
Symbolic Quantitative Information Flow

Quoc-Sang Phan, Pasquale Malacaria
Queen Mary University of London

Oksana Tkachuk, Corina S. Păsăreanu
NASA Ames Research Center

ABSTRACT
Quantitative Information Flow (QIF) is a powerful approach
to quantify leaks of confidential information in a software
system. Here we present a novel method that precisely quan-
tifies information leaks. In order to mitigate the state-space
explosion problem, we propose a symbolic representation of
data, and a general SMT-based framework to explore sys-
tematically the state space. Symbolic Execution fits well
with our framework, so we implement a method of QIF anal-
ysis employing Symbolic Execution.
We develop our method as a prototype tool that can per-
form QIF analysis for a software system developed in Java.
The tool is built on top of Java Pathfinder, an open source
model checking platform, and it is the first tool in the field
to support information-theoretic QIF analysis.

1. INTRODUCTION
Protecting confidential data is always a big concern when
building a software system. Intuitively, a system is consid-
ered to be secure if confidential data cannot be inferred by
an attacker through his observations of the system. This
intuitive policy is formalized as non-interference: an ob-
servable output O is not affected by any confidential data
H. Non-interference has been widely studied during the
last four decades [14]. Although satisfying non-interference
is a sound guarantee for a system to be secure, this classifies
many intuitively secure programs as insecure. Consider for
example the following password checking program:

if (H == L) accept else reject

The program takes a public input L controlled by the user,
grants access if L is equal to the confidential password H,
and rejects otherwise. With a strong enough password, this
program is intuitively secure. However, it violates non-
interference since the result of “accept“ or “reject” depends
on the confidential data H. Therefore, qualitative methods
would classify the program as insecure. This is the main

weakness of qualitative methods, which makes the analysis
imprecise for a large class of programs.

Quantitative Information Flow (QIF) has been developed
to address the limitation of qualitative information flow [7,
8]. The key idea of QIF is simple: instead of accepting only
programs with “zero interference” (non-interference) as se-
cure, we quantify the interference and accept programs with
“small” interference as secure. To illustrate the concept of
QIF, we consider an attacker model in which an attacker
observes the program P and tries to infer the value of the
confidential data H of the program by observing the output
O of P . Suppose we have a function F measuring the at-
tacker’s knowledge of the secret. Initially, the knowledge of
H is F (H); we note the attacker’s knowledge about H after
observing the output O by F (H|O). We then define leak-
age as the difference between the a priori and a posteriori
attacker’s knowledge, i.e.

∆F (H) = F (H)− F (H|O)

If the program satisfies non-interference, observing O will
not affect the attacker’s knowledge of H:

F (H|O) = F (H) thus ∆F (H) = 0

In general the security policy is relaxed from 0 to an accept-
able threshold k. This enables QIF to tolerate small leaks
and accept more programs as secure.

The function F is in general based on Information Theory.
A natural choice for F , when interpreting knowledge as in-
formation, is Shannon entropy. An alternative, if one views
knowledge in terms of the probability of guessing the confi-
dential data in one try, is to choose F as Renyi’s min-entropy
[15]. Alternatively, F can also be guessing entropy [11], if
knowledge is interpreted as the expected number of guesses
to reveal the confidential data. An interesting result is that
these three metrics agree in order [9]; it means that for all
possible a priori knowledge, if program P leaks less than
program P ′ when analysing with one of the three metrics,
then the result will be the same if we employ the other met-
rics. Readers who are interested in algebraic foundations of
QIF may consult [9, 15] for more details.

2. BACKGROUND
There is always a trade-off between precision and compu-
tational complexity, and this is the case for QIF. While
providing more precision in reasoning about security, QIF
also introduces more complexity than traditional qualita-

tive methods. It is impractical to perform QIF analysis
manually as in [8] for real-world applications. That leads
to the need of automated, possibly approximated, methods
for QIF. Previous work [10, 15] has proved that:

∆F (H) ≤ log2(N) (1)

with N as the number of possible values for the output O.
This result is important, since it frees us from the tedious
and expensive task of calculating various (conditional) prob-
abilities on software data. Thus, the problem of QIF analy-
sis is reduced to the problem of counting N . From now on,
when we talk about ”precise”or ”approximate”QIF analysis,
we also mean precise or approximate calculation of N , since
precise calculation of ∆F (H) is almost impossible.

