
For review for presentation inACC 2013, Washington DC

Anomaly Detection in Flight Recorder Data:
A Dynamic Data-driven Approach

Santanu Das† Soumalya Sarkar‡ Asok Ray‡ Ashok Srivastava§ Donald L. Simon#

santanu.das-1@nasa.gov svs5464@psu.edu axr2@psu.edu ashok.srivastava@nasa.gov donald.l.simon@nasa.gov

†UARC, NASA Ames Research Center, Moffett Field, CA 94035
‡ Department of Mechanical Engineering, Pennsylvania StateUniversity, University Park, PA 16802

§ NASA Ames Research Center, Moffett Field, CA 94035
# NASA Glenn, 21000 Brookpark Road Cleveland, OH 44135

Keywords:Anomaly detection; Symbolic Dynamics; Flight recorder data; Data-driven approach

Abstract— This paper presents a method of feature extrac-
tion in the context of aviation data analysis. The underlying
algorithm utilizes a feature extraction algorithm called sym-
bolic dynamic filtering (SDF) that was recently published. In
SDF, time-series data are partitioned for generating symbol
sequences that then construct probabilistic finite state automata
(PFSA) to serve as features for pattern classification. The
SDF-based algorithm of feature extraction, which enjoys both
flexibility of implementation and computational efficiency, is
directly applicable to detection, classification, and prediction
of anomalies and faults. The results of analysis with real-
world flight recorder data show that the SDF-based features
can be derived at a desired level of abstraction from the
information embedded in the time-series data. The performance
of the proposed SDF-based feature extraction is compared
with that of standard temporal feature extraction for anomaly
detection. Our study on flight recorder data shows that SDF-
based features can enable discovering unique anomalous flights
and improve the performance of the detection algorithm. We
also theoretically show that under certain conditions it may be
possible to achive a better or comparable time complexity with
SDF based features.

I. INTRODUCTION

Over the last few decades, data sets have been growing at
an unprecedented pace in terms of variability, velocity, and
volume. Today, we are left with the challenge of dealing
with these vast and heterogeneous data sources. Mining
these heterogeneous resources is still a challenging task.
Data mining is the art and science of analyzing a large
collection of observations to extract previously known and
actionable information from large data sets. The field of
data mining is highly multidisciplinary and draws from
fields like statistics, machine learning, pattern recognition,
high-performance computing, and data visualization. The
entire Data Mining and Knowledge Discovery (DMKD)
framework may be customized by the requirements of the
study undertaken by the user. Figure 1 shows the schematic
diagram of a DMKD framework that has been designed
for this research. Apart from input raw data, the four basic
functionalities of this DMKD process are “data preparation
module,” “detection module,” “knowledge discovery mod-

ule,” and “reporting module”. The data preparation module
transforms data into information and in order to do so it
performs several tasks: data cleaning, normalization, feature
selection, feature extraction, feature derivation, and data
type segregation. The “detection module” is the heart of
the DMKD process and constitutes statistical models that
learn on the data. “Knowledge discovery module” discovers
knowledge from the information and in many cases involve
subject matter experts along with statistical indicators that
provide quantitative evidences in order to characterize the
performance of the entity subjected to test. The final module
contains routines for graphical presentation of information
in order to provide a qualitative understanding of the in-
formation contents and thus reveals the patterns, trends,
relationships out of data sets.

The field of feature extraction is an important area of
research in many fields including machine learning, data
mining, and computer vision. This paper makes use of a
feature extraction tool for anomaly detection, called symbolic
dynamic filtering (SDF) [17]. Mallapragada et al. [12] used
SDF as a feature extraction tool for behavior identification
of mobile robots, where the performance of SDF-based
feature extraction was shown to be significantly superior
to that of principal component analysis (PCA) [6], based
on the experimental data in a laboratory environment. In a
contemporaneous paper submitted to 2013 American control
Conference, Bahrampour et al. [3] have reported consistently
superior performance of SDF-based feature extraction over
cepstrum-based feature extraction in terms of successful
detection, false alarm, and overall correct classificationrates
in an application of target detection and classification (e.g.,
monitoring of human intruders). This paper reports a novel
application of symbolic dynamic filtering to extract key
features from real-life Flight operations quality assurance
(FOQA) data and investigates the impact of these features
on the performance of anomaly detection.
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Fig. 1: Data Mining and Knowledge Discovery (DMKD) Framework used in thisstudy.

