
Computing and Visualizing the Impact of Change
with Java PathFinder Extensions

Eric Mercer
Brigham Young University

Computer Science
Department

Provo, UT 84602-6576
egm@cs.byu.edu

Suzette Person
NASA Langley Research

Center
1 S. Wright St. Mail Stop 130

Hampton, VA 23681-2199
suzette.person@nasa.gov

Neha Rungta
NASA Ames Research Center

Mail Stop 269-2
Moffet Field, CA 94035

neha.s.rungta@nasa.gov

ABSTRACT
Change impact analysis techniques estimate the potential
effects of changes made to software. Directed Incremental
Symbolic Execution (DiSE) is a Java PathFinder extension
that computes the impact of changes on program execu-
tion behaviors. The results of DiSE are a set of impacted
path conditions that can be efficiently processed by a sub-
sequent client analysis. Path conditions, however, may not
be intuitive for software developers without the context of
the source code. In this paper we present a framework for
visualizing the results of DiSE. The visualization includes
annotated source code and control flow graphs indicating
program statements that are changed and statements that
may be impacted by the changes. A simulation mode en-
ables users to also observe the impact of changes on sym-
bolic execution of the program, by showing the changes to
the path conditions as the user steps through the sequences
of statements executed.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation]: Mis-
cellaneous

General Terms
Documentation

Keywords
Visualization, Program Analysis

1. INTRODUCTION
The impact of software changes can be widespread and un-
predictable. Change impact analysis techniques [3] are used
to estimate the potential effects of changes made to soft-
ware. The results computed by these techniques are then
used to guide automated client analyses, such as testing,
verification, and debugging techniques, towards the parts of

the program affected by the changes. Directed Incremen-
tal Symbolic Execution (DiSE) is a change impact analy-
sis for characterizing the program behaviors impacted by
changes to the code [6, 8]. DiSE estimates the impact of
the changes on the source code using program slicing tech-
niques (control– and data-dependence analyses), and then
uses the impact sets to guide symbolic execution to gener-
ate path conditions that characterize impacted program be-
haviors. The impacted path conditions generated by DiSE
consist of constraints on program inputs. Path conditions
can be efficiently solved and analyzed by Satisfiability Mod-
ulo Theories (SMT) solvers [4] to facilitate subsequent anal-
ysis; however, path conditions can be difficult for software
developers to process and understand.

In this paper, we present a framework for visualizing the
results of a change impact analysis, and use the change im-
pact results computed DiSE to demonstrate the features of
the framework. The visualization includes annotated source
code and control flow graphs indicating program statements
that are changed, and statements impacted by the changes.
A simulation mode enables users to visualize the impact of
the changes on symbolic program execution, by stepping
through the sequences of program statements executed to
see when constraints are added to the path conditions.

The visualization tool presented in this work provides an
integrated view of the results computed during the various
steps performed by a change impact analysis. It also pro-
vides a way to map the program behaviors (path conditions)
to source code locations. We believe it is easier for devel-
opers to make sense of results when the impacted program
behaviors are mapped to the source code. The visualization
is extremely valuable to us as developers of change impact
analysis algorithms to understand the results produced by
our technique. We also believe that this tool could be useful
to software developers in general, by providing a better and
more intuitive view of the impacts of program changes.

In the next section, we present a brief overview of the change
impact analysis technique, DiSE, which is implemented as a
Java PathFinder extension, jpf-regression. We discuss how
information to facilitate the visualization is collected during
the static analysis and symbolic execution phases of DiSE.
In Section 3 we describe the inputs to the visualization
framework and discuss the various visualization elements.
Finally in Section 4 we discuss conclusions and future work.



2. DISE
Directed Incremental Symbolic Execution (DiSE) [6, 8] is a
technique for characterizing the impact of software changes
on program execution behaviors. The set of impacted path
conditions computed by DiSE is useful for generating regres-
sion test inputs, and guiding other client analyses such as
verification and debugging techniques. DiSE first estimates
the impact of changes on the source code using static pro-
gram slicing techniques. The impact sets generated during
the slicing analysis are then used to guide symbolic execu-
tion to generate path conditions that characterize impacted
program behaviors. In the remainder of this section, we
briefly describe the DiSE technique. We then describe how
we extended DiSE to collect the meta information used by
the visualization framework. The reader is referred to [6, 8]
for a more thorough explanation of the DiSE algorithm.

