
Adapting the Software Assurance Objectives Hierarchy to a Model-based Reuse Process

Deliverable 2: Mapping the Software Assurance Objectives
Hierarchy (SOH) and Risk Informed Safety Case (RISC) Concepts

to Applicable Standards

Pat Castle
NASA Ames Research Center

Moffett Field, CA 94035

Ewen Denney
SGT / NASA Ames Research Center

Moffett Field, CA 94035

Martin Feather
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91109

Ganesh Pai
SGT / NASA Ames Research Center

Moffett Field, CA 94035

October 4, 2018

Abstract

We extend our earlier work on identifying and mapping BioSentinel assurance evidence to the Software Assurance
Objectives Hierarchy (SOH). Specifically, first we discuss the relationship between the SOH and the Risk Informed
Safety Case (RISC) concepts. Then, we develop fragments of a RISC for BioSentinel, as the mechanism by which
to elaborate the rationale and the contextual details that show how the identified assurance evidence items relate to
the objectives identified in the SOH. Then we discuss how the SOH and the RISC concepts relate to the NASA
Software Assurance Standard NASA-STD-8739.8, which is largely the basis for assurance of the BioSentinel Flight
Software (FSW).
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1 Introduction
The overarching goal of this project is to characterize the nature and the extent of assurance afforded through the
Software Assurance Objectives Hierarchy (SOH) [1] and Risk Informed Safety Case (RISC) [2], [3] concepts, whilst
exploring their adaptation to the context of a model-based reuse process, exemplified by the BioSentinel project1, in
particular its FSW. In this report, we summarize the work done subsequent to our earlier report [4] on the project. In
particular:

• In Section 2, we first give a brief background on the SOH and RISC concepts. Then we summarize BioSentinel
FSW assurance evidence items, after which we give an example mapping from the identified evidence to one of
the objectives of the SOH. This section provides the context for the work described in the rest of this report.

• In Section 3, we elaborate on a plausible relation between the SOH and RISC concepts, also giving details on
the framework with which RISCs are developed.

• Thereafter, in Section 4, we give fragments of a RISC, as applied in the context of the BioSentinel FSW, to
illustrate the relation described in Section 3.

• Section 5 discusses the relation between the SOH and the NASA Software Assurance Standard [5], which largely
forms the basis for the assurance requirements levied on the BioSentinel FSW.

• Section 6 concludes the report describing the next steps in this project.

2 Background

2.1 Software Assurance Objectives Hierarchy

The Software Assurance Objectives Hierarchy (SOH) [1] is an objectives-based approach that is intended to facilitate
engineering freedom and ingenuity in (NASA) programs and projects, with a view towards achieving flexibility, agility,
and cost-effectiveness by focusing on the goals to be obtained rather than prescribing requirements on the processes
by which those goals are achieved.

Top Objective:
Software performs what is intended, 
only what is intended, and only in the 

intended manner

Strategy:
Plan and execute Software 
Assurance throughout the 

software lifecycle
Objective:

Software development 
and assurance 
processes are 
necessary and 

sufficient to achieve the 
project’s desired levels 

of safety, quality, 
security, and reliability

(1)

Objective:
Software conforms to 
functional intent and 
performs as planned

(2) 

Objective: Software 
does not adversely 
impact safety and 

contributes to 
system safety

(3)

Objective:
Software system is 
robust and tolerant 

to failure & off 
nominal conditions

(4)

Objective:
Software is secure and 

does not adversely 
impact safety and 
functionality of the 

system
(5)

Objective:
Software Verification and 

Validation Processes 
provide confidence in the 
interim and end products

(6)

Figure 1. Top level of the draft Software Assurance Objectives Hierarchy (SOH), decomposing the overarching software assurance
objective into supporting objectives addressing various concerns including conformance to functional intent, safety, reliability, etc.

The overall principle is to iteratively decompose the technical considerations that form the basis for the discipline
(in this case, software assurance), into a hierarchy of objectives and strategies that build upon each other. Figure 1

1 https://www.nasa.gov/centers/ames/engineering/projects/biosentinel.html
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gives the top level of the SOH, showing how the overall assurance objective—software meeting its intent—has been
decomposed into objectives concerning (1) process and planning, (2) conformance to functional intent, i.e., quality,
(3) safety, (4) reliability and maintainability, (5) security, and (6) Verification and Validation (V&V) and IV&V.

Rather than mandating specific tools or methods, the objectives at lower hierarchy levels are concrete enough to
allow an appropriate selection of the same, suitable to the engineering system to be built and its operating environment.

2.2 Risk Informed Safety Case
2.2.1 Overview

The concept of Risk Informed Safety Case (RISC) that we consider here is that which has been elaborated in detail in
the NASA System Safety Handbook [2], [3]. In brief, a RISC is

“a structured argument, supported by a body of evidence, that provides a compelling, comprehensible and
valid case that a system is or will be adequately safe for a given application in a given environment.”

Note that this is, itself, an adoption of an earlier (but still in use) concept of safety case [6]. The core elements of a
RISC given in this way are:

• Safety claims, which articulate statements about the safety of the system that are, or ought to be, true;
• Evidence, which refers to the artifacts produced during system development, verification, and operation, from

which certain facts can be inferred (i.e., lower-level claims); and
• Structured arguments, which are a chain of reasoning or inference that capture the rationale linking the evidence

to the safety claims made.
We develop RISCs guided by a system safety framework that aids the production and organization of the necessary

safety artifacts, whilst guiding the relevant safety activities [2]. The framework is applied to span the system develop-
ment lifecycle, and the core activities are iteratively undertaken such that there is an evolution of the RISC. This is
reflected through the development of structured arguments that represent the (state of the) RISC, at each of the Key
Decision Points (KDPs) in system development. Later in this report (Section 3), we will describe the system safety
framework in more detail towards elaborating the relation between the RISC and SOH concepts.

2.2.2 Describing a RISC

When creating a RISC, we can elaborate it using textual descriptions, specialized graphical notations such as the
GSN [7], or with a combination of the two. In this report, we will use GSN (Figure 2) to show fragments of a
RISC that relates BioSentinel assurance evidence to the claims obtained from (the objectives of) the SOH. Note that
GSN provides structuring mechanisms such as modules and hierarchy [8], along with supporting notational extension,
though here we are only concerned with non-modular structures and their corresponding notation. Now, we give an
overview of the basic (non-modular) GSN.

