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Abstract— This paper presents a method of feature extrac-
tion in the context of aviation data analysis. The underlying
algorithm utilizes a feature extraction algorithm called sym-
bolic dynamic filtering (SDF) that was recently published. In
SDF, time-series data are partitioned for generating symbol
sequences that then construct probabilistic finite state automat
(PFSA) to serve as features for pattern classification. The
SDF-based algorithm of feature extraction, which enjoys both
flexibility of implementation and computational efficiency, is
directly applicable to detection, classification, and prediction
of anomalies and faults. The results of analysis with real-
world flight recorder data show that the SDF-based features
can be derived at a desired level of abstraction from the
information embedded in the time-series data. The performance
of the proposed SDF-based feature extraction is compared
with that of standard temporal feature extraction for anomaly
detection. Our study on flight recorder data shows that SDF-

ule,” and “reporting module”. The data preparation module
transforms data into information and in order to do so it
performs several tasks: data cleaning, normalizationtufea
selection, feature extraction, feature derivation, andh da
type segregation. The “detection module” is the heart of
the DMKD process and constitutes statistical models that
learn on the data. “Knowledge discovery module” discovers
knowledge from the information and in many cases involve
subject matter experts along with statistical indicatdrat t
provide quantitative evidences in order to characterize th
performance of the entity subjected to test. The final module
contains routines for graphical presentation of infororati

in order to provide a qualitative understanding of the in-
formation contents and thus reveals the patterns, trends,

based features can enable discovering unique anomalous flights relationships out of data sets.
and improve the performance of the detection algorithm. We
also theoretically show that under certain conditions it may be
possible to achive a better or comparable time complexity with

SDF based features. The field of feature extraction is an important area of

research in many fields including machine learning, data
mining, and computer vision. This paper makes use of a
Over the last few decades, data sets have been growingfeature extraction tool for anomaly detection, called sgtiab
an unprecedented pace in terms of variability, velocity] andynamic filtering (SDF) [17]. Mallapragada et al. [12] used
volume. Today, we are left with the challenge of dealingSDF as a feature extraction tool for behavior identification
with these vast and heterogeneous data sources. Miniof mobile robots, where the performance of SDF-based
these heterogeneous resources is still a challenging tagkature extraction was shown to be significantly superior
Data mining is the art and science of analyzing a large that of principal component analysis (PCA) [6], based
collection of observations to extract previously known andn the experimental data in a laboratory environment. In a
actionable information from large data sets. The field ofontemporaneous paper submitted to 2013 American control
data mining is highly multidisciplinary and draws from Conference, Bahrampour et al. [3] have reported consligtent
fields like statistics, machine learning, pattern recagnjt superior performance of SDF-based feature extraction over
high-performance computing, and data visualization. Theepstrum-based feature extraction in terms of successful
entire Data Mining and Knowledge Discovery (DMKD) detection, false alarm, and overall correct classificatains
framework may be customized by the requirements of thi@ an application of target detection and classificatiog.(e.
study undertaken by the user. Figure 1 shows the schemationitoring of human intruders). This paper reports a novel
diagram of a DMKD framework that has been designedpplication of symbolic dynamic filtering to extract key
for this research. Apart from input raw data, the four basiteatures from real-life Flight operations quality asswen
functionalities of this DMKD process are “data preparatio(FOQA) data and investigates the impact of these features
module,” “detection module,” “knowledge discovery mod-on the performance of anomaly detection.

. INTRODUCTION
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Fig. 1: Data Mining and Knowledge Discovery (DMKD) Framework used in #tisly.

A. Anomaly Detection Methods in FOQA Analysis

The theme of this paper is anomaly detection, also known
as outlier detection. Outlier or anomaly detection refers t
the task of identifying new or unknown patterns which, in
many cases, are abnormal or inconsistent. The problem of
outlier detection has been extensively studied using aever
approaches [13],[14], [15], [8].