However, even if the result in (1) reduces the complexity of
a QIF analysis, the problem of an automated analysis is far
from being solved: counting the number of possible outputs
N remains a huge challenge. Suppose a program P takes
k inputs I1, I2, ..Ik and produces an output O. P can be
viewed as a function:

f : D1 x D2 x ..Dk → Do

where D1,D2, ..Dk and Do are domains of I1, I2, ..Ik and O
respectively. In a simple case where data are 32-bit integers,
a domain Di already ranges up to 231−1. To count the num-
ber of possible outputs, one may be tempted to think of an
exhaustive counting as follows:

N = 0
for all v in Do do

if (assert O != v is violated) then
N ← N + 1

end if
end for
return N

The assertion can be verified by formal methods such as
model checking. Assuming we have a very powerful model
checking tool that can verify each assertion in one second,
the procedure would take around 232 seconds, which is ap-
proximately 136 years. In fact, it is easy to prove by Rice’s
theorem1 that the problem of counting possible values of a
program output is undecidable.

The first automated method that could precisely quantify
information leaks was proposed by Backes et al. [5]. The
method can be divided into two stages: first, it employs
model checking to compute an equivalent relation R on the
set of confidential inputs w.r.t. observable outputs; secondly,
if this relation R can be represented by a system of linear
integer inequalities Ax̄ > b̄, which means it is a bounded
integer polytopes, then a variant of Barvinok’s algorithm [6]
can be used to count the number of integer solutions of R.
While this is an important work as the first effort on au-
tomation of QIF analysis, there is little hope that real-world
programs will satisfy this condition.

Meng et al. introduce an approximate method, which we
call BitPattern, to calculate an upper bound on the number
of possible outputs in [12]. The key idea is as follows: if all

1http://en.wikipedia.org/wiki/Rice’s theorem

possible values of the output O are very close to each other
in the state space, then the bit vectors representing them
have a lot of similarities, called bit patterns. The authors
discover these patterns as a SAT formula, then employing
Mathematica [4], a heavyweight commercial #SAT solver,
to count the number of solutions, which is an upper bound
on the number of possible outputs. The authors restrict
themselves to C-like programs without loops, and leave au-
tomation of the method for future work.

Contribution. In summary, our contributions in this pa-
per are as follows:
1. We propose a novel method for precise QIF analysis.
2. We analyse the BitPattern method, redesign it to make
it fully automated and able to handle Java programs.
3. We implement the two methods in an open-source pro-
totyping tool: jpf-qif, the first one to support information-
theoretic QIF analysis.

3. METHODOLOGY
This section describes our method which we call Symbolic
Quantitative Information Flow (SQIF).

3.1 A symbolic representation
The key idea behind SQIF is that instead of checking every
concrete value one by one, we build a procedure to process
multiple values at a time. To do this, we need a represen-
tation that can denote a set of values. The way a computer
stores data in vectors of bits suggests a symbolic representa-
tion that we define as follows: we consider a set of boolean
variables Φ := {p1, p2, .., pK}, representing a variable of K
bits in the computer memory. In order to count the models
representing possible outputs of program P , we need a for-
mula Γ such that each model of Γ corresponds to a concrete
value of the output O. We also need a decision procedure
isSAT to check the satisfiability of Γ .

For a program P with an output O of data type of size K,
O is stored in the computer memory as a bit vector bvo of
K bits: bvo = bKbK−1..b1. We set up Γ as a bijective map-
ping Γ : bvo → Φ, which can be implemented by adding
the code in Figure 1 to the original program. The symbolic

for all element bi in vector bvo do
if (bi == 1) then

pi = True
else

pi = False
end if

end for

Figure 1: Symbolic representation conversion

formula p1 is a shorthand notation for the family of sets
{Φ := {p1, p2, .., pK} : p1 = True}. This family of sets can
represent up to 2K−1 concrete values. Similarly, p1 ∧ ¬p2

represents a family of sets representing up to 2K−2 concrete
values. At this point we have defined the notation of a sym-
bolic representation Φ of the state space of the output O. In
the next section, we will describe a DPLL-based2 framework
to systematically explore Φ.