An argument structure in GSN (Figure 2) contains a top-level (root) goal stating a safety claim. We develop goals
into sub-goals using strategies, and continue goal development until there are elementary claims that can be connected
to the available evidence, i.e., solutions. The structure also specifies the assumptions made, the justifications if any,
e.g., for the strategies used or the sub-claims created, as well as the context in which the claims, strategies, and solutions
are valid. We link goals, strategies, and solutions using the Is Supported By link (Ý) while context, assumption, and
justification elements require an In Context Of link (_). GSN provides a graphical annotation (♦) for goals and
strategies to indicate that they are to be developed, i.e., they are incomplete.

Figure 2 gives a simple illustrative example: here, the top-level claim, “G1: Failures of the LiPo battery system
are acceptably tolerated”, which is made in the context of the failure modes and effects analysis (FMEA) of the
LiPo battery system (context node C1) is decomposed by two strategies, S1 and S2, which provide complementary
arguments—i.e., over the identified failure modes, and of redundancy, respectively. The latter relies on an assumption
of independence in failures of the redundant batteries (assumption node A1), but has not been further developed.
The use of the former has been justified (in justification node J1), and results in two sub-goals: G2 (concerning the
elimination of short circuits in the battery system), and G3 (concerning the acceptable mitigation of thermal runaway),
respectively. The latter remains to be developed, while the former is addressed by evidence node E1, i.e., short circuit
analysis.

Note that GSN nodes are intended to be pointers to more detailed information, with the description of the node
summarizing those details. Thus, we can give detailed definitions/content externally, and link those to an appropriate
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G1
Failures of LiPo

battery system are
acceptably tolerated

C1
FMEA of

LiPo battery
system

S1
Argument over

identified
failure modes

S2
Argument

of
redundancy

A

A1
The spare battery system
fails indepedently of the

primary system

J

J1
The set of failures of the
LiPo battery system are

characterized by its different
failure modes

G2
Short circuits in the
battery system are

eliminated

G3
Thermal runaway of the

battery packs is
acceptably mitigated

E1
Short
circuit

analysis

Legend

Is Supported By

In Context Of

Figure 2. Basic (non-modular) GSN and a simple example to illustrate how GSN is used to specify an argument structure of a
RISC.

node whose description could be, simply, an identifier. For example, the context node C1 of Figure 2 contains a simple
clarifying description, although the content to which it would be linked could be the detailed FMEA report.

2.3 Mapping BioSentinel Assurance Evidence to the SOH

Here, we reproduce from the earlier report of this project [4], the content relevant for the current report: a preliminary
mapping from BioSentinel assurance evidence to the objectives identified in the SOH. The intent is to give context to
the work that we will report on here: how the assurance evidence from BioSentinel is linked to the SOH via (fragments
of) a RISC.

2.3.1 BioSentinel Assurance Evidence

Tables 1–3 summarize (our understanding of) the assurance evidence produced by the BioSentinel project—i.e., the
artifacts that document the processes being followed, and the concrete outputs of V&V processes—that are relevant
for FSW assurance. Specifically, the evidence items listed in

• Table 1, pertain to assurance obtained from systems engineering, that process activities are in place to facilitate
FSW development that conforms to the applicable assurance basis and standards.

• Table 2, concern the assurance obtained from systems engineering reviews conducted at different KDPs and
milestones. Effectively, these reviews reflect assurance from a systems engineering standpoint that the FSW
(releases) meets the requirements and, in turn, the stakeholders’ needs.
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• Table 3, elaborate the assurance afforded by V&V activities performed during the different FSW development
stages. In effect, this constitutes product-specific evidence.

Additionally, implicit evidence is relied upon, as a consequence of software reuse, compliance of reused software
with existing standards.

Table 1. FSW assurance evidence from BioSentinel systems engineering plans.

Plan Description and Assurance Provided

Systems Engineering
Management
Plan (SEMP)

Describes the systems engineering process, guiding the overall technical engineering
aspects and workflow, and provides the context for, and links to, supporting
processes. Provides assurance that there is a common roadmap for system (and
software) development that is structured, containing activities that are commensurate
with the project/payload risk class.

Safety and Mission
Assurance Plan (S&MAP)

Describes the tasks required for directing and controlling the design, development,
review, and verification procedures and practices, so that BioSentinel meets its
requirements for its intended lifetime. Provides assurance that a Software Quality
Assurance (SQA) role has been designated, and tasked with responsibilities
pertaining to creating, executing, and maintaining software assurance plans,
processes, and products, as well as with oversight/audit responsibilities.

Software Assurance
Plan (SAP)

Describes the activities planned to ensure conformance of the FSW to its
requirements and the applicable assurance standards. Supplements the assurance
provided by the software development plan that there is a roadmap and a framework
to establish conformance of FSW to its requirements.

Fault Management
Plan (FMP)

Describes the approach to, and scope of, BioSentinel fault management capabilities,
elaborating the fault scenarios of interest, the extent to which fault monitoring occurs,
and the roles/responses of the FSW in fault management. Strictly speaking, the FMP
serves to provide system-level assurance that plausible faults that may occur during
spacecraft operations (from pre-launch through decommissioning) have been
anticipated, and that systems engineering activities (and artifacts) exist to
manage/mitigate their effects. Nevertheless, we include this artifact amongst the
evidence for software assurance, since the FMP characterizes the contribution of the
FSW to system-level fault management, thereby describing a context where software
performs potentially critical functions.

Software Development
Plan (SDP)

Describes how BioSentinel onboard FSW is developed and verified, including
specific assurance and V&V tasks to be undertaken. Provides assurance that there is a
common roadmap for FSW development that is structured, containing activities that
are commensurate with the software class. The SDP also includes guidance
pertaining to software configuration management, development, integration, and
release, together with the applicable workflows.

Software Release
Plan (SRP)

Elaborates the schedule with which FSW is released to the project, along with a
description of the purpose of each release and the functionality provided by the same.
Provides assurance that i) the FSW development is following the SDP, and ii) the
functionality delivered meets the applicable requirements, through traceability
evidence that links the requirements to their verification (testing) results.