A. Anomaly Detection Methods in FOQA Analysis

The theme of this paper is anomaly detection, also known
as outlier detection. Outlier or anomaly detection refers to
the task of identifying new or unknown patterns which, in
many cases, are abnormal or inconsistent. The problem of
outlier detection has been extensively studied using several
approaches [13],[14], [15], [8].

Some algorithms that have been used extensively used for
FOQA data analysis include Aviation Performance Measur-
ing System, Morning Report, Inductive Monitoring System
(IMS), SequenceMiner, Multiple Kernel Anomaly Detection
(MKAD), Cluster based Anomaly Detection (ClusterAD) and
iOrca.

• The Aviation Performance Measuring System (APMS)
[1] was a NASA program aimed to analyze Flight Op-
erational Quality Assurance (FOQA) data. The program
identified three major goals—analyzing data beyond
simply looking for exceedances of typical ranges of sin-
gle parameters, focused analysis of higher-risk phases
of flight, and looking for potential precursors to aviation
safety incidents and accidents.

• Morning Report (MR) [21], [2] was designed for indi-
vidual airlines to analyze their flight data in a manner
much like APMS. The subsequent System Level Morn-
ing Report (SLMR) attempted to address the problem
we described earlier of balancing between analyzing
within each flight and across multiple flights. SLMR
allowed users to analyze flight data in the context of
individual airlines and the context of all the airlines.

• The Inductive Monitoring System (IMS) [10] is a dis-
tance based anomaly detection tool that uses an unsuper-
vised anomaly detection algorithm that uses incremental
clustering to build models of the expected operation of
the system on a set of nominal data. The model can be
used to test new data to determine whether an anomaly
is present or not. The underlying concept states that
if the system behaves similar to the normal operating
modes that the data was trained on, the distance scores

will be lower than data that are generated from a system
that is in an anomalous state.

• SequenceMiner [7] was developed to address the prob-
lem of detecting and describing anomalies in large sets
of high dimensional symbol sequences. SequenceMiner
is an unsupervised clustering algorithm that focuses on
detecting sequential anomalies. SequenceMiner detects
anomalies using the normalized Longest Common Sub-
sequence (nLCS) based distance measure.

• Multiple Kernel Anomaly Detection (MKAD) [9] al-
gorithm combine strengths of both vector space based
techniques and sequential anomaly detectors like Se-
quenceMiner into a single approach to allow for detec-
tion of a variety of anomalies from heterogeneous data
sources. MKAD is a multiple kernel learning approach
to incorporate more knowledge in the decision process
so that one can achieve an improvement in detecting
anomalies in complex heterogeneous systems that in-
volve various data sources and data structures. MKAD
is based on classical one-class SVMs [19] which is a
unsupervised learning method that finds a set of outliers
using a decision boundary.

• ClusterAD [11] is based on Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN) algorithm
that can automatically determine the number of clusters,
progressively finds clusters based on a density criterion
in the clouds of data and finds outliers in the feature
space. ClusterAD has been tuned to find anomalies in
FOQA type data sets.

Another important feature of SequenceMiner, MKAD and
ClusterAD algorithm is their ability to detect anomalies
across a fleet of aircraft.

In this study we use iOrca [5] as the baseline algo-
rithm. However, for vector space-based methods like IMS
or iOrca, point by point analysis of the data quickly starts
to become computationally expensive. This paper combines
the strengths of SDF-based feature extraction and iOrca
algorithms to increase the performance of detecting a vari-



ety of anomalous conditions and to address the scalability
issue under certain circumstances. The proposed DMKD
framework, shown in Fig. 1, is designed with both types
of analysis in mind, allowing for single flight diagnosis of
subcomponents and identifying periods of anomalous flights,
while also performing data compression for scalability to
fleet-wide analysis. In the sequel we will demonstrate the
proposed framework on aviation data using both temporal
and SDF features, while maintaining the same model pa-
rameter settings.