2http://en.wikipedia.org/wiki/DPLL algorithm

http://en.wikipedia.org/wiki/Rice%27s_theorem
http://en.wikipedia.org/wiki/DPLL_algorithm

3.2 A symbolic QIF framework
The exhaustive counting procedure discussed in the previ-
ous section is inefficient, but intuitive: the only solution for
precise counting is searching for all possible solutions. The
source of inefficiency is that the procedure checks all con-
crete values of the data type, while the domain of the output
O is often small (note that we aim to tolerate small leaks,
not to quantify the big ones). The symbolic QIF framework
we propose here systematically explores the symbolic rep-
resentation Φ of the output, and trims infeasible values in
the process. For example, if we discover that p1 is a tau-
tology, then we can trim 231 concrete values represented by
¬p1, thus approximately saving 68 years compared with the
exhaustive counting.

A high level framework to explore the state-space and quan-
tify the leaks of confidential data is described in Figure
2. The recursive call SymCount is described in Figure 3.
Φ, Ψ and N are passed by reference, while pc and i are
passed by value. Φ is the symbolic representation described
in the previous section, and Ψ keeps the models of Γ be-
ing explored. N is the cardinality of Ψ , and the procedure
SymbolicQIF returns log2(N) as the maximum leakage of
confidential data. K is the size of the data type, e.g. K = 32
if O is a 32-bit integer, and i is the depth of the recursive
call. In the process of exploring the state-space, the explored
predicates are kept in a trace, which we name pc in referring
to path condition in symbolic execution, discussed further
in the next section; pc is incrementally updated when the
search progresses.

function SymbolicQIF(Φ)
Ψ = ε, N = 0, i = 1
pc← InitializePC()
SymCount(Φ, Ψ , N , pc, i)

return Ψ , log2(N)
end function

Figure 2: Symbolic QIF analysis

1: function SymCount(Φ, Ψ,N, pc, i)
2: Extract pi from Φ
3: pc1 ← pc ∧ pi

4: if (isSAT (pc1)) then
5: if (i == K) then
6: Ψ ← Ψ ∪ {pc1}
7: N ← N + 1
8: else
9: SymCount(Φ, Ψ,N, pc1, i+ 1)

10: end if
11: end if
12: pc2 ← pc ∧ ¬pi

13: if (isSAT (pc2)) then
14: if (i == K) then
15: Ψ ← Ψ ∪ {pc2}
16: N ← N + 1
17: else
18: SymCount(Φ, Ψ,N, pc2, i+ 1)
19: end if
20: end if
21: end function

Figure 3: Symbolic counting for QIF

At the heart of any QIF method is always a counting tech-
nique, and ours is described in the method SymCount in
Figure 3. To illustrate the technique, we consider a case
study of data sanitization from [12], which is shown in Fig-
ure 4. All the data are 32-bit integers, the confidential data

base = 8;

if (H < 16)

O = base + H

else

O = base

Figure 4: A data sanitization program

H is only manipulated if it is in an acceptable range, namely
from 0 to 15. However, while manipulating H, the program
leaks information in the process. It is trivial to prove that
only integer values from 8 to 23 are possible outputs of this
program, i.e. the number of possible outputs N = 16.

At the beginning, all variables are initialised as in Figure
2, the method InitializePC sets pc as empty. The method
SymCount is then called to count the number of possible
models of Γ . When a variable pi is in consideration, we

UNSAT

pc ∧ p1

pc ∧ p1 ∧ p2

pc ∧ p1 ∧ p2 ∧ p3

pc ∧ p1 ∧ p2 ∧ p3 ∧ p4

pc ∧ p1 ∧ p2 ∧ p3 ∧ p4 ∧ p5pc ∧ p1 ∧ p2 ∧ p3 ∧ p4 ∧ ¬p5

p1

p2

p3

p4

p5

Figure 5: An exploration path of SQIF

systematically explore in the same way for both pi and ¬pi.
Hence, the block of code from line 3 to line 11, and the one
from line 12 to line 20 in Figure 4 are symmetric; we only
explain the first one.