Some algorithms that have been used extensively used for
FOQA data analysis include Aviation Performance Measur-
ing System, Morning Report, Inductive Monitoring System
(IMS), SequenceMiner, Multiple Kernel Anomaly Detection
(MKAD), Cluster based Anomaly Detection (ClusterAD) and
iOrca.

o The Aviation Performance Measuring System (APMS)
[1] was a NASA program aimed to analyze Flight Op-
erational Quality Assurance (FOQA) data. The program
identified three major goals—analyzing data beyond
simply looking for exceedances of typical ranges of sin-
gle parameters, focused analysis of higher-risk phases
of flight, and looking for potential precursors to aviation
safety incidents and accidents.

« Morning Report (MR) [21], [2] was designed for indi-
vidual airlines to analyze their flight data in a manner
much like APMS. The subsequent System Level Morn-
ing Report (SLMR) attempted to address the problem
we described earlier of balancing between analyzing
within each flight and across multiple flights. SLMR
allowed users to analyze flight data in the context of
individual airlines and the context of all the airlines.

will be lower than data that are generated from a system

that is in an anomalous state.

SequenceMiner [7] was developed to address the prob-
lem of detecting and describing anomalies in large sets

of high dimensional symbol sequences. SequenceMiner
is an unsupervised clustering algorithm that focuses on

detecting sequential anomalies. SequenceMiner detects
anomalies using the normalized Longest Common Sub-

sequence (nLCS) based distance measure.

o Multiple Kernel Anomaly Detection (MKAD) [9] al-

gorithm combine strengths of both vector space based
techniques and sequential anomaly detectors like Se-
quenceMiner into a single approach to allow for detec-
tion of a variety of anomalies from heterogeneous data
sources. MKAD is a multiple kernel learning approach
to incorporate more knowledge in the decision process
so that one can achieve an improvement in detecting
anomalies in complex heterogeneous systems that in-
volve various data sources and data structures. MKAD
is based on classical one-class SVMs [19] which is a
unsupervised learning method that finds a set of outliers
using a decision boundary.

o ClusterAD [11] is based on Density-Based Spatial Clus-

tering of Applications with Noise (DBSCAN) algorithm
that can automatically determine the number of clusters,
progressively finds clusters based on a density criterion
in the clouds of data and finds outliers in the feature
space. ClusterAD has been tuned to find anomalies in
FOQA type data sets.

« The Inductive Monitoring System (IMS) [10] is a dis- Another important feature of SequenceMiner, MKAD and
tance based anomaly detection tool that uses an unsupefusterAD algorithm is their ability to detect anomalies
vised anomaly detection algorithm that uses incrementarross a fleet of aircraft.
clustering to build models of the expected operation of In this study we use iOrca [5] as the baseline algo-
the system on a set of nominal data. The model can wghm. However, for vector space-based methods like IMS
used to test new data to determine whether an anomaly iOrca, point by point analysis of the data quickly starts
is present or not. The underlying concept states th&b become computationally expensive. This paper combines
if the system behaves similar to the normal operatinthe strengths of SDF-based feature extraction and iOrca
modes that the data was trained on, the distance scomdgorithms to increase the performance of detecting a vari-



ety of anomalous conditions and to address the scalabiligr non-parametric changes may occur and exhibit non-
issue under certain circumstances. The proposed DMK8&ationary dynamics that can be associated with the exgplvin
framework, shown in Fig. 1, is designed with both typeslynamics of the anomalous behavior. In general, a long
of analysis in mind, allowing for single flight diagnosis oftime span in the fast scale is a tiny (i.e. several orders
subcomponents and identifying periods of anomalous flightsf magnitude smaller) interval in the slow scale. Figure 2
while also performing data compression for scalability tdllustrates the concept of two time scales. It is expected th
fleet-wide analysis. In the sequel we will demonstrate ththe features extracted from the fast-scale data will depict
proposed framework on aviation data using both temporatatistical changes, if any, between two different sloatesc
and SDF features, while maintaining the same model pa&pochs if the underlying system has undergone a change in its
rameter settings. statistical behavior. The method of extracting featuresnfr
1) Baseline Algorithm - iOrca:iOrca[5] is a scalable stationary time series data is comprised of the following tw
version of the Orca developed by Bay al. [4]. Orca is a major steps.
k—nearest neighbor based unsupervised anomaly-detection
algorithm in conjunction with some efficient pruning rules.
Orca has a nested loop structure to calculate pairwise dis-
tances between data points but uses a simple pruning rule
to keep the algorithm’s actual time complexity significgntl / )
less than the square of the number of data points. In fact, the Pl I
pruning used in this algorithm helps to achieve near linear '
time performance with high dimensional data. This makes
Orca suitable for analyzing large data sets. Orca takes a
dataset and a user specified numbgy, as input and returns
the top7},, anomalies in the dataset by computing distances
to the kth nearest neighbor or average distances tokhe
nearest neighbors. Orca can process both continuous and Fig. 2: Concept of Two Time Scales.
b!nary data fprmat. For. COI’]II.I’IUOUS dgta, Orca Uses Euciidea Step 1 Data Partitioning and Symbol Generati@ensor
distance while Hamming distance is used for binary datfel . : .
. LS . ime series data, generated from a physical system or its
points. Each data point is scored independently and therg- :
. . . namical model, are collected at a slow-scale epoch ddnote
fore anomalies in the time domain are undetectable. THE. . n
. . ,.asg. A compact (i.e., closed and bounded) regfore R”,
measure of anomalousness is the computed mean distance S : . . C
. . L ) wheren € N, within which the stationary time series is
(or maximum distance) of individuak; to its k-nearest . : _ o . .
. o S circumscribed, is identified. Let the space of time serid¢a da
neighbors. This is repeated for each pointin the dataset