1) Baseline Algorithm - iOrca: iOrca[5] is a scalable
version of the Orca developed by Bayet al. [4]. Orca is a
k−nearest neighbor based unsupervised anomaly-detection
algorithm in conjunction with some efficient pruning rules.
Orca has a nested loop structure to calculate pairwise dis-
tances between data points but uses a simple pruning rule
to keep the algorithm’s actual time complexity significantly
less than the square of the number of data points. In fact, the
pruning used in this algorithm helps to achieve near linear
time performance with high dimensional data. This makes
Orca suitable for analyzing large data sets. Orca takes a
dataset and a user specified numberTtop as input and returns
the topTtop anomalies in the dataset by computing distances
to the kth nearest neighbor or average distances to thek

nearest neighbors. Orca can process both continuous and
binary data format. For continuous data, Orca uses Euclidean
distance while Hamming distance is used for binary data
points. Each data point is scored independently and there-
fore anomalies in the time domain are undetectable. The
measure of anomalousness is the computed mean distance
(or maximum distance) of individualxi to its k-nearest
neighbors. This is repeated for each pointxi in the dataset
and the rankings are decided. In [5], the authors introduceda
novel indexing strategy and an early termination criterionto
make Orca scalable to extremely large data sets. The indexed
version of Orca is known as iOrca.

II. SYMBOLIC DYNAMIC FILTERING (SDF)

Statistical information embedded in time series of sig-
nals (e.g., avionic, flight, or structural vibration data) can
be detected and identified by symbolic dynamic filtering
(SDF) [17]. Symbolic dynamic filtering has been used for
anomaly detection in diverse aerospace and electromechani-
cal applications (e.g., [18]). This paper makes use of SDF for
anomaly detection for FOQA data under different operating
conditions. Although the details on the theory and construc-
tion of SDF have been reported in recent publications (e.g.,
[17][16][20]), the underlying concept of SDF is succinctly
presented below.

Symbolic feature extraction from time series data is posed
as a two-time-scale problem. Over the span of a given
time series, dynamic behavior of the anomaly evolution is
assumed to remain statistically invariant, i.e., the process is
assumed to be quasi-stationary in the fast scale. The slow
scale is related to the time span over which parametric

or non-parametric changes may occur and exhibit non-
stationary dynamics that can be associated with the evolving
dynamics of the anomalous behavior. In general, a long
time span in the fast scale is a tiny (i.e. several orders
of magnitude smaller) interval in the slow scale. Figure 2
illustrates the concept of two time scales. It is expected that
the features extracted from the fast-scale data will depict
statistical changes, if any, between two different slow-scale
epochs if the underlying system has undergone a change in its
statistical behavior. The method of extracting features from
stationary time series data is comprised of the following two
major steps.

Fig. 2: Concept of Two Time Scales.

Step 1 Data Partitioning and Symbol Generation: Sensor
time series data, generated from a physical system or its
dynamical model, are collected at a slow-scale epoch denoted
asq. A compact (i.e., closed and bounded) regionΩ ∈ R

n,
where n ∈ N, within which the stationary time series is
circumscribed, is identified. Let the space of time series data
sets be represented asQ ⊆ R

n×N , whereN ∈ N is suffi-
ciently large for convergence of statistical properties within
a specified threshold. Whilen represents the dimensionality
of the time-series,N is the number of data points in the time
series. Then,{q} ∈ Q denotes a time series at the slow-scale
epoch of data collection.

Encoding ofΩ is accomplished by introducing a partition
B , {B0, ..., B(|Σ|−1)} consisting of|Σ| mutually exclusive

(i.e.,Bj∩Bk = ∅ ∀j 6= k), and exhaustive (i.e.,∪|Σ|−1
j=0 Bj =

Ω) cells, where each cell is labeled by symbolsσj ∈ Σ and
Σ = {σ0, ..., σ|Σ|−1} is called the alphabet. This process
of coarse graining can be executed by uniform, maximum
entropy, or any other scheme of partitioning. Then, the time
series data points that visit the cellBj are denoted asσj ∀j =
0, 1, ..., |Σ|− 1. This step enables transformation of the time
series data{q} to a symbol sequence{s}, consisting of the
symbolsσj in the alphabetΣ.