A trace of the method is described in Figure 5. At the first
call of SymCount: i = 1, the variable p1 is in consideration,
SQIF takes one step forward by adding p1 to the trace like
in line 3. Since pc is initialised to be empty, pc1 = p1. The
method isSAT is called to check whether Γ � p1 holds,
which can be done by modelling Γ � p1 as an assertion in a
Java program as follows:

assert p1;

A model checking tool like Java Pathfinder (JPF) [1] can be
used to verify this assertion. In this example, isSAT would
return True since all odd values from 9 to 23 are possible
outputs satisfying this condition. Therefore, SQIF proceeds
by calling SymCount with i = 2. Similarly, the procedure

progresses until calling SymCount with i = 5, which means
it needs to verify:

assert p1 && p2 && p3 && p4 && p5;

This time isSAT would return False, since p1 ∧ p2.. ∧ p5

represents a set of outputs of which each element is at least
20 + 21 + ..+ 24 = 31, while the possible range of O is only
from 8 to 23. For a program with an output of 32-bit integer,
namely K = 32, SQIF trims a set of 227 concrete values
represented by the family of sets {Φ := {p1, p2, .., p32} : p1 ∧
p2 ∧ p3 ∧ p4 ∧ p5}. This is how the state-space explosion
problem is mitigated.

At the depth i = 5 as above, if SQIF takes the path of ¬p5

from line 12, then isSAT returns True (O = 15 is one of
the models). Hence, the procedure continues with i = 6, and
from this point until i = 32, only the path of ¬pi is SAT. At
i = 32, SQIF finds a full path 00..01111 which represents an
output O = 15. This path is added to Ψ , and SQIF increases
N . Finally, at the end of the method SymbolicQIF , we have
Ψ = {8, 9, .., 23} and N = 16, thus we can conclude that the
data sanitization program in Figure 4 leaks at most 4 bits.

4. IMPLEMENTATION
We choose to apply our method to programs developed in
Java. For Java or C/C++, extracting the ith bit from a
variable O is fairly easy:

bi = (O � i) && 1 (2)

In this way, we can construct the bit vector bvo = bKbK−1..b1
for the output O. The constraint mapping Γ is implemented
by adding the code in Figure 1 to the original program as
we have already explained. In the previous section, we ex-
plained our framework in which InitializePC sets pc to
empty, and isSAT is implemented by verifying an asser-
tion. However, to implement the framework from scratch is
costly, and there is a software analysis technique that comes
with a similar idea of using symbols to present sets of con-
crete values, which is symbolic execution. This technique
fits with our framework by nature, so we have adapted it
into a QIF analysis tool.

4.1 SQIF by Symbolic execution
Symbolic execution (SE) is a hybrid of verifying and test-
ing, which means that it can be either complete or incom-
plete. In order to use SE as a verifying technique, we assume
a bounded model of runtime behaviour, which means pro-
grams always terminate and have no recursion, loops can be
unfolded and so on. These are well-known issues in symbolic
execution and handling them is orthogonal to our work.

In our framework in Figure 4, we name the trace pc in refer-
ring to path condition because of the similarity in the way
they are updated. For an if statement with condition c,
there are three possible cases: (i) pc ` c: SE chooses the
then path; (ii) pc ` ¬c: SE chooses the else path; (iii)
(pc 0 c) ∧ (pc 0 ¬c): SE executes both paths: in the then
path, it updates the path condition pc1 = pc∧ c, in the else
path it updates the path condition pc2 = pc∧¬c. The third
case (iii) is interesting to us, since it is similar to how we
update the trace pc. Moreover, for a trace pc, the first two
cases (i) and (ii) cannot occur because when we consider a
variable pi, the trace only contains variables from p1 to pi−1.