2.1 Inputs to DiSE
The inputs to DiSE are the source code for two versions
of a procedure in programs P and P ′, and the results of
a lightweight syntactic Diff analysis comparing the source
code for P and P ′, e.g., textual or abstract syntax tree com-
parison. The results of the Diff analysis identify the change
set – the set of locations in the source code that are dif-
ferent between the two versions. For program P ′, the Diff
analysis marks source code lines that are added, changed, or
unchanged with respect to P . Similarly, the analysis marks
source code in P as removed, changed, or unchanged with
respect to P ′.

2.2 Static Impact Analysis
DiSE uses standard program slicing techniques (forward and
backward), to generate the set of program locations that
may be impacted by the actual changes. The slicing cri-
teria are the program statements in the change set. Data-
and control-flow analyses are used to identify impacted con-
trol statements – conditional branch statements that may be
impacted by the change such that execution of these instruc-
tions leads to the generation of impacted program behaviors.
The static analysis also identifies impacted write (assign-
ment) statements – the values written at these locations may
impact subsequent execution of conditional branch state-
ments. Our implementation of DiSE supports both intra-
and inter-procedural analyses to compute impacted state-
ments.

2.3 Directed Symbolic Execution
To compute the impact of the changes on the execution be-
haviors of the modified version of the program, the impact
set (of program locations) computed by the static impact
analysis is used to direct symbolic execution of the modified
version of the program and generate impacted path condi-
tions. The impacted path conditions represent the program
behaviors impacted by the changes. The algorithm is conser-
vative and over-estimates the impacted behaviors. We have
implemented a version of DiSE for analyzing Java programs
in the jpf-regression extension to Java PathFinder (JPF). It
uses the static impact analysis from the jpf-guided-test ex-
tension, and the Java PathFinder symbolic execution frame-
work (SPF) [5, 7]. We use the Choco constraint solver [1] to
check path feasibility during symbolic execution.

During symbolic execution, a custom JPF listener is used
to prune paths based on the reachability of impacted pro-
gram locations from the current state. When there are no
impacted (and unexplored) statements reachable on the cur-
rent path, the listener instructs symbolic execution to back-
track, effectively pruning paths that do not execute at least
one impacted program statement. At the end of symbolic ex-
ecution, a symbolic summary containing the set of impacted
path conditions for a given method is written to disk.

2.4 Extension to DiSE
In our original implementations of DiSE, we included an
option to output the annotated control flow graphs built
by the static analysis and showing changed and impacted
nodes, in a format suitable for input to a graph visualiza-
tion tool. These graphs were invaluable to us as developers
of DiSE, enabling us to visualize the results of the static
analysis; however, we only had the sets of path conditions
generated by DiSE to represent the impacted program be-
haviors. Moreover, there was no way to link the results of
the static analysis to the results of Directed Symbolic Exe-
cution.

To create an integrated and more intuitive picture of the
change impact analysis results computed by DiSE, we im-
plemented a DiSEVisualizationListener to collect informa-
tion during symbolic execution that can be used to visualize
the impact of software changes on symbolic execution of the
program. The DiSEVisualizationListener listens for instruc-
tions to be executed in methods identified as symbolic, and
then records details about the instruction, e.g., the byte-
code mnemonic, the source code, the source line number,
and the execution order. When the instruction executed is
an instance of an if instruction, the listener also records
the constraint added to the path condition. At the end of
symbolic execution, the listener outputs to an XML file, the
information collected during symbolic execution. Each in-
struction executed in the symbolic method is also annotated
with the results of the static impact analysis indicating if the
instruction is changed, and whether the instruction is an im-
pacted write statement, an impacted control statement, or
a statement that is not impacted.

3. FRAMEWORK
The input to the visualization framework is an XML file
containing the results computed by a change impact analysis
and meta information about the analyzed software, e.g., con-
trol flow information relating program statements. The im-
pacted and changed program statements are identified using
specific color codes next to the source lines. The constraints
generated during symbolic execution can be explored by
using the simulation mode to step through the sequences
of program statements executed during symbolic execution.
Note that only change impact analysis techniques based on
symbolic execution will have the option to run in the simula-
tion mode. A screenshot of the DiSE visualization is shown
in Fig. 1. In the remainder of this section we explain in
detail, the input format to the visualization framework and
each element of the visualization itself.

3.1 Inputs to the Visualization Tool
The change impact visualization framework is a post-mortem,
offline analysis that can be used to visualize the results of



Figure 1: Screenshot of the visualization of the results of DiSE on a simple example.

any change impact analysis. The visualization takes three
inputs: the source code file, an XML file detailing the results
of the change impact analysis, and an image of the control
flow graph representation of the code.