Step 2 Construction of PFSA for Feature Extraction: A
probabilistic finite state automaton (PFSA) is constructed
from the training symbol sequence{s}. Subsequently,test
or operationalsymbol sequences are run through the same
(irreducible) PFSA structure to generate the respective
features. In this paper, thePFSA is constructed in the
framework of a D-Markov machine [17], where the morph



matrix π is obtained by frequency counting of symbols from
each state of the D-Markov machine and an elementπij of π
represents the probability of generating the symbolσj at the
stateqi. Using the morph matrixπ and the state transition
mapδ of thePFSA [17], a state transition probability matrix
Π is constructed, where an elementΠij of Π represents
the probability of transition from the stateqi to the state
qj in a single transition. The unity-sum-normalized (and
strictly positive) left eigenvector of the (irreducible)Π matrix
corresponding to the unity eigenvalue is called the stationary
state probability vectorp. While both π and p are viable
candidates for feature representation, the morph matrixπ

provides a larger amount of statistical information at the
expense of increased computational complexity. In this paper,
the morph matrixπ is used as a feature to represent the
statistical behavior embedded in time series data.

III. EXPERIMENTAL RESULTS AND
DISCUSSIONS

Aviation data have many aspects that create natural sources
of heterogeneity like origin or destination airports, citypair
routes, tail numbers, aircraft models, as well as seasonal
aspects such as time of the year. A real-world data set
was chosen from a commercial passenger jet airline landing
at a single destination airport resulting in approximately
25519 flights. All aircraft analyzed are of the same fleet and
type. Even within a flight there exist several phases such
as takeoffs, landings and cruise. Flight characteristics vary
significantly by phase of flight. As a pre-processing step,
for each flight the airborne part of a flight starting from
6 nautical miles (nmi) from touch down to touch down is
chosen in order to obtain segments with comparable char-
acteristics. Each flight consists of 367 parameters sampled
at 1 Hz with the average flight length approximately 2.5
hours. However, we used a subset of the flight parameters,
as seen in Table I, based on a correlation study and domain
expert’s feedback in order to focus on detecting operational
problems. The correlation study helped in identifying some
of the redundant parameters. Flight recorded data are often
contaminated with missing data, out of bounds variables,
noisy recordings, amplitude spikes etc. caused by sensor
malfunctions or recording medium errors. We used a set of
data quality filters to clean the data.

In addition to the observed parameters we construct some
derived parameters depending on our study and expert inputs.
Derived parameters may help to understand the hidden state
of the aircraft based on some set of observed parameterse.g.
estimated aircraft speed margin above stall speed based on
flap settings, gross weight, and velocity. Sometimes these
parameters can take into account some of the physical laws
of the application domain and can help tracking particu-
lar events. The flap position parameter was continuously
recorded, however it is categorical. Using information from
the domain expert in conjunction with the statistics from the
data, the flap parameter, which is categorical in nature, was
decomposed into 4 binary state variables. The mapping of

TABLE I: Discrete and Continuous Parameters Used in This Study

Attribute Type Variable Names
Discrete Autopilot and all Autopilot related modes,

Auto-Flight Director, Glide Slope, Stall In-
dicator, throttle, Ground Proximity Warning
System, Altitude Mode, Flare Mode, Flap
Positions (derived parameter), Flight Path
Angle Mode etc.

Continuous Altitude, Target Air Speed, Computed Air
Speed, Engine-related Measures, Pitch An-
gle, Roll Angle, Rudder Position, Angle of
Attack, Aileron Position, Stabilizer Position,
Aircraft Gross Weight,Latitude, Longitude
and Normal Accelerations,Derived parame-
ters like Above Stall Speed, Vertical Speed
etc.

TABLE II: Relation of Derived Flap Parameters with Flap Positions.

Flap0 Flap1 Flap2 FullFlaps
Flap Positions (in degree) 10 15 20 40

the original flap parameter to the binary state variables is
shown below in Table II.