. . ] C nxN i T

and the rankings are decided. In [5], the authors mtroduazceds.ets be represented & C R ’ wher_eN €N |s.suff|_

. ) oo ..~ “ciently large for convergence of statistical propertieshimi
novel indexing strategy and an early termination critetion

) a specified threshold. While represents the dimensionality
make Orca scalable to extremely large data sets. The index . : . S .
version of Orca is known as iorca. 0 he time-seriespN is the numbe_r of dat_a points in the time
series. Then{q} € Q denotes a time series at the slow-scale
epoch of data collection.
Encoding off) is accomplished by introducing a partition
Statistical information embedded in time series of sigB = {Bo, ..., B(x|-1)} consisting of|X| mutually exclusive
nals (e.g., avionic, flight, or structural vibration datagnc (i.e., B,NBj = 0 Vj # k), and exhaustive (i.eulji‘o’lBj =
be detected and identified by symbolic dynamic filtering?2) cells, where each cell is labeled by symbelse ¥ and
(SDF) [17]. Symbolic dynamic filtering has been used fob> = {oo,...,0)x_1} is called the alphabet. This process
anomaly detection in diverse aerospace and electromechanii coarse graining can be executed by uniform, maximum
cal applications (e.g., [18]). This paper makes use of SDF f@ntropy, or any other scheme of partitioning. Then, the time
anomaly detection for FOQA data under different operatingeries data points that visit the cél} are denoted as; V;j =
conditions. Although the details on the theory and construd®, 1, ..., |%| — 1. This step enables transformation of the time
tion of SDF have been reported in recent publications (e.gseries datgq} to a symbol sequencgs}, consisting of the
[17][16][20]), the underlying concept of SDF is succinctlysymbolso; in the alphabet.
presented below. Step 2 Construction of PFSA for Feature Extractidn
Symbolic feature extraction from time series data is posgurobabilistic finite state automatorP{'S A) is constructed
as a two-time-scale problem. Over the span of a giveflom the training symbol sequencés}. Subsequentlytest
time series, dynamic behavior of the anomaly evolution isr operationalsymbol sequences are run through the same
assumed to remain statistically invariant, i.e., the pgsede (irreducible) PF'SA structure to generate the respective
assumed to be quasi-stationary in the fast scale. The sldeatures. In this paper, th& FSA is constructed in the
scale is related to the time span over which parametritamework of a D-Markov machine [17], where the morph

Slow time epochs

S o : - .~

Fast time
instants

[I. SymBoLIC DYNAMIC FILTERING (SDF)



. . . . TABLE I: Discrete and Continuous Parameters Used in This Study
matrix 7 is obtained by frequency counting of symbols from

each state of the D-Markov machine and an elemenof = Attribute Type | Variable Names :

h babili f . h ohit th Discrete Autopilot and all Autopilot related modes,
represents_t e probability o ge_neratmg the Symt% tt_ e Auto-Flight Director, Glide Slope, Stall In-
stateq,;. Using the morph matrixr and the state transition dicator, throttle, Ground Proximity Warning
mapd of the PF'SA [17], a state transition probability matrix ggz‘_?g"r;sA('g‘eur‘_’i dMog;r:e'?:) Mode, Flop.