6
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Table 2. FSW assurance evidence from BioSentinel systems engineering KDPs and milestone reviews.

KDP or Milestone Description and Assurance Provided

Preliminary Technical and
Safety Review (PTSR)

A system-level KDP review by the key stakeholders, of the core technical products,
as specified in the SEMP. Applicable FSW-related artifacts include baselined SEMP,
SDP, S&MAP, preliminary Interface Control Documents (ICDs), preliminary FSW
subsystem (L4) requirements with verification methods, and an initial FSW
architecture. The review provides assurance that FSW products conform to the
assurance basis and standards. Reviewing facilitates early detection of errors, such as
requirements specifications that do not meet the stakeholders’ intent, or potential
conflicts in the FSW architecture and the requirements.

Preliminary Design
Review (PDR) and

Critical Design
Review (CDR)

System-level KDP reviews by the key stakeholders, of core technical products
(developed after the PTSR KDP, as specified in the SEMP. Applicable FSW-related
artifacts include FSW subsystem (L4) requirements with verification methods,
preliminary FSW component (L5) requirements with verification methods, and the
FSW architecture, all of which are baselined. Similar to the PTSR, the reviews
provide assurance that the FSW products continue to conform to the assurance basis
and standards, as they progress through development. As with the preceding KDP
reviews, feedback is obtained on requirements errors, and the acceptability of the
FSW architecture against the (L4) requirements.

Integration Readiness
Review (IRR)

System-level milestone review of all BioSentinel subsystems, including the FSW,
prior to final integration. Provides assurance that the FSW subsystem is ready for
integration, by virtue of having completed and passed all unit test procedures, and all
anomalies recorded in JIRA, relevant to the release being integrated.

Flight Readiness
Review (FRR)

Project-level milestone review of the overall system, adjudging whether the system
artifacts, including those pertaining to the FSW have been developed in conformance
to the applicable assurance basis. The main assurance provided pertains to the
completion of all verification items, internal consistency of all requirements,
traceability to functions and items that fulfill the requirements, resolution and closure
of all non-conforming item reports, and completion of all software (as well as
hardware) end items.

SQA Audits Strictly speaking, these are not conducted at KDPs or at milestones; rather they are
conducted as and when deemed necessary by the SQA role defined within the SEMP.
Provides assurance that the SDP is appropriate for the identified software class, and
additionally that the FSW products, documents and processes meet the requirements
identified by the applicable assurance basis and standards.

Table 3. Assurance evidence from V&V activities during FSW development stages.

Name Description and Assurance Provided

Architecture verification
results

The algorithmic apps of the FSW undergo testing via the Workstation
Simulator (WSIM), and limited formal verification through the use of Simulink
Design Verifier (SDV). The corresponding results are V&V-generated evidence items
that provide assurance that the algorithmic components in the FSW meet their
allocated requirements.

Static analysis results Static analysis using the compiler and third-party tools, such as Cppcheck, integrated
into Bamboo provides assurance of freedom from certain kinds of runtime errors.

7
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Table 3. Assurance evidence from V&V activities during FSW development stages (Continued).

Name Description and Assurance Provided

Review results Reviewing forms one of the core V&V activities conducted on the FSW requirements,
architecture and design, and the code. The latter, in particular, undergoes both formal
and informal review. The results of reviewing are reflected either as requirements that
are baselined and eventually closed (i.e., verified), or as new issues that are recorded
and tracked to closure in JIRA. The assurance concerns addressed include
requirements validity, traceability correctness (i.e., that the right collection of artifacts
is linked), requirements consistency, acceptability of the architecture against the
requirements, conformance of the code to coding standards, reduction of errors in
code, and the acceptability of the FSW releases in relation to stakeholder needs.

Traceability records Requirements and any issues discovered during review (or in other V&V activities)
are recorded and tracked to closure in JIRA. As such JIRA queries help generate issue
closure reports, and ensure that FSW requirements are traceable not only to their
parent/child requirements in the requirements hierarchy, but also to their verification
procedures. The former provides assurance that the errors discovered have been fixed,
while the latter provides assurance on the completeness of requirements traceability,
allocation, and verification. In addition to JIRA, the Bamboo continuous integration
and build environment provides the record of traceability from requirements to their
unit test results, while the results of functional/system-level testing are recorded in
Confluence, together with links to the FSW requirements that they verify.

Unit testing results Code corresponding to L5 FSW requirements, i.e., the allocated FSW components,
undergo unit testing. The record indicating the traceability from requirements to unit
test/testing results is generated via Bamboo. Unit tests provide assurance that the
individual components meet their associated requirements.

Functional testing results FSW also undergoes functional testing, which includes tests that exercise the function
being provided, as well as system-level scenarios that test the overall system, along
with specific FSW functions. Functional tests verify some L5 FSW component
requirements and all L4 FSW subsystem requirements. The record of test results and
their traces to the requirements being verified is maintained and managed on
Confluence. As such, these evidence items provide assurance that the executable
FSW meets the relevant system and subsystem-level requirements.

JIRA reports JIRA is also used to record issues discovered not only during review of the FSW
development artifacts, but also during the other V&V activities conducted.
Consequently, tracking all JIRA issues to closure, and the corresponding generated
reports provide assurance of concerns such as requirements being satisfactorily
verified, trends on reduction of errors in code, code quality improvement, etc., in
addition to traceability between requirements, and between requirements and their
verifications.

Thermal Vacuum and
Thermal Vacuum Power

Management testing
results

FSW releases undergo Thermal Vacuum (TVAC) and Thermal Vacuum Power
Management (TVPM) testing, the results of which are recorded and maintained on
Confluence. Those results constitute evidence that provides assurance that the FSW
will function as required in an environment representative of the actual mission
operating environment.

8
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2.3.2 Example Mapping

Figure 3 exemplifies how the various identified BioSentinel assurance evidence items have been mapped to the SOH of
the software quality objective (see Figure 1). For other objectives of the SOH and how BioSentinel assurance evidence
is related to those objectives, we refer to the earlier report of this project [4].

