
	

NASA/TP—2012–216041

Lunar Surface Systems Software
Architecture Study:
Open Architecture

William J. Clancey
Ames Research Center, California
and Florida Institute for Human and Machine Cognition, Pensacola

Robert Nado, Ron van Hoof, Mike Lowry
Ames Research Center

Grailing Jones and Daniel Dvorak
NASA Jet Propulsion Laboratory

 Click here: Press F1 key (Windows) or Help key (Mac) for help

August 2012

	

NASA STI Program ... in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA scientific and technical
information (STI) program plays a key part in
helping NASA maintain this important role.

The NASA STI program operates under the
auspices of the Agency Chief Information Officer.
It collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI
program provides access to the NASA
Aeronautics and Space Database and its public
interface, the NASA Technical Reports Server,
thus providing one of the largest collections of
aeronautical and space science STI in the world.
Results are published in both non-NASA channels
and by NASA in the NASA STI Report Series,
which includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant
phase of research that present the results of
NASA Programs and include extensive data
or theoretical analysis. Includes compila-
tions of significant scientific and technical
data and information deemed to be of
continuing reference value. NASA counter-
part of peer-reviewed formal professional
papers but has less stringent limitations on
manuscript length and extent of graphic
presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and
feeds, providing information desk and personal
search support, and enabling data exchange
services.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page

at http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Fax your question to the NASA STI
Information Desk at 443-757-5803

• Phone the NASA STI Information Desk at
443-757-5802

• Write to:
STI Information Desk
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320

This page is required and contains approved text that cannot be changed.

	

NASA/TP—2012–216041

Lunar Surface Systems Software
Architecture Study:
Open Architecture

William J. Clancey
Ames Research Center, California
and Florida Institute for Human and Machine Cognition, Pensacola

Robert Nado, Ron van Hoof, Mike Lowry
Ames Research Center

Grailing Jones and Daniel Dvorak
NASA Jet Propulsion Laboratory

Presented at
Space Mission Challenges for Information Technology Conference (SMC-IT)
IEEE
Palo Alto, CA, August 2011

 Click here: Press F1 key (Windows) or Help key (Mac) for help

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, CA 94035-1000

August 2012

	

Acknowledgments

This study was supported by the ETDP/Lunar Surface Systems Project in 2010. Funding
for the Mobile Agents Project (2002-08) was provided by NASA’s Intelligent Systems,
Moon and Mars Analogue Mission Activities (MMAMA), and Exploration Technology
and Research Programs (ETDP). Scientists and engineers from three NASA centers
contributed to Mobile Agents, including Rick Alena, John Dowding, and the JSC
Scout/ERA team (especially Rob Hirsh, Jeff Graham, and Kim Shillcutt Tyree); we
acknowledge also the guidance of the geologists, Brent Garry and Abby Semple, who
experimented with the system doing field science at MDRS and other analog sites.

Thist

 Click here: Press F1 key (Windows) or Help key (Mac) for help

 Available from:

 Click here: Press F1 key (Windows) or Help key (Mac) for help

This report is also available in electronic form at

http://ti.arc.nasa.gov/publications/

TABLE	
 OF	
 CONTENTS	

1	
 EXECUTIVE	
 SUMMARY	
 1	

1.1	
 FIELD	
 EXPERIMENTS	
 AND	
 DATA	
 ANALYZED	
 2	

1.2	
 ANALYSIS	
 OVERVIEW	
 3	

1.3	
 CONCLUSIONS	
 AND	
 RECOMMENDATIONS	
 7	

2	
 INTRODUCTION	
 7	

2.1	
 INTEGRATING	
 COMPONENTS	
 BY	
 CONVERTING	
 THEM	
 INTO	
 SERVICES	
 8	

2.2	
 ANALYSIS	
 OF	
 FIELD-­‐TESTED	
 WORKFLOW	
 CONFIGURATIONS	
 9	

3	
 DESCRIPTION	
 OF	
 SYSTEM	
 CONFIGURATIONS	
 	
 AND	
 DATA	
 ANALYZED	
 11	

3.1	
 CATEGORIZATION	
 OF	
 WORKFLOW	
 AUTOMATION	
 CAPABILITIES	
 12	

3.2	
 EXPLORATION	
 SYSTEM	
 COMPONENT	
 CONFIGURATIONS	
 AND	
 PRODUCT	
 LINE	
 RELATIONS	
 14	

4	
 ANALYSIS	
 OF	
 FIELD	
 CONFIGURATION	
 AND	
 DDT&E	
 DATA	
 17	

4.1	
 ANALYSIS	
 OF	
 CHANGES	
 TO	
 THE	
 AGENT	
 SYSTEM	
 18	

4.2	
 RELATION	
 OF	
 CODE	
 SIZE	
 TO	
 ADDED	
 CAPABILITIES	
 20	

4.3	
 RELATION	
 OF	
 VOICE	
 COMMANDING	
 INTERFACE	
 TO	
 CAPABILITIES	
 22	

4.4	
 PRODUCTIVITY	
 ANALYSIS	
 23	

5	
 LESSONS	
 LEARNED	
 AND	
 RECOMMENDATIONS	
 28	

5.1	
 REVIEW	
 OF	
 FINDINGS	
 EXPERIMENTING	
 WITH	
 AN	
 AGENT-­‐BASED	
 WORKFLOW	
 ARCHITECTURE	
 28	

5.2	
 ADVANTAGES	
 OF	
 THE	
 INFORMATION	
 EXCHANGE	
 SERVICES	
 LAYER	
 30	

5.3	
 ADVANTAGES	
 FOR	
 DESIGN,	
 DEVELOPMENT,	
 TESTING,	
 AND	
 EVALUATION	
 31	

5.4	
 ADVANTAGES	
 FOR	
 RECONFIGURATION	
 EFFICIENCY	
 AND	
 SYSTEM	
 SIZE	
 32	

5.5	
 LESSONS	
 LEARNED	
 FROM	
 FIELD	
 EXPERIMENTS	
 33	

5.6	
 CONCLUSION	
 34	

6	
 REFERENCES	
 35	

APPENDIX	
 I.	
 MOBILE	
 AGENTS	
 SOFTWARE	
 ARCHITECTURE	
 OVERVIEW	
 37	

APPENDIX	
 II.	
 FIELD	
 SYSTEM	
 CONFIGURATION	
 DIAGRAMS	
 40	

APPENDIX	
 III.	
 INFORMATION	
 AND	
 GOAL-­‐ORIENTED	
 SERVICES	
 PROVIDED	
 BY	

WORKFLOW	
 AGENTS	
 IN	
 FIELD	
 EXPERIMENTS	
 51	

Clancey et al.: LSS Study: Open Architecture

	
 ii

APPENDIX	
 IV.	
 ORGANIZATION	
 OF	
 DATA	
 ANALYSIS	
 TABLE	
 57	

APPENDIX	
 V.	
 COMPLETING	
 THE	
 PICTURE:	
 SYSTEM	
 SPECIFICATION	
 THROUGH	
 A	
 GOAL-­‐
ORIENTED	
 CONTROL	
 FRAMEWORK	
 60	

APPENDIX	
 VI.	
 GLOSSARY	
 64	

Clancey et al.: LSS Study: Open Architecture

	
 iii

FIGURES	

FIGURE	
 1.	
 TOTAL	
 KSLOC	
 (THOUSANDS	
 OF	
 LINES	
 OF	
 CODE)	
 FOR	
 EACH	
 SYSTEM	
 CONFIGURATION	
 (COLUMNS,	
 BROKEN	

INTO	
 WORKFLOW	
 BACKBONE	
 AND	
 COMMUNICATION	
 AGENT	
 PARTS)	
 AND	
 NEW	
 KSLOC	
 (FOR	
 NEW	
 OR	
 MODIFIED	

AGENTS;	
 SHOWN	
 AS	
 LINES).	
 	
 CODE	
 FOR	
 COMMUNICATION	
 AGENTS	
 DOMINATES;	
 THEY	
 TRANSLATE	
 BETWEEN	

SERVICE-­‐ORIENTED	
 (TASK-­‐LEVEL)	
 MESSAGES	
 AND	
 SUBSYSTEM	
 APIS.	
 ..	
 4	

FIGURE	
 2.	
 PERCENTAGE	
 OF	
 KSLOC	
 ADDED	
 TO	
 COMMUNICATION	
 AGENTS	
 AND	
 WORKFLOW	
 AGENTS	
 FOR	
 EACH	

CONFIGURATION;	
 PERCENTAGE	
 OF	
 KSLOC	
 WORKFLOW	
 AGENTS	
 RELATIVE	
 TO	
 THE	
 SYSTEM	
 TOTAL	
 KSLOC.	
 	
 5	

FIGURE	
 3.	
 ADDITIONAL	
 KSLOC	
 REQUIRED	
 PER	
 NEW	
 CAPABILITY	
 (KIND	
 OF	
 INFORMATION	
 REQUEST	
 OR	
 COMMAND).	
 	