. 1Tl [\ y |
IT is constructed, where an elemeilt; of II represents Angle Mode etc. P 9
the probability of transition from the statg to the state Continuous Altitude, Target Air Speed, Computed Air
¢; in a single transition. The unity-sum-normalized (and Slpe%jv”EAng";e'fS'aé%d Mpeas,:!feSvAP”CIh Af”'
v " . . . . gle, Roll Angle, Rudder Position, Angle o
strictly p03|t_|ve) left elge_nvec_tor of the (_|rredu0|bIE)matr|_x Attack, Aileron Position. Stabilizer Positior!,
corresponding to the unity eigenvalue is called the statipn Aircraft Gross Weight,Latitude, Longitude
state probability vectop. While both = and p are viable ta”d I'_\'ko"/'li' AccSetIeIrlaélonsaDe\;Mte_d Fl’asfam‘z
candidates for feature representation, the morph matrix oo Above Siall Speed, Vercal Speg

provides a larger amount of statistical information at the
expense of increased computational complexity. In thigpap

the morph matrixr is used as a feature to represent the
statistical behavior embedded in time series data. Flap0 _ Flapl Flap2 FullFlaps

Flap Positions (in degree)| 10 [ 15 [ 20 | 40 |
I1l. EXPERIMENTAL RESULTS AND
DISCUSSIONS

Aviation data have many aspects that create natural sourage original flap parameter to the binary state variables is
of heterogeneity like origin or destination airports, gigir  shown below in Table II.
routes, tail numbers, aircraft models, as well as seasonalSince the flight data used in the analysis include the
aspects such as time of the year. A real-world data sefrborne part of the landing phase to a fixed destination
was chosen from a commercial passenger jet airline landirgrport, the lengths of each flight differ in length but with
at a single destination airport resulting in approximatelgmall variations. We chose to resample all flights so that eac
25519 flights. All aircraft analyzed are of the same fleet anflight had a duration equivalent to the shortest duratioflig
type. Even within a flight there exist several phases suchhe information loss due to this compression is negligible.
as takeoffs, landings and cruise. Flight characteristeny v For SDF based feature extraction, we chose uniform partitio
significantly by phase of flight. As a pre-processing stegscheme assuming a window size of 9 and generated the PFSA
for each flight the airborne part of a flight starting fromfeatures. The binary variables were appropriately resadhpl
6 nautical miles (nmi) from touch down to touch down isto match the length of the continuous parameters.
chosen in order to obtain segments with comparable char-In the first experiment, the z-score normalized temporal
acteristics. Each flight consists of 367 parameters sampléshtures of all the flights were concatenated resulting a 51
at 1 Hz with the average flight length approximately 2.%imensional matrix with 3,011,242 tuples. In the second
hours. However, we used a subset of the flight parameteesperiment, the SDF based features of all the flights were
as seen in Table |, based on a correlation study and domajoncatenated resulting matrix having 2,551,900 tuplef wit
expert's feedback in order to focus on detecting operakionghe same number of dimensions. The discrete inputs were in
problems. The correlation study helped in identifying sometandard binary format. These matrices served as inputs to
of the redundant parameters. Flight recorded data are oftge iOrca algorithm.
contaminated with missing data, out of bounds variables, _
noisy recordings, amplitude spikes etc. caused by senddr Summary of Analysis
malfunctions or recording medium errors. We used a set of When using iOrca to analyze the flights, the number of
data quality filters to clean the data. nearest neighbors was set to the default value (k=5). We