s1

s2 s3

p1
p1

p2 p2

H ≥ 16

pc := (H 16)
InitializePC InitializePC

H < 16

pc := (H ≥ 16)<

pc ∧ p1 pc ∧ p1

pc ∧ p1 ∧ p2
pc ∧ p1 ∧ ¬p2

Figure 6: An exploration path of SQIF-SE

In Figure 1, since each bit can take only two possible val-
ues, 0 or 1, the way we set up the constraints Γ explicitly
imposes the conditions that describe all combination of pi.
Thus, SE is forced to explore all the state space of O. SE as
implemented in Symbolic Pathfinder (SPF) [13] also returns
a concrete value satisfying the path condition. For example,
with the condition H < 16 in the program in Figure 4, SPF
may return H = 1. However, a concrete value of the set
p1p2...pK can represent only one value of O. Hence, we only
need to count the concrete values of O that SPF generates
for the constraints in Figure 1.

The implementation of SQIF by SE, which we call SQIF-
SE, is briefly described in Figure 6; the example is still the
one that we analysed with the SQIF framework. At the
beginning, the trace pc is not initialised as empty but as the
path condition of the program, e.g. H < 16 in this example.
For each possible path, we explore the state space of O as
we discussed in the previous section.

4.2 Automation of BitPattern method
In order to discover bit patterns, Meng et al. [12] trans-
form the program into a set of Static Single Assignment
predicates. These predicates are then translated into the
language of STP solver [3] The whole process is performed
manually by the authors. Bit patterns are discovered by
making queries about the bits of the output O: for example
the following STP query tests whether bit i of O is neces-
sarily 0.

QUERY(O[i : i] = 0bin0)

We redesign the BitPattern method, and make it fully au-
tomated and able to handle Java programs: we extract bits
from the output as in (2), then replace the queries about
the bits by making assertions about them. For example, the
following assertion is logically equivalent to the query above:

assert bi == 0;

The assertions are checked by JPF. With the case study in
Figure 4, BitPattern discovers that the assertion above is
valid for 6 ≤ i ≤ 32. For 1 ≤ i ≤ 5, neither bi == 0
nor bi == 1 are valid. Thus, the bit vectors representing
possible outputs of O have the same pattern: 00..0*****,
where a ’*’ represents a bit that can be flipped. Also by
verifying assertions, BitPattern discovers further that b4b5
together can only take two values 01 or 10. Therefore, the
number of solutions for the bit patterns is 2 x 23 = 16.

In general, we transform bit patterns into CNF formula in
DIMACS format, then use RelSat [2], a lightweight open-
source #SAT solver, to perform model counting.

Both SQIF-SE and BitPattern are implemented in an open-
source prototyping tool, jpf-qif, as an extension of JPF.

5. PRELIMINARY EXPERIMENTS
In the illustrative example in Figure 4, there is a direct flow
from the confidential dataH to the outputO via assignment.
Consider another example in which the program indirectly
copies H to O if H ≤ 6 as follows:

O = 0;

if (H == 0) O = 0;

else if (H == 1) O = 1;

else if (H == 2) O = 2;

else if (H == 3) O = 3;

else if (H == 4) O = 4;

else if (H == 5) O = 5;

else if (H == 6) O = 6;

else O = 0;

Meng et al. reported an elapsed time of 45 ms, and Bit-
Pattern returns a bound of 3 bits. With the same example,
it takes SQIF-SE 717 ms to count 7 possible outputs, and
concludes a bound of 2.81 bits.

In previous case studies, BitPattern performs quite accu-
rately when possible outputs are in the same range, e.g.
8..23 and 0..6. Consider a similar case study of a family of
programs that each have exactly 10 feasible outputs:

if (H == r1) O = r1;

else if (H == r2) O = r2;

...

else if (H = r9) O = r9;

else O = r10;

When r1 to r9 are generated uniformly and independently,
the possible outputs diverge in the state space: BitPat-
tern greatly overestimates the bound on information leakage.
With 20 such programs, Meng et al. reported an average re-
sult of a bound of 18.645 bits in 5 seconds. On the other
hand, SQIF-SE always finds exactly 10 outputs in around 1
second, which results in a bound of 3.322 bits.