The purpose of this mapping is threefold:
i) from a top-down perspective, to show which objectives can be claimed to have been addressed by the assurance

evidence gathered from BioSentinel assurance activities;
ii) to give a qualitative gauge of the extent to which the objectives have been met by the evidence shown; and

iii) to give insight into the relevance of the assurance evidence gathered to the objectives identified.

Objective: Remaining 
or known issues have 
been closed out to an 

acceptable level of risk
(2.B.2)

Strategy:  Provide a 
planned, maintained, 

comprehensive, 
working software 

assurance process 
(2.A.1.B)

Strategy: Identify and 
resolve faults throughout the 

development process in a 
timely manner

(2.B)

Objective: Faults, 
defects, or other issues 
have been found and 
resolved as part of the 
development process

(2.B.1)

Strategy: Track, address, 
and trend issues via a 
closed loop problem 
resolution process

(2.B.1.A)

Context:  Applies to 
full lifecycle from 

systems requirements 
to retirement

Objective: Software 
conforms to functional 

intent and performs 
as planned

(2)

Strategy: Achieve a high level 
of process maturity to ensure a 

robust software product
(2.A)

Objective: Software 
development process 

minimizes insertion of errors
(2.A.2)

Strategy: Assure use of a 
maintained, comprehensive 

working software 
development process  

(2.A.2.A)

Strategy:  Assure 
software development 
processes are followed 

and do not introduce 
errors

(2.A.2.B)

Objective: Software 
interim and final 

products conform to 
project needs and 

requirements
(2.A.3)

Strategy: Assure software 
final and interim products 
are of sufficient  quality for 

the project
(2.A.3.A)

Objective: Software 
Assurance processes 

provide reduced risks and 
higher confidence in SW 

products
(2.A.1)

Strategy: Assess the 
software  level and 

criticality and determine 
SA program risks  

(2.A.1.A)
Strategy: Assure 

risks are collected, 
analyzed, tracked, 

and addressed 
(2.B.2.A)

SDP
SAP

SRP

Traceability Record

SDP
SAP

Traceability Record

Review results
Architecture verification results 

Static analysis results
Unit testing results

Functional testing results
JIRA reports

TVAC and TVPM testing resultsSDP

SDP

SDP
SAP

SRP

SAP

SAP

SAP

PTSR
PDR
CDR
IRR
FRR

SQA Audits

PTSR
PDR
CDR
IRR
FRR

SQA Audits

JIRA Reports

Review results
Architecture verification results 

Static analysis results
Unit testing results

Functional testing results
JIRA reports

TVAC and TVPM testing results

JIRA Reports

Figure 3. Draft SOH at a lower level, as developed for the software quality objective (2), with each sub-objective and strategy
annotated with the BioSentinel FSW evidence items.

From Figure 3, we can infer that some objectives are related to the mapped evidence. That is, the objectives
(appear to) have been addressed by the evidence items shown. However, the rationale why the evidence entails the
claims is not explicitly apparent. The main focus in this report is to elaborate on this mapping between the relevant
V&V artifacts and (the objectives of) the SOH, through a skeleton of an assurance argument. The argument captures
the rationale why the evidence provided supports the identified objectives. An additional focus is to map the SOH to
the current, applicable assurance standards.

3 Relating the SOH and RISC
As mentioned earlier (Section 2.2), we develop a RISC within a system safety framework. First we give an overview
of this framework, after which we relate the SOH and the RISC concepts.

3.1 System Safety Framework
Figure 4, reproduced from the NASA System Safety Handbook [2], gives a pictorial overview of the system safety
framework, whose core activities comprise development of safety objectives, system safety activities, and the develop-
ment and evaluation of RISCs.

9
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August 03, 2018 SARP / SAWG Q3 Review 30Figure 4. System safety framework, reproduced from [2], to develop RISCs.

Development of Safety Objectives: This activity produces a collection of related safety objectives, which can be
expressed in the form of an objectives hierarchy. The hierarchy is produced by decomposition of the highest-
level objectives into their fundamental components, e.g., decomposing a system safety objective into design
safety, and operational safety. Lower level objectives in this hierarchy are then associated with measurable
performance parameters, e.g., the probability of an unsafe malfunction. The safety objectives are specified such
that the level of safety to be achieved goes beyond the minimum tolerable level. That is, the aim is, in fact,
to maximize the achieved level of safety, without disproportionately deteriorating other system performance
parameters.

System Safety Activities: This refers to a collection of activities to: a) develop and analyze hazardous scenarios—
so-called integrated safety analysis (ISA); b) develop safety requirements; c) support the system design, i.e.,
by considering design decisions from a safety perspective; d) analyze alternatives; e) demonstrate that safety
requirements are satisfied, both from the standpoint of the external requirements levied on the system (e.g., from
regulations), and the lower-level requirements derived from preceding activities; f) monitor safety performance;
and g) interface with other systems engineering processes that indirectly impact safety, e.g., quality manage-
ment, organizational processes, etc. Of these, the analysis of alternatives is the core activity that makes the
overall approach risk-informed. Specifically, the analysis considers the impact (on cost, schedule, and technical
performance) of introducing safety risk reduction mechanisms with respect to the rest of the system perfor-
mance. In other words, design decisions are made, in part, by considering the cost benefit trade-off between
system safety and other orthogonal system properties, e.g., functional performance, reliability, etc.2

Among the results of analyzing alternatives in this way is a refinement of the safety objectives identified in the
earlier stage. This induces a feedback loop in the process so that the lower-level objectives and performance
parameters ultimately selected are the result of an iterative application of the system safety activities.

2The cost-benefit analysis lends to the notion of a system that is as safe as is reasonably practicable (ASARP), which is taken as a fundamental
principle of adequate system safety [2].
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Development and Evaluation of a RISC: Developing a RISC effectively amounts to the development of a structured
argument that presents the chain of reasoning linking a hierarchy of safety claims to the evidence required to
assert that the claims made can be accepted. In fact, the result of this activity from the application of the
overall framework are a series of RISCs, for each KDP in the system development lifecycle (shown at the top of
Figure 4). The structure of such arguments (as shown in the figure) is similar to the structure of the objectives
hierarchy produced from the very first activity in the system safety framework. In fact, the hierarchy of claims
can be developed to correspond exactly to the safety objectives hierarchy.3

Although the framework does not specify a particular notation or format for the argument structure embodying
a RISCs, it borrows the concepts and structuring mechanisms from those of the GSN [7]. As mentioned earlier,
in this report, we will use the GSN to develop the RISCs fragments for BioSentinel FSW assurance.

