise the
level of abstraction at which the code is explained to the
algorithmic level. The ideas of Koellman and Goedicke [15]
on recognizing algorithms might prove useful there.

References

[1] M. Antkiewicz, T. Tonelli Bartolomei, and K. Czarnecki.
Automatic extraction of framework-specific models from
framework-based application code. In ASE’07, pp. 214–223.
ACM, 2007.

[2] Y. Coscoy, G. Kahn, and L. Thery. Extracting text from
proofs. In Proc. Second Intl. Confl. Typed Lambda Calculi
and Applications, LNCS 902, pp. 109–123. Springer, 1995.

[3] K. Czarnecki and U. W. Eisenecker. Generative Program-
ming: Methods, Tools, and Applications. Addison-Wesley,
2000.

[4] E. Denney and B. Fischer. Correctness of source-level safety
policies. In FM’03, LNCS 2805, pp. 894–913. Springer, 2003.

[5] E. Denney and B. Fischer. Annotation inference for the safety
certification of automatically generated code. In ASE’06, pp.
265–268. IEEE, 2006.

[6] E. Denney and B. Fischer. A generic annotation inference al-
gorithm for the safety certification of automatically generated
code. In GPCE’06, pp. 121–130. ACM, 2006.

[7] E. Denney and B. Fischer. Explaining verification conditions.
In AMAST’08, LNCS 5140, pp. 145–159. Springer, 2008.

[8] E. Denney and B. Fischer. Generating customized verifiers
for automatically generated code. In GPCE’08, pp. 77–87.
ACM, 2008.

[9] E. Denney and S. Trac. A software safety certification tool
for automatically generated guidance, navigation and control
code. In IEEE Aerospace Conference Electronic Proceedings,
Big Sky. IEEE, 2008.

[10] T. Erkkinen. Production code generation for safety-critical
systems. Technical report, MathWorks, 2004.

[11] A. M. Holland-Minkley, R. Barzilay, and R. L. Constable.
Verbalization of high-level formal proofs. In AAAI/IAAI, pp.
277–284, 1999.

[12] X. Huang. Proverb: A system explaining machine-found
proofs. In A. Ram and K. Eiselt, editors, Proc. 16th Annual
Conf. Cognitive Science Society, pp. 427–432. Lawrence
Erlbaum Associates, 1994.

[13] A. Kleppe, J. Warmer, and W. Bast. MDA Explained. The
Model Driven Architecture: Practice and Promise. Addison-
Wesley, 2003.

[14] A. Ko. Debugging by asking questions about program output.
In ICSE’06, pp. 989–992. ACM, 2006.

[15] C. Koellmann and M. Goedicke. A specification language for
static analysis of student exercises. In ASE’08, pp. 355–358.
IEEE, 2008.

[16] J. B. Kuipers. Quaternions and Rotation Sequences. Princeton
University Press, 1999.

[17] S. Letovsky and E. Soloway. Delocalized plans and program
comprehension. IEEE Software, 3(3):41–49, May 1986.

[18] M. Lowry, T. Pressburger, and G. Roşu. Certifying domain-
specific policies. In ASE’01, pp. 118–125. IEEE, 2001.

[19] J. Q. Ning, A. Engberts, and W. V. Kozaczynski. Automated
support for legacy code understanding. Commun. ACM,
37(5):50–57, 1994.

[20] R. Oliveto. Traceability management meets information
retrieval methods: Strengths and limitations. In Proc. 12th
European Conf. Software Maintenance and Reengineering,
pp. 302–305. IEEE, 2008.

[21] V. Rajlich and N. Wilde. The role of concepts in program
comprehension. In Proc. 10th Intl. Workshop Program Com-
prehension, pp. 271–278. IEEE, 2002.

[22] E. Reiter and R. Dale. Building Natural Language Generation
Systems. Cambridge University Press, 2000.

[23] J. Richardson and J. Green Traceability through Automatic
Program Generation In Proc. 2nd Intl. Workshop Traceability
in Emerging Forms of Software Engineering. Montreal, 2003.

[24] RTCA Special Committee 167. Software considerations
in airborne systems and equipment certification. Technical
report, RTCA, 1992.

[25] S. Schulz, E — A Brainiac Theorem Prover, AI Communi-
cations, (15):111–126, 2002.

[26] I. Stürmer and M. Conrad. Test suite design for code
generation tools. In ASE’03, pp. 286–290. IEEE, 2001.

[27] Sutcliffe, G. and C. Suttner, TPTP home page, www.tptp.org.

[28] D. A. Vallado. Fundamentals of Astrodynamics and Applica-
tions, 2nd ed. Microcosm Press / Kluwer, 2001.

[29] J. Van Baalen, P. Robinson, M. Lowry, and T. Pressburger.
Explaining synthesized software. In ASE’98, pp. 240–248.
IEEE, 1998.

[30] C. Weidenbach, SPASS home page, www.spass-prover.org

[31] J. Whittle et al. Amphion/NAV: Deductive synthesis of state
estimation software. In ASE’01, pp. 395–399. IEEE, 2001.