The XML file is simply a list of nodes where each node maps
to an instruction, e.g., bytecode, that was executed during
symbolic execution. Each node has several attributes as
explained below. The attributes for each <node> element
are used to determine the color coding for the matrix, the
constraints displayed in the path constraints pane, as well
as the details presented in the node information pane. We
use the following XML code fragment as an example:

<?xml version="1.0" encoding="utf-8" ?>

<graph id="ImpactAnalysis" index="0"

tracetype="concrete">

<jpfstate id="none">

<node id="node_0"

class="rse.Example01"

... />

<PCs>

<pc value="a_1_SYMINT == CONST_0" contained="1" />

</PCs>

</node>

...

</jpfstate>

<paths>

<path id="path_0" path="/Example01" />

<path id="path_1" path="/build/Example01" />

</paths>

</graph>

The XML file begins with a <graph> tag which contains a
<jpfstate> element. The <graph> element has an ID, index,
and tracetype that ranges over concrete and abstract (details
to follow). The <jpfstate> element is simply a container
for the list of nodes. Each <node> element in the XML file
has the following attributes:

id: a string identifier used to give each bytecode a unique
identifier.

class: the name of the class containing the method analyzed
by the impact analysis. The tool currently supports
display of intraprocedural analysis results only.

method the name of the method analyzed. This is also the
expected name for the image file containing the control
flow graph.

bytecode: the bytecode associated with the node.
bytecodeline: the bytecode line or index into the class file.
sourceline: the line number of the source code containing

the bytecode.
tracetype: traces are either abstract or concrete. An ab-

stract trace is not generated from an execution and
typically does not contain path constraints. A concrete
trace is generated from an execution and includes path



constraints.
sourcecode: the source code corresponding to the bytecode

as it appears in the source file.
sourcecodefile: the name of the file containing the source

code, i.e., the .java file.
bytecodefile: the name of the file containing the bytecode,

i.e., the .class file.
executed: indicates if the bytecode is executed. The value

is always false in an abstract trace. It can be either
true or false in a concrete trace.

threadnumber: the thread ID.
type: an internal value that should always be regularstmt.
impacted: indicates how the bytecode is impacted by the

modified line. The values ranges over notImpacted,
writeImpacted (write), and condImpacted (conditional).
A single bytecode can have only one impacted attribute.

modified: ranges over true and false. Indicates a changed
source line.

srcpath: the fully specified path to the source code. The
value ranges over a key defined in the <path> element
in the XML as illustrated in the example above.

bytecodepath: the fully specified path to the class files.
The value ranges over a key defined in the <path> el-
ement in the XML file as illustrated in the example
above.

The sequence of the nodes in the XML file is assumed by the
simulation mode to reflect the execution order of the pro-
gram statements during symbolic execution. A node may
optionally contain a list of path constraints as shown in the
example above. The contained attribute is the number of
total path conditions generated by the change impact anal-
ysis, e.g., DiSE, that contain the constraint identified by the
value attribute. The XML file ends with the definition of
the path keys referenced in the node attributes for the source
and bytecode paths.

The last input to the visualization tool is the image file show-
ing the control flow graph for the program. The tool assumes
the image is in JPEG format, and looks for a file named
method.jpg where method is the name indicated in the node
definitions in the XML file. It should be the method ana-
lyzed by the change impact analysis. In the DiSE impact
analysis, DiSE generates a dotty graph [2] of the control flow
during static analysis. The dotty tool can be used to gener-
ate a JPEG image of the graph. The image is scaled to fit
the visualization window, as shown in Fig. 1.

3.2 Adding visual cues to source code
Given a change set (of modified source lines), DiSE com-
putes the set of impacted program instructions using static
control and data dependence analyses. The impact set con-
sists of impacted write statements and impacted conditional
statements. Symbolic execution is directed toward the im-
pacted statements. Program statements not impacted by
the changes to the program may not be executed during
symbolic execution.

The modified source lines, impacted write, impacted con-
ditional, and non-executed source lines are identified using
a color coded matrix. Each row in the matrix refers to a
source code line. Each column indicates one of the above
characteristics. If cell (i, j) is highlighted in the matrix,

Figure 2: Bottom panes of the visualization that
displays information during the simulation mode.

then source line i has attribute j. The rows i range over
the natural numbers. The columns j range over {M,C, W,
N} representing: [M]: modified, [C]: conditional impacted,
[W]: write impacted, [N]: not executed.