RISC evaluation is conducted in the system safety framework as a structured review by the appropriate decision
makers, by considering the technical basis and evidence underlying a safety claim, its validity and its adequacy,
supported by checklists that address various evaluation criteria. We will not further consider the methodological
details of developing and evaluating RISCs in this report, which have been addressed comprehensively in [2],
and [3]. We also refer to our prior work in developing aviation safety cases [9], [10], [11], [12], which provides
additional details on the development of structured arguments.

3.2 Conceptual Mapping
We now describe plausible relations between the SOH and the RISC.

First, from Figure 4, we observe that the initial work product of applying the system safety framework is a safety
objectives hierarchy. This is largely similar in intent and form (i.e., it specifies high-level objectives reflecting that
which needs to be achieved by the system from a safety standpoint, without emphasizing how the objectives are to be
achieved) to the SOH, although the focus is on system-level safety concerns.

It is conceivable that upon refining the system safety objectives hierarchy, there are objectives that apply to its
software components. In other words, by allocating the objectives to the system architecture—in much the same
way as requirements can be allocated to the system and its components—some of the objectives may apply to the
software elements of the system. Those objectives, in turn, may be related to, (or even may be the same as) the
objectives identified within the SOH [1] that apply to software quality, software safety, and software reliability and
maintainability, and which have themselves been allocated to the software component.

Here, our rationale is that each class of software properties can have an impact on system safety. Therefore, it
appears reasonable to hypothesize that there will be objectives in common between the SOH and a refinement of the
system safety objectives hierarchy as allocated to software, so that in effect the former contributes to the latter. To test
this hypothesis, we can apply the system safety objectives hierarchy to the BioSentinel project, allocating and refining
them to derive the lower-level objectives and determine whether any apply to the BioSentinel FSW. At the same time,
we can also apply the SOH, refining the objectives as applicable to BioSentinel FSW and compare the results. We do
not undertake this effort in this project.

Another possible mapping is determined by applying the system safety framework to the BioSentinel FSW. That
is, rather than deriving a system safety objectives hierarchy, we replace it with the SOH as the starting point, following
which we apply the (system) safety activities to the BioSentinel FSW. Thus, one of the outcomes is an iterative
refinement of the SOH into specific lower-level objectives relevant for BioSentinel. Applying system safety activities
to software involves conducting a software-focused hazard analysis, based on which we can develop scenarios that
help to determine when and how the FSW affects system safety. That, in turn, will help to determine whether or not
the current FSW design and its implementation are sufficient for managing the identified software induced hazards,
or whether additional risk reduction measures are needed. An additional task is (re)analyzing software-level design
decisions from a safety perspective and, if warranted, modifying the software architecture (and implementation) to
meet any new or derived safety requirements, beyond those levied as a result of the safety analysis that had been
conducted at the system level.4

In this report, we do not apply the system safety framework to the BioSentinel FSW mainly because it has been
determined to be non-safety critical, Class C, mission support software [4], therefore the application of additional

3Indeed, as per [2], a safety objective specifies that which is intended to be achieved, whereas a safety claim specifies that which can be claimed
to have been achieved. Additional concepts include a notion of (safety) threshold and goal, which specify the upper and lower bound, respectively,
of the safety target deemed to be the minimum tolerable.

4i.e., safety analysis applied to the BioSentinel Freeflyer satellite system, and the Space Launch System (SLS) in which it is a secondary payload.
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safety analysis is not warranted. However, we do use the broad approach to develop (fragments of) the assurance
argument, i.e., the RISC, to relate the assurance evidence to the objectives in the SOH. Thus, the RISC can be viewed
as the means which we explicitly capture the rationale why BioSentinel assurance evidence items (Tables 1 – 3) can
be used to conclude that the objectives in the SOH have been met (for example, as shown by the mapping in Figure 3).

Here, we note that—from a practical standpoint—we have found it beneficial to expand the scope of a RISC to
include a concept of safety architecture [13], in addition to structured arguments. Effectively, a safety architecture de-
scribes a composition of safety scenarios showing the safety mitigations being used, where the scenarios are described
using Bow Tie Diagrams (BTDs) [14]. Recall that safety scenarios are amongst the outcomes of the system safety
framework, in particular the ISA, as described earlier in Section 3.1. We do not develop scenarios for the BioSentinel
FSW in this report.

4 Developing a RISC for BioSentinel FSW Assurance
We now present fragments of the assurance argument, i.e., the RISC, relating BioSentinel assurance evidence to the
SOH.

Recalling the observations in our earlier report [4], the SOH in its current form (intentionally) states its objectives
in a generic form. To apply it for a particular software system, the objectives are to be specialized and refined referring
to the software for which assurance is sought.

As mentioned in Section 2.2, we will use the GSN to describe the argument that embodies the RISC to capture the
rationale why BioSentinel assurance evidence items support the objectives stated in the SOH. In particular, we apply
a combination of instantiation—i.e., translating the SOH into GSN—and specialization—i.e., a refinement where
we reword the generic objectives into application-specific claims, also modifying the SOH strategies into appropriate
assurance and inference strategies. The link to evidence is made through decomposition of the claims, whilst capturing
assumptions, justifications, and context.

Figure 5. Software quality objectives (sub-) hierarchy.

Specialization of the SOH Figure 5 shows the software quality objectives (sub-) hierarchy, while Figure 6 shows
the same hierarchy described using GSN, with the node identifiers of the latter retaining the identifiers of the objectives
and strategies of the former. The main difference between the two is the use of the appropriate GSN, together with an
indication of incompleteness (i.e., the ♦ decoration on leaf strategy nodes) in Figure 6.
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Figure 6. Software quality objectives (sub-) hierarchy described using GSN. Note that the nodes have been colored to retain the
same color scheme as the hierarchy of Figure 5 to facilitate a rapid visual comparison.