6. CONCLUSION
In this paper we propose SQIF, a novel method to mitigate
the state-space problem in QIF analysis. We have built jpf-
qif, the first tool to support information theoretic QIF anal-
ysis. Compared with the precise QIF analysis in [5], SQIF
can handle non-linear relations of various data types. Com-
pared with BitPattern, SQIF is always more precise, but it is
slower when leaks are in the same range. In contrast, SQIF
is better in both effectiveness and efficiency when leaks di-
verge in the state space. An immediate direction for investi-
gation is to combine SQIF with a cheap qualitative method,
e.g. type system, to decide quickly if the program satisfies
non-interference. This will improve the efficiency of the tool
when programs are strictly secure.

Acknowledgements. We thank the anonymous reviewers
for their helpful comments. The development of this project
is funded by the Google Summer of Code 2012 program.

7. REFERENCES
[1] http://babelfish.arc.nasa.gov/trac/jpf/.

[2] http://code.google.com/p/relsat/.

[3] http://sites.google.com/site/stpfastprover/.

[4] http://www.wolfram.com/mathematica/.

[5] Backes, M., Kopf, B., and Rybalchenko, A.
Automatic discovery and quantification of information
leaks. In Proceedings of the 2009 30th IEEE
Symposium on Security and Privacy (Washington,
DC, USA, 2009), SP ’09, IEEE Computer Society,
pp. 141–153.

[6] Barvinok, A. I. A polynomial time algorithm for
counting integral points in polyhedra when the
dimension is fixed. Math. Oper. Res. 19, 4 (Nov.
1994), 769–779.

[7] Clark, D., Hunt, S., and Malacaria, P. A static
analysis for quantifying information flow in a simple
imperative language. J. Comput. Secur. 15, 3 (Aug.
2007), 321–371.

[8] Malacaria, P. Assessing security threats of looping
constructs. In Proceedings of the 34th annual ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages (New York, NY, USA, 2007),
POPL ’07, ACM, pp. 225–235.

[9] Malacaria, P. Algebraic foundations for information
theoretical, probabilistic and guessability measures of
information flow. CoRR abs/1101.3453 (2011).

[10] Malacaria, P., and Chen, H. Lagrange multipliers
and maximum information leakage in different
observational models. In Proceedings of the third ACM
SIGPLAN workshop on Programming languages and
analysis for security (New York, NY, USA, 2008),
PLAS ’08, ACM, pp. 135–146.

[11] Massey, J. L. Guessing and entropy. In In
Proceedings of the 1994 IEEE International
Symposium on Information Theory (1994), p. 204.

[12] Meng, Z., and Smith, G. Calculating bounds on
information leakage using two-bit patterns. In
Proceedings of the ACM SIGPLAN 6th Workshop on
Programming Languages and Analysis for Security
(New York, NY, USA, 2011), PLAS ’11, ACM,
pp. 1:1–1:12.

[13] Păsăreanu, C. S., and Rungta, N. Symbolic
pathfinder: symbolic execution of java bytecode. In
Proceedings of the IEEE/ACM international
conference on Automated software engineering (New
York, NY, USA, 2010), ASE ’10, ACM, pp. 179–180.

[14] Sabelfeld, A., and Myers, A. C. Language-based
information-flow security. IEEE Journal on Selected
Areas in Communications 21 (2003), 2003.

[15] Smith, G. On the foundations of quantitative
information flow. In Proceedings of the 12th
International Conference on Foundations of Software
Science and Computational Structures: Held as Part
of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2009 (Berlin,
Heidelberg, 2009), FOSSACS ’09, Springer-Verlag,
pp. 288–302.

	Introduction
	Background
	Methodology
	A symbolic representation
	A symbolic QIF framework

	Implementation
	SQIF by Symbolic execution
	Automation of BitPattern method

	Preliminary Experiments
	Conclusion
	References