Since the flight data used in the analysis include the
airborne part of the landing phase to a fixed destination
airport, the lengths of each flight differ in length but with
small variations. We chose to resample all flights so that each
flight had a duration equivalent to the shortest duration flight.
The information loss due to this compression is negligible.
For SDF based feature extraction, we chose uniform partition
scheme assuming a window size of 9 and generated the PFSA
features. The binary variables were appropriately resampled
to match the length of the continuous parameters.

In the first experiment, the z-score normalized temporal
features of all the flights were concatenated resulting a 51
dimensional matrix with 3,011,242 tuples. In the second
experiment, the SDF based features of all the flights were
concatenated resulting matrix having 2,551,900 tuples with
the same number of dimensions. The discrete inputs were in
standard binary format. These matrices served as inputs to
the iOrca algorithm.

A. Summary of Analysis

When using iOrca to analyze the flights, the number of
nearest neighbors was set to the default value (k=5). We
asked iOrca to report top 1000 anomalous tuples (Ttop).
These model parameter settings were kept consistent for
both the experiments. After each experiment, a simple post-
processing method was used to map the scores of anomalous
tuples to respective flights, aggregate the scores for individual
flights and finally rank the anomalous flights based on their
scores. The flights without any anomalous tuples have zero
scores. This resulted a total of 356 and 820 anomalous
flights using temporal and SDF based features respectively.
Since the number of anomalous flights detected by iOrca
is controlled byTtop, one observation is that for a given
Ttop, iOrca with SDF reported more anomalies as compared
to the run with temporal features. This may be due to the



Fig. 3: Distribution of Exceedances for the Anomalous Flights Detected by iOrca using temporal and SDF based Features.

fact that SDF based features are more unique in representing
anomalous states of individual flights. In addition SDF based
features extraction technique is sensitive to signal distortions
and at the same time robust to measurement noise and
spurious signals. It is also adaptable to low-resolution sensing
due to the coarse graining in space partitions.

For each experiment, the anomalies were ranked based on
their scores. It means that the flight on the top of this list
is the most anomalous example compared to the rest of the
flights and has the highest anomaly score. For the rest of the
paper we will address the sorted list of anomalies obtained
from iOrca using temporal features and SDF based features
asList356 andList820 respectively. At this point we would
like to compare the agreement between two experiments
based on the rank information of the anomalous flights.
Starting from the top of each list (sayList356) we intended
to find if the candidate flights are present in the other list
(say,List820) and computed the percentages of overlapping
flights. Based on this analysis, we observed both the features
are sensitive to the first few top ranking anomalies. However
the overall trend shows that the agreement between the
two features monotonically decreases as the number of
anomalous flight increases. This means that the two features
have some unique properties and hence sensitive to different
kinds of abnormalities.

In the airline industry, the most widespread method for de-
tecting operationally significant anomalies in flight recorder
data is “exceedance detection technique” where the threshold
exceedances are defined by domain experts. This method has
been in use for as long as the FOQA program has been in
existence and has provided analysts with valuable results for
“known anomalies.” Normally, airlines use three levels to
detect the “exceedances”. Level 1 indicates minor variation

from performance target, while Level 3 indicates the severest
deviation from the target value. Because Level 2 and 3 events
are the issues and problems that interest the airlines the most,
we exclude Level 1 events for this study. We have seen that
almost every flight comes up with one or multiple Level 1
exceedances. Therefore we have used exceedance detection
at Level 2 and 3 as the baseline to compare the findings
of iOrca using both features. Table III shows the number of
flights with exceedance Level 2 and 3 detected by iOrca with
temporal features and the number of flights with exceedance
Level 2 and 3 detected by iOrca with SDF features. It should
be noted that iOrca with SDF features has detected more
flights with exceedance Level 2 and 3. This result may be
expected since iOrca with SDF features has reported more
flights but the important point here is that SDF features has
icreased the capability of iOrca to detect more flights with
exceedance Level 2 and 3 in a single run, for a fixedTtop.