 5	

FIGURE	
 4.	
 NUMBER	
 OF	
 NEW	
 CAPABILITIES	
 PER	
 FULL-­‐TIME	
 EQUIVALENT	
 EFFORT	
 (ANNUALIZED	
 OVER	
 DEVELOPMENT	

PERIOD).	
 ...	
 6	

FIGURE	
 5.	
 REUSE	
 AND	
 ADDITIONS	
 TO	
 WORKFLOW	
 AGENTS	
 FOR	
 EACH	
 FIELD	
 CONFIGURATION,	
 SHOWN	

CHRONOLOGICALLY.	
 ...	
 18	

FIGURE	
 6.	
 REUSE	
 AND	
 ADDITIONS	
 TO	
 COMMUNICATION	
 AGENTS	
 FOR	
 EACH	
 FIELD	
 CONFIGURATION,	
 SHOWN	

CHRONOLOGICALLY.	
 MODIFIED	
 AGENTS	
 ARE	
 BROKEN	
 INTO	
 PERCENTAGE	
 OF	
 THE	
 MODULE	
 THAT	
 IS	
 ADDED	
 AND	

PORTION	
 CARRIED	
 OVER	
 (PERHAPS	
 EDITED).	
 (SOURCE	
 CODE	
 DATA	
 BEGINS	
 WITH	
 MDRS04,	
 SO	
 ALL	
 AGENTS	
 ARE	

CATEGORIZED	
 AS	
 “NEW,”	
 DESPITE	
 CARRYOVER	
 FROM	
 DRATS02	
 AND	
 MDRS03.)	
 ..	
 19	

FIGURE	
 7.	
 SOURCE	
 LINES	
 OF	
 CODE	
 ADDED	
 TO	
 DIALOG	
 AGENT	
 (RIALIST	
 COMMUNICATION	
 AGENT)	
 FOR	
 EACH	

CAPABILITY.	
 ..	
 23	

FIGURE	
 8.	
 SOURCE	
 LINES	
 OF	
 CODE	
 FOR	
 COMMUNICATION	
 AGENTS	
 FOR	
 INTEGRATING	
 HARDWARE	
 AND	
 SOFTWARE	

COMPONENTS.	
 ..	
 24	

FIGURE	
 9.	
 RATIO	
 OF	
 SOURCE	
 LINES	
 OF	
 CODE	
 FOR	
 NEW	
 OR	
 ADDED	
 TO	
 WORKFLOW	
 AND	
 COMMUNICATION	
 AGENTS	
 TO	

PROGRAMMER	
 EFFORT	
 (FULL-­‐TIME	
 EQUIVALENT).	
 EFFORT	
 IS	
 ANNUALIZED	
 OVER	
 THE	
 DEVELOPMENT	
 PERIOD	

(I.E.,	
 EFFORT	
 DURING	
 PERIOD	
 *	
 (NUMBER	
 OF	
 PERIOD	
 DAYS	
 /	
 365	
 DAYS)).	
 	
 ERROR	
 BARS	
 INDICATE	
 RANGE	
 FOR	

UNDERESTIMATING	
 EFFORT	
 (“ERROR	
 LOW,”	
 DEEMED	
 TO	
 BE	
 MORE	
 LIKELY)	
 AND	
 OVERESTIMATING	
 (“ERROR	

HIGH,”	
 UNLIKELY).	
 ...	
 24	

FIGURE	
 10.	
 ADDITIONAL	
 LINES	
 OF	
 WORKFLOW	
 AND	
 CA	
 CODE	
 COMPARED	
 TO	
 NUMBER	
 OF	
 NEW	
 CAPABILITIES	
 AND	

FTE.	
 ...	
 26	

FIGURE	
 11.	
 NUMBER	
 OF	
 COMPONENTS	
 (HARDWARE	
 AND	
 SOFTWARE)	
 INTEGRATED	
 FOR	
 WORKFLOW	

INTEROPERABILITY	
 IN	
 THE	
 EXPLORATION	
 SYSTEMS	
 ...	
 28	

FIGURE	
 12.	
 MOBILE	
 AGENTS	
 ARCHITECTURE	
 COMMUNICATIONS	
 SCHEMATIC	
 RELATING	
 PEOPLE,	
 AGENTS,	
 AND	

EXTERNAL	
 SYSTEMS.	
 	