Refinement Figure 7 shows a refinement of the argument structure of Figure 6. In the refined argument structure,
we use node colors to indicate node type (i.e., objective, strategy, context) in the original hierarchy, with the identifier
and its suffix showing the corresponding source in the SOH:

• Node identifiers whose suffix includes the letter ‘R’ are nodes of the hierarchy that have undergone a specializa-
tion of the description appropriate for capturing a claim, strategy, or context. For example, the root goal G2 of
Figure 6 states the objective “Software conforms to functional intent and performs as planned”; its refinement,
the root goal G2R in Figure 7, specializes this objective into a claim relevant for BioSentinel, i.e., “BioSentinel
FSW conforms to functional intent and performs as planned”.

• Likewise, the strategy S2.B in Figure 6 (Identify and resolve faults . . . ) has been refined into the strategy S2.BR
in Figure 7) (Appeal to timely identification and resolution of faults throughout the development process.

• In Figure 7, the nodes whose identifiers are, respectively, G2.B.1R1 and G2.B.1R2, are both goal nodes and
refinements of the objective G2.B.1 (see Figure 5, and its equivalent GSN argument Figure 6).

• Additional nodes that refine the rationale being captured have no color. For instance, the context node C1 in
Figure 7, is additional context for the claim in goal node G2R, i.e., the determination of conformance to func-
tional intent requires the (BioSentinel FSW) functional specification—which documents the intent—as context.
Similarly, the nodes G1, G2, and G3, are sub-claims of the claim in the goal node G2.B.1R1. Since they are
linked to GSN solution nodes, they are also evidence assertions, i.e., they state that which can be inferred from
the relevant evidence items. For instance, the solution node E1 refers to a traceability record produced from
JIRA queries, from which it can be established that: i) there is a listing of all recorded FSW issues, including
faults and defects, ii) all the issues listed have been resolved and closed.

Based on this, in part, we can conclude that the BioSentinel FSW traceability record provides evidential support
for the claim in goal node G2.B.1R1, and why that evidence item maps to the corresponding branch of the SOH (as
shown in Figure 3). Similar rationale is captured in the remainder of argument structure shown in Figure 7. Note that
the evidence to which the solution node E1 refers is software-level product evidence; the evidence in solution nodes
E2–E4 refer to artifacts and infrastructure that constitute or characterize the development and planning processes.

Refinement and Decomposition The argument fragment of Figure 7 adopts some of the strategies provided in
the SOH to link the root claim (shown in the goal node G2R) to the supporting assurance evidence. An alternative
refinement is to consider the root claim in the context of the lifecycle artifacts (context node C1R).

Since lifecycle artifacts represent, in effect, the evolution of the final executable FSW starting from the require-
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Figure 7. Refinement of the software quality objectives (sub-) hierarchy (shown at the top), with one branch (highlighted by the
dashed box) shown expanded.
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Figure 8. (Fragment of) an alternative argument for why BioSentinel assurance evidence items support the software quality ob-
jective (shown at the top), produced by decomposition and refinement, with the right-side branch (highlighted by the dashed box)
shown expanded.
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ments, it appears reasonable to consider that conformance to functional intent ought to also hold for each lifecycle
artifact, with “conformance to functional intent” being defined in a suitable way for the artifact under consideration.
That is, by decomposing the root claim over the lifecycle artifacts and showing that each artifact considered in turn
itself appropriately conforms to functional intent, an alternative rationale can be provided to reinforce why BioSentinel
FSW assurance evidence supports the SOH.

Figure 8 shows a fragment of this alternative argument. The format used for node identifiers and the node color
scheme is as earlier, with claims, strategies and other elements of the argument not previously appearing in the SOH
shown with no color. As shown, the argument uses decomposition iteratively, first over lifecycle artifacts (strategy
node S1), and then over the FSW architecture (strategy node S5). The root claim of conformance to functional intent
is accordingly refined into sub-claims on the FSW architecture (goal node G2), and the components of the architecture
(goal nodes G4, G5, G6, and G8). The assurance evidence then used to substantiate those claims comprises, in part,
verification evidence, e.g., formal verification applied to Simulink models (goal G11 and solution E5).

Overall RISC We have mainly shown fragments of the assurance arguments comprising the RISC, to give a flavor
of how the arguments are constructed and the broad approaches (specialization, decomposition, and refinement) to
link the claims to the assurance evidence. We do not develop the complete RISC here, in part, since the capture of
assurance rationale at the required level of detail requires greater effort and in-depth analysis of the BioSentinel FSW
than is feasible within the scope of this project.

5 Mapping the SOH to Applicable Standards
The main applicable standard for this work is the NASA Software Assurance Standard, NASA-STD-8739.8 [5], though
other relevant assurance bases for BioSentinel have been elaborated in [4].

For BioSentinel FSW, the NASA Software Engineering Requirements (NSER) [15], and the NASA Software
Assurance Standard (NSAS) [5], together establish the assurance basis in terms of

• the software class: a usage/application-based classification of the software, and
• the level of assurance effort required, and its prioritization, based on the software class.

Moreover, the NSER prescribes process activities that contribute to the provision of assurance—e.g., requirements
on software V&V activities, such as verification planning and verification result tracking—while the NASA Software
Assurance Standard (NSAS) defines the assurance activities and the tasks required to meet the applicable assurance
objectives. Furthermore, the NASA software safety standard [16] establishes software contribution to system safety
through a determination of software safety criticality, imposing additional safety-related software assurance require-
ments. As such, the BioSentinel onboard FSW has been determined to be non safety-critical, Class C, mission support
software, i.e., per the current NSAS (Table A3, Appendix A), Class C software requires a medium level of assurance
effort and medium prioritization.

The BioSentinel project has tailored the requirements originating from both the NSER and NSAS to be com-
mensurate with the payload risk class and software class, as identified above. There are additional center-specific
requirements—in this case, from the Ames Research Center (ARC)—which specialize and tailor the above Agency-
wide requirements.