From the entire event list defined by the FOQA program,
a total of 92 exceedance events correspond to the landing
phase which have been considered in this study. From the
unique anomalies reported byList356 andList820, we were
able to determine that iOrca identified 64 exceedance events
out of 92. There could be several explanations on why
some of the other exceedance events were not detected. For
example the ability of the algorithm to process information
extracted from different data formats or the sensitivitiesof
the features to those event types or even the absence of
some information (like physical laws) related to specific
events, in FOQA data. Figure 3 shows the distribution of the
exceedance events (Level 2 and 3) detected by iOrca. The
exceedance events corresponding to the anomalous flights
detected by iOrca using different features were compared to



TABLE III: Summary of the Exceedance based Detection for the Flights detected by
iOrca using different Features.

Exceedance Severity
DetectedOutliers Level2 Level3

temporal Feature 356 78 34
SDF based features 820 134 42

assess the commonalities and differences. In this discussion
we focus on the commonly detected events. It can be seen
(Fig. 3) that some exceedance events frequently detected by
iOrca with temporal feature are “Speed High in Approach
(at 500ft),” “Banking High in Approach (below 100ft),”
“Deviation above Glideslope (Above 1000ft),” “Tail Strike
Risk at Landing” etc. An interesting observation here is
that SDF features assist iOrca to continue detecting more
anomalous flights with severity Level 2 and 3 in those ex-
ceedance categories. Most probably, some of these anomalies
will be reported by iOrca using temporal features for higher
Ttop values which only comes at the cost of computational
expense and resources. Further investigations are required to
evaluate the operational significance of the flights detected
by iOrca and is beyond the scope of this paper.

1) Scalability Issues:The time complexity of the SDF
algorithm depends on three parameters, number of symbols
i.e. alphabet size (m), depth (D) and total number of data
points or observations (N). Now depending on the selection
of the feature type the complexity of the D-Markov algo-
rithm is determined. This complexity turns to beO(mD) +
O(N) when the probability vector is used as a feature and
O(mD+1) + O(N) when the morph matrix is used as a
feature. In this study we opted for the later feature where
D was set to one and so the complexity isO(m2) +O(N).
For D > 1, the above estimate is conservative because the
number of states should be much less thanmD after state
merging. Orca has been demonstrated experimentally to have
a running time that is, on average, slightly greater than linear
in the number of data points submitted, although its worst-
case running time isO(N2) i.e. quadratic in the number of
data points (N). So the key question is whetherm2 < N—
that is, whether the cardinality of the PFSA feature vector is
smaller than the length of the raw time series. In that case,
the overall complexity of the feature extraction algorithmis
of O(N). From a scalability point of view, the choice of m
is critical. Whenm4 ≤ N , the worst-case running time for
Orca with SDF based features isO(N) which is much better
thanO(N2) when using temporal feature.

IV. CONCLUSIONS

In this article, we have conducted a comparative study
on the outcome of iOrca with two different features in
context to anomaly detection on flight recorder data. The
feature extraction concept for anomaly detection outlinedin
this paper has been reported recently in several applications
but, to the best of our knowledge, this is the first attempt
to explore the applicability of symbolic dynamic filtering
(SDF)-based features in analyzing real-world aviation data.

The SDF-based feature extraction technique is sensitive to
signal distortions, because SDF is capable of detecting the
changes in statistical characteristics of the signal. At the
same time, SDF is robust to measurement noise and spurious
signals, because it tends to filter out these effects in its finite-
state automaton structure. However, this is not to say that
the SDF-based feature extraction algorithm will help iOrca
to find all possible anomalies in the flight recorder data, but
rather that these features are robust enough to find a variety
of other anomalies in addition to a significant overlap with
the state-of-the-art method using temporal features. Another
advantage of SDF-based feature extraction is its adaptability
to low-resolution sensing due to the coarse graining in space
partitions. The reduced cardinality of the SDF feature set and
the method’s flexibility of implementation make it a potential
solution to scale-up detection, classification and prediction
problems for large avionic data sets. In the future, we intend
to explore both the operational significance of some of the
detected anomalies reported in this paper and theoretical
research for enhancement of the algorithms.
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