The color coded matrix is added as a visual cue next to the
source code as shown in Fig. 3. For example, source line 006
has two color codes [M] and [W] indicating the statement
is both modified and an impacted write statement. Lines
010, 011, and 013 have the [C] color code attached to them,
indicating each is an impacted conditional statement. Since
there are no program statements with the color [N] code,
all the program statements in the example shown in Fig. 3
were executed during symbolic exeuction.

3.3 Simulation Mode of the Visualization
The search order of the analysis, i.e., the statement exe-
cution order during symbolic execution, added path con-
straints, and bytecode information are presented during the
simulation mode using two extra display panes as shown
in Fig. 2. The simulation mode highlights each line of the
source code as it steps through individual byte-codes. Line
010 is highlighted in Fig. 3. The constraint that is generated
at line 010 is shown in the left pane of Fig. 2 (c 3 SYMINT−
d 3 SYMINT == CONST 0). There are two paths in the
execution that contain this particular constraint indicated
by the column Paths. Identifying the contraints added at
each conditional statement, we believe, can help develop-
ers understand the flow of impact information more easily,
compared to just looking at the final set of all the path con-
ditions.

The search order of the analysis is reflected in the step order
of the source lines and individual bytecodes. For example,
a depth-first analysis order shows a single path executed to
the end of the method at which point it backtracks to the
most recent impacted conditional to explore the unexplored
branch. The simulation highlights the various source lines
in such a manner until each path in the method is covered.
The simulation is controlled similar to a debugger, using the



Figure 3: Source lines annotated with the color codes representing the modified and impacted statements.

controls at the top of the window.

As the simulation is played forward, added path constraints
and the individual bytecode information for a given source
line are displayed in two separate visualization panes. The
path constraints show the terms added on each conditional
statement. Included in the pane is an additional contained
field which indicates the number of future paths that in-
clude the indicated constraint. Because each source line is
composed of several bytecodes, the analysis simulation may
take several steps, i.e., process multiple bytecodes before
highlighting the next source line. The individual bytecodes
processed are shown in the Node Information pane along
with indications of whether the bytecode is modified, or an
impacted write or conditional bytecode. As such, it is pos-
sible to learn which specific bytecodes caused the matrix
encoding for a given source line.

4. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a tool for visualizing the results
of DiSE, a change impact analysis we have implemented
as a Java PathFinder extension. The development of the
tool was driven by the capabilities of our analysis; however,
the framework is capable of visualizing the results of other
change impact analysis tools. The visualization framework
includes a simulation mode that enables users to observe
the impact of changes on symbolic execution by showing
the changes to the path conditions as the user steps through
the sequences of statements executed. The visualization also
incorporates an image of the control flow graph generated
by our DiSE implementations and an annotated view of the
source code showing the results of the static impact analy-
sis. Together, these visualizations provide software develop-
ers with an integrated view of the various results computed
by DiSE and a more intuitive picture of how changes impact

the program during symbolic execution.

The current version of the visualization framework supports
the intra-procedural version of DiSE. In the future, we plan
to extend the framework to support visualization of the
inter-procedural version of DiSE. The current visualization
framework has been used to present the results of small ex-
amples; extending the framework to support larger examples
is also an important part of our future work.

5. REFERENCES
[1] Choco. http://www.emn.fr/z-info/choco-solver/.

Accessed: 2012.

[2] Graphviz – Graph Visualization Software.
http://www.graphviz.org. Accessed: 2012.

[3] R. S. Arnold and S. A. Bohner. Impact analysis -
towards a framework for comparison. In ICSM ’93,
pages 292–301, 1993.

[4] L. de Moura and N. Bjørner. Z3: An efficient SMT
solver. In TACAS, pages 337–340, 2008.

[5] C. Păsăreanu and N. Rungta. Symbolic PathFinder:
symbolic execution of Java bytecode. In ASE, pages
179–180, 2010.

[6] S. Person, G. Yang, N. Rungta, and S. Khurshid.
Directed incremental symbolic execution. In PLDI,
pages 504–515, 2011.

[7] C. S. Păsăreanu, P. C. Mehlitz, D. H. Bushnell,
K. Gundy-Burlet, M. Lowry, S. Person, and M. Pape.
Combining unit-level symbolic execution and
system-level concrete execution for testing NASA
software. In ISSTA, pages 15–25, 2008.

[8] N. Rungta, S. Person, and J. Branchaud. A
change-impact analysis to characterize evolving
program behaviors. In ICSM, To Appear, 2012.