As stated earlier, the objectives-based approach underpinning the SOH contrasts with the prescriptive nature of
the more traditional NSAS. Both are intended to direct assurance to provide confidence that the software resulting
from the development process will serve its intended purpose. Thus, it should be possible to trace how satisfying
the requirements of the NSAS will provide the evidence contributing towards the objectives of the SOH. Likewise,
for traditional development it should be possible to trace how the evidence needs of the SOH call for the kinds of
activities prescribed by the NSAS. In this project we have investigated this by creating a mapping (i.e., bi-directional
trace) between the leaf strategy nodes of the SOH and the requirements of the latest draft of the NSAS. Note that the
BioSentinel mission complies with the current active NSAS, and has not considered the new draft.

The NSAS-SOH mapping was provided earlier by this project in the form of a spreadsheet, and addressed all
the SOH leaf strategies (except for those pertaining to cybersecurity) and all the draft NSAS requirements that are
the responsibility of Software Assurance on a project (again except those pertaining to cybersecurity—beyond our
expertise to address).

As an example, Figure 9 is a fragment of the textual listing of the portion of this mapping for the Objective (2) of
the SOH—the branch of the SOH shown earlier in Figure 3 and Figure 5. The lines in blue are the textual contents
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of SOH objective nodes, the lines in red are the textual contents of the SOH strategy nodes, and the lines in black,
grouped beneath the lowest-level SOH strategy nodes, are the draft NSAS requirements (those levied on non-safety
critical, Class C mission support software) that we assessed as contributing evidence towards their parent SOH strategy.

The “SAS-###” numbers are those in the current draft NSAS, and the associated text is, for reasons of conciseness
here, a much-abbreviated form of the requirement’s actual text—for the full definitions of the requirements, see the
draft NSAS itself.

Software performs what is intended, only what is intended, and only in the intended manner 
    Plan and execute Software Assurance throughout the software lifecycle 
       2: Software conforms to functional intent and performs as planned 
          2.A: Achieve a high level of process maturity to ensure a robust software product 
             2.A.1: Software Assurance processes provide reduced risks and higher confidence in SW products 
                2.A.1.A: Assess the software level and criticality and determine SA program risks  

SAS-024: Perform and keep up to date SSCA 
SAS-032: Contents of SA Plan 

SAS-032a: A description of all planned assurance activities  
SAS-032b: Risks associated with any activities required by this Standard that have not been planned and funded 
SAS-032c: Results of Software Assurance Characteristics Assessment (SACA) 
SAS-032d: Initial safety criticality assessment results 

SAS-045: Generate, report and maintain quality records on SA Project activities  
SAS-045a: Independent Assessment of SW Classification as per NPR 7150.2  
SAS-045b: SA Characteristics Assessments (SACA) 
SAS-045c: SW Safety Criticality Assessment (SSCA) 
SAS-045d: Any Waivers or Deviations to meeting this Standard 
SAS-045f: SA Standard Compliance Matrix at SA level (See appropriate compliance matrix in SAEHB) 

SAS-087: Verify software severity levels assigned and maintained 
SAS-088: Assure risk associated with DR/PR is entered into risk system(s) 
SAS-094: Assure SW change will not compromise Project's risk posture and is compliant with NPR 7150.2  
SAS-101: Conduct independent SSCA 

                2.A.1.B: Provide a planned, maintained, comprehensive, working software assurance process  
SAS-019: Assess and concur on Provider's SA plan 
SAS-021: Assess compliance of Provider's SA activities 
SAS-025: Develop and maintain evidence of compliance to SA Standard 
SAS-030: Plan and record SA activities 
SAS-031: Acquirer signature authority on SA Plan  
SAS-032: Contents of SA Plan 

SAS-032a: A description of all planned assurance activities  
SAS-032e: Compliance matrix, showing the requirements in this Standard and how they will be met 
SAS-032f: The total SA personnel needed and where they are from, obtaining Center SMA approval for personnel from SMA  
SAS-032g: Roles and division of responsibilities for implementing the requirements of this Standard 
SAS-032h: Resources needed to perform the SA activities (people, necessary tools, access to information)  
SAS-032i: Initial planned schedule for performing SA activities relative to Project activities, and pointer to actual SA schedule 
SAS-032j: Any Project-specific training needed 
SAS-032k: Metrics to be collected with their analysis procedures, storage procedures, and reporting plans 
SAS-032l: Identification and involvement of stakeholders 
SAS-032m: Communication processes, schedules, methods, and deliverables between Acquirer and Provider SAs 
SAS-032n: SA method used to review, oversee, correct and report on the Provider performed SW activities 
SAS-032o: Products used to document and report on SA analysis and reviews of SW development activities, products and 

results. 
SAS-032p: Funding information/adequacy  

SAS-035: Establish and maintain SA schedule  
SAS-036: Use SA CM system to store and maintain SA work products and quality records 
SAS-037: Use tracking system for SA activities and results  
SAS-039: Develop SA plan and obtain concurrence  
SAS-045: Generate, report and maintain quality records on SA Project activities  

SAS-045g: Evidence and results of audits/assessments conducted on the Provider 
SAS-045h: Contract-agreed Provider SA records  

SAS-047: Collect SA metrics 
SAS-047a: Planned versus actual number of SA activities performed  
SAS-047b: Planned SA budget versus actual SA expenditures (in hours or dollars or both) 
SAS-047c: Planned SA resource allocation versus actual SA resource allocation  
SAS-047d: Planned SA task duration versus actual SA task duration  
SAS-047e: Number of issues SA found that are: worked with Project to resolve, versus rejected by the Project for correction 

(and reason why) 
SAS-047f: Total number of open SA issues, and their risk level, versus total number of closed SA issues, trended 
SAS-047g: Duration since last modification to the active SA issues reported to Project 

SAS-049: Assess and concur on Project's and Provider's SW and SA plans to indicate that they: 
SAS-049a: Satisfy their requirements, per the appropriate software classification 

...
...