In addition to the observed parameters we construct sorasked iOrca to report top 1000 anomalous tupl@s,,].
derived parameters depending on our study and expert inputiese model parameter settings were kept consistent for
Derived parameters may help to understand the hidden stéigth the experiments. After each experiment, a simple post-
of the aircraft based on some set of observed paramefgrs processing method was used to map the scores of anomalous
estimated aircraft speed margin above stall speed based taples to respective flights, aggregate the scores foriohaty
flap settings, gross weight, and velocity. Sometimes theskghts and finally rank the anomalous flights based on their
parameters can take into account some of the physical lawsores. The flights without any anomalous tuples have zero
of the application domain and can help tracking particuscores. This resulted a total of 356 and 820 anomalous
lar events. The flap position parameter was continuousflights using temporal and SDF based features respectively.
recorded, however it is categorical. Using informationnfro Since the number of anomalous flights detected by iOrca
the domain expert in conjunction with the statistics frora this controlled by7;,, one observation is that for a given
data, the flap parameter, which is categorical in nature, wds,,, iOrca with SDF reported more anomalies as compared
decomposed into 4 binary state variables. The mapping @ the run with temporal features. This may be due to the

TABLE II: Relation of Derived Flap Parameters with Flap Positions.




Distribution of Exceedance Events (Level 2 & 3) Detected by iOrca

Time Features B SDF Features

50 -

40 -

30 ~

20 -

10 -

o
-
|
|
|.|
|

— LN N I

2

lare Tim

u chdow

T a2 & 3

le Setting at
Autaland Warning |

Short

Higherticalspeed befare T

Law Pawer on Appraach ||
APPROACH FAST 500 RAD i

Pitch Low at Touchdown
Pitch Rate High at Landing

Cantinuausly Low during final |
Flaps Retracted an Approach |

g
z
5
5
g
2
H
2
H
=
]
H
&

Path Low in Appraach at 800f
Path High in Appraach at 400ft
Path Low in Appraach at A00R

Z
=

I
i

@

3

Bank High in Ap
Bank High in Appi

Flaps Questi
Windshear Warning Below 1

Wertical Acceleration High at Tou.

Deviation above Glides lope (1000 - 3007t
Deviationfrom Localize

Heading Deviation at Landi

Thrust Low in

Rate Of

Fig. 3: Distribution of Exceedances for the Anomalous Flights Detectedbyai using temporal and SDF based Features.

fact that SDF based features are more unique in representiingm performance target, while Level 3 indicates the sestere
anomalous states of individual flights. In addition SDF lblasedeviation from the target value. Because Level 2 and 3 events
features extraction technique is sensitive to signal distts  are the issues and problems that interest the airlines tlsg mo
and at the same time robust to measurement noise awe exclude Level 1 events for this study. We have seen that
spurious signals. Itis also adaptable to low-resolutiorssegy  almost every flight comes up with one or multiple Level 1
due to the coarse graining in space partitions. exceedances. Therefore we have used exceedance detection
For each experiment, the anomalies were ranked based ainLevel 2 and 3 as the baseline to compare the findings
their scores. It means that the flight on the top of this lisbf iOrca using both features. Table Il shows the number of
is the most anomalous example compared to the rest of thigghts with exceedance Level 2 and 3 detected by iOrca with
flights and has the highest anomaly score. For the rest of ttemporal features and the number of flights with exceedance
paper we will address the sorted list of anomalies obtaindcevel 2 and 3 detected by iOrca with SDF features. It should
from iOrca using temporal features and SDF based featurbe noted that iOrca with SDF features has detected more
as Listsse and Listgag respectively. At this point we would flights with exceedance Level 2 and 3. This result may be
like to compare the agreement between two experimenéxpected since iOrca with SDF features has reported more
based on the rank information of the anomalous flightdlights but the important point here is that SDF features has
Starting from the top of each list (sdyistss6) we intended icreased the capability of iOrca to detect more flights with
to find if the candidate flights are present in the other listxceedance Level 2 and 3 in a single run, for a fifeg),.
(say, Listgsg) and computed the percentages of overlapping
flights. Based on this analysis, we observed both the feature From the entire event list defined by the FOQA program,
are sensitive to the first few top ranking anomalies. Howevex total of 92 exceedance events correspond to the landing
the overall trend shows that the agreement between tpbase which have been considered in this study. From the
two features monotonically decreases as the number ohique anomalies reported Wyistsss and Listsag, we were
anomalous flight increases. This means that the two featuralsle to determine that iOrca identified 64 exceedance events
have some unique properties and hence sensitive to differeut of 92. There could be several explanations on why
kinds of abnormalities. some of the other exceedance events were not detected. For
In the airline industry, the most widespread method for deexample the ability of the algorithm to process information
tecting operationally significant anomalies in flight reder extracted from different data formats or the sensitivitds
data is “exceedance detection technique” where the thigshahe features to those event types or even the absence of
exceedances are defined by domain experts. This method lsame information (like physical laws) related to specific
been in use for as long as the FOQA program has been évents, in FOQA data. Figure 3 shows the distribution of the
existence and has provided analysts with valuable resuits fexceedance events (Level 2 and 3) detected by iOrca. The
“known anomalies.” Normally, airlines use three levels taexceedance events corresponding to the anomalous flights
detect the “exceedances”. Level 1 indicates minor varatiodetected by iOrca using different features were compared to