             2.A.3: Software interim and final products conform to project needs and requirements 
                2.A.3.A: Assure software final and interim products are of sufficient quality for the project 

SAS-054: Assure planned development and maintenance processes are followed 
SAS-065: Report and track to closure SW problems, findings, risks and SW safety issues, elevating as necessary 
SAS-078: Assure regression testing is planned, documented and covers SW changes 
SAS-089: Evaluate and concur completion of verification and validation plans and procedures 
SAS-097: Assure CM was used and correct version and accompaniments are delivered 
SAS-071: Assure decisions and analyses are documented 
SAS-083: Assess accept as is resolutions 
SAS-084: Assess change resolution addressed the problem and does not introduced new ones 
SAS-108: Collect track and trend SW quality metrics and SW defects 
SAS-109: Perform reliability analyses 
SAS-117: Assure SW quality metrics include reliability indicators 

          2.B: Identify and resolve faults throughout the development process in a timely manner 
             2.B.1: Faults, defects, or other issues have been found and resolved as part of the development process 
                2.B.1.A: Track, address, and trend issues via a closed loop problem resolution process 

SAS-063: Independently verify and track closure of action items from reviews 
SAS-065: Report and track to closure SW problems, findings, risks and SW safety issues, elevating as necessary 
SAS-080: Review resolutions of SW related defects 
SAS-083: Assess accept as is resolutions 
SAS-084: Assess change resolution addressed the problem and does not introduced new ones 
SAS-085: Assure other instances of same problem identified and addressed 
SAS-086: Assure change resolution complete and retesting done 

             2.B.2: Remaining or known issues have been closed out to an acceptable level of risk 
                2.B.2.A: Assure risks are collected, analyzed, tracked, and addressed  

SAS-037: Use tracking system for SA activities and results 
SAS-052: Assure implementation of risk management 
SAS-057: Assure management of SW risks 
SAS-058: Review SW risks 
SAS-059: Use metrics to keep Project and management informed as to SA progress and performance 
SAS-065: Report and track to closure SW problems, findings, risks and SW safety issues, elevating as necessary 
SAS-068: Assure tracking and management of requirement changes  
SAS-074: SA actions and deliverables for assessments/analyses during implementation 

SAS-074d: Report on status of CM, PRACA and Risk Management systems for SW (or within Project), including open and 
closed DRs/PRs 

SAS-074e: Software design incorporates and documents safety, security, reliability default resolutions, corrective actions, and 
other approved changes  

SAS-074h: Check that code identified as safety critical, complex, or for peer review, code walkthrough, or formal inspections 
has been reviewed, errors found closed out 

SAS-074n: Update SA records in the SMA database and configuration manage the reports  
SAS-075: Assure test tools, simulations, models, environments 

SAS-075b: Tools, models, simulators are being operated within the parameters/limitations of their capabilities 
SAS-075c: Documented: operations of SW systems or supporting tools, models or simulators outside known boundaries, 

parameters, limitations; risks input to RM  
SAS-075f: Reported: limits, functioning and results of all simulators, models, and tools; Analyzed: level of certainty/trust from 

outcomes, including concerns, risks, issues 
SAS-077: Evaluate and concur on verification and validation plans and procedures 
SAS-079: Review/audit test results 
SAS-088: Assure risk associated with DR/PR is entered into risk system(s) 
SAS-096: Assure up-to-date DR reports and risks status 

 

Figure 9. Fragment of textual listing of the mapping for Objective (2) of the SOH, of Figure 5

A compact graphical presentation of the same portion of the SOH-draft NSAS mapping is seen in Figure 10,
where yellow squares alongside the SOH 2.#.#.# strategies hold just the numeric portion of the SAS-### requirements
numbers. It is obvious from this that multiple of the requirements contribute evidence towards each of the strategy
node—this is as might be expected given the broad ranging nature of the 2.#.#.# branch of the SOH (most especially
for 2.A.1.B Provide a planned, maintained, comprehensive, working software assurance process—the heart of the
SOH).
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Figure 10. A compact graphical presentation of the SOH 2.#.#.# strategy nodes and alongside each, the NSAS-### numbers of the
draft NSAS requirements assessed as providing evidence towards that node

6 Conclusion

We have described the RISC concept and illustrated its potential use through application to the BioSentinel project. In
particular, we have created several argument fragments, based on our earlier mapping of BioSentinel V&V artifacts
to the SOH, that show how software assurance claims in the SOH are explicated, refined, and ultimately met by V&V
evidence items.

There is a natural relation between the SOH and RISC concepts, in that objectives hierarchies can provide the
skeletal core of the arguments that form the central artifacts of a RISC. There is also a close connection between
scenario development through an integrated safety analysis, representation of those scenarios as BTDs, and the corre-
spondence between those BTDs and the arguments. Since we did not develop BTDs in this report, we will not consider
this further. Moreover, we have not considered all aspects of RISCs, in particular the evaluation of alternatives accord-
ing to the ASARP principle. A proper treatment of this important concept would require an expansion of our scope
beyond safety to consider other system properties as well as appropriate notions of cost.

Finally, the next step of this work, based on our understanding and interpretation of SOHs, RISCs, and their
relationship, is to develop tool requirements to support their development. We intend to do this in the context of an
existing assurance case tool, AdvoCATE, which we used to create the structured arguments in this report.
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SARP / Adapting the Software Assurance Objectives Hierarchy to a Model-based Reuse Process / Deliverable 2.

A Acronyms
ARC Ames Research Center
CDR Critical Design Review
FMEA failure modes and effects analysis
FRR Flight Readiness Review
FSW Flight Software
FMP Fault Management Plan
GSN Goal Structuring Notation
ICD Interface Control Document
IRR Integration Readiness Review
IV&V Independent V&V
KDP Key Decision Point
NSAS NASA Software Assurance Standard
NSER NASA Software Engineering Requirements
PDR Preliminary Design Review
PTSR Preliminary Technical and Safety Review
RISC Risk Informed Safety Case
SAP Software Assurance Plan
SRP Software Release Plan
SDV Simulink Design Verifier
SEMP Systems Engineering Management Plan
SDP Software Development Plan
SLS Space Launch System
S&MAP Safety and Mission Assurance Plan
SOH Software Assurance Objectives Hierarchy
SQA Software Quality Assurance
TVAC Thermal Vacuum
TVPM Thermal Vacuum Power Management
V&V Verification and Validation
WSIM Workstation Simulator
BTD Bow Tie Diagram
ISA integrated safety analysis
ASARP as safe as is reasonably practicable
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