TABLE Ill: Summary of the Exceedance based Detection for the Flights detected

iOrca using different Features.

Exceedance Severity

DetectedOutliers  Level2  Level3
temporal Feature 356 78 34
SDF based features 820 134 42

“he SDF-based feature extraction technique is sensitive to

signal distortions, because SDF is capable of detecting the
changes in statistical characteristics of the signal. At th
same time, SDF is robust to measurement noise and spurious
signals, because it tends to filter out these effects in ittefin
state automaton structure. However, this is not to say that
the SDF-based feature extraction algorithm will help iOrca

assess the commonalities and differences. In this dismussito find all possible anomalies in the flight recorder data, but
we focus on the commonly detected events. It can be seeather that these features are robust enough to find a variety

(Fig. 3) that some exceedance events frequently detected d@iyother anomalies in addition to a significant overlap with
iOrca with temporal feature are “Speed High in Approactithe state-of-the-art method using temporal features. Warot
(at 500ft),” “Banking High in Approach (below 100ft),” advantage of SDF-based feature extraction is its adajtyabil
“Deviation above Glideslope (Above 1000ft),” “Tail Strike to low-resolution sensing due to the coarse graining inspac
Risk at Landing” etc. An interesting observation here igartitions. The reduced cardinality of the SDF feature edt a
that SDF features assist iOrca to continue detecting motke method’s flexibility of implementation make it a potehti
anomalous flights with severity Level 2 and 3 in those exsolution to scale-up detection, classification and prestict
ceedance categories. Most probably, some of these ansmalioblems for large avionic data sets. In the future, we ithten
will be reported by iOrca using temporal features for higheto explore both the operational significance of some of the
Tiop values which only comes at the cost of computationaletected anomalies reported in this paper and theoretical
expense and resources. Further investigations are redoire research for enhancement of the algorithms.

evaluate the operational significance of the flights detecte
by iOrca and is beyond the scope of this paper.
1) Scalability Issues:The time complexity of the SDF
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points or observations (N). Now depending on the selection
of the feature type the complexity of the D-Markov algo-
rithm is determined. This complexity turns to bEm?”) +
O(N) when the probability vector is used as a feature andy
O(mP*1) + O(N) when the morph matrix is used as a
feature. In this study we opted for the later feature wherdz2]
D was set to one and so the complexityQ$m?) + O(N).

For D > 1, the above estimate is conservative because the
number of states should be much less thaR after state [3]
merging. Orca has been demonstrated experimentally to have
a running time that is, on average, slightly greater thagdin

in the number of data points submitted, although its worst-
case running time i©(N?) i.e. quadratic in the number of [4]
data points (N). So the key question is whethet < N—

that is, whether the cardinality of the PFSA feature vecior i [5]
smaller than the length of the raw time series. In that case,
the overall complexity of the feature extraction algoritisn

of O(N). From a scalability point of view, the choice of m

is critical. Whenm* < N, the worst-case running time for [6]
Orca with SDF based features@g V') which is much better
than O(N?) when using temporal feature.

IV. CONCLUSIONS

In this article, we have conducted a comparative studyg;
on the outcome of iOrca with two different features in
context to anomaly detection on flight recorder data. Thd®
feature extraction concept for anomaly detection outliimed
this paper has been reported recently in several applicatio
but, to the best of our knowledge, this is the first attempt
to explore the applicability of symbolic dynamic filtering
(SDF)-based features in analyzing real-world aviatioradat
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