 VOICE	
 COMMANDING	
 INVOLVES	
 A	
 HYBRID	
 OF	
 METHODS	
 FOR	
 COMMUNICATING,	
 INCLUDING	

SPOKEN	
 VOICE	
 (MICROPHONE	
 AND	
 HEADPHONE),	
 RADIO,	
 WIRELESS	
 NETWORK,	
 AND	
 SOFTWARE	
 APPLICATIONS	

INTERFACES.	
 KEY:	
 RST	
 =	
 REMOTE	
 SCIENCE	
 TEAM;	
 ERA	
 =	
 EVA	
 ROBOTIC	
 ASSISTANT.	
 EXTERNAL	
 SYSTEMS	
 ARE	

ILLUSTRATIVE.	
 COMMUNICATION	
 AGENTS	
 USE	
 APIS	
 OF	
 EXTERNAL	
 SYSTEMS	
 TO	
 INTERFACE	
 WITH	
 WORKFLOW	

AGENTS.	
 ...	
 40	

FIGURE	
 13.	
 WIRELESS	
 NETWORK	
 CONFIGURATION	
 FOR	
 MDRS04	
 FOR	
 HARDWARE	
 AND	
 SOFTWARE	
 COMPONENTS.	
 	

CENTRALIZED	
 DIRECTORY	
 SERVICE	
 (IMPLEMENTED	
 IN	
 KAOS)	
 ENABLED	
 AGENTS	
 TO	
 LOCATE	
 EACH	
 OTHER	
 FOR	

REQUESTING	
 AND	
 PROVIDING	
 DATA	
 AND	
 COMMANDING	
 INTEGRATED	
 SUBSYSTEMS.	
 MDRS05	
 CONFIGURATION	

WAS	
 SIMILAR	
 WITH	
 A	
 SECOND	
 ERA	
 ROBOT.	
 	
 AGENT	
 DETAILS	
 APPEAR	
 IN	
 ..	
 41	

FIGURE	
 14.	
 MDRS05	
 EVA	
 EXPLORATION	
 SYSTEM	
 CONFIGURATION.	
 THE	
 EVA	
 SYSTEM	
 INCLUDED	
 TWO	
 ASTRONAUT	

SYSTEMS	
 AND	
 TWO	
 ROBOTIC	
 EVA	
 SYSTEMS	
 (ERAS)	
 AS	
 SHOWN.	
 	
 REMOTE	
 SCIENCE	
 TEAM	
 WAS	
 DISTRIBUTED	
 IN	

USA,	
 AUSTRALIA,	
 AND	
 ENGLAND	
 (CLANCEY,	
 ET	
 AL.,	
 2005;	
 HIRSH,	
 ET	
 AL.	
 2006).	
 	
 THIS	
 CONFIGURATION	
 IS	
 THE	

MATURE	
 VERSION	
 OF	
 THE	
 FOUR	
 YEAR	
 SEQUENCE:	
 THE	
 GENERAL	
 STRUCTURE	
 WAS	
 INTRODUCED	
 IN	
 DRATS02,	

DISTRIBUTED	
 PLATFORMS	
 INTRODUCED	
 IN	
 MDRS03,	
 AND	
 THE	
 REMOTE	
 SCIENCE	
 TEAM	
 ADDED	
 FOR	
 MDRS04.	
 	

CDS05	
 AND	
 DRATS05,	
 WHICH	
 FOLLOWED	
 FOUR	
 MONTHS	
 LATER,	
 CHANGED	
 THE	
 ROBOTS	
 AND	
 ADDED	

ADDITIONAL	
 EXTERNAL	
 SOFTWARE	
 AND	
 PLATFORMS	
 (SEE	
 FOLLOWING	
 FIGURES).	
 THE	
 GREEN	
 CIRCLES	

REPRESENT	
 AGENTS	
 THAT	
 CONSTITUTE	
 THE	
 WORKFLOW	
 BACKBONE	
 OF	
 THE	
 EXPLORATION	
 SYSTEM.	
 	
 42	

FIGURE	
 15.	
 CDS05	
 EVA	
 EXPLORATION	
 SYSTEM	
 CONFIGURATION.	
 THE	
 FIELD	
 TEST	
 INVOLVED	
 ONE	
 ASTRONAUT	
 AND	

ONE	
 K9	
 ROVER;	
 HOWEVER,	
 THE	
 ARCHITECTURE	
 ALLOWED	
 EVA	
 CONFIGURATIONS	
 WITH	
 MULTIPLE	

ASTRONAUTS	
 AND	
 ROVERS	
 WITHOUT	
 CHANGING	
 THE	
 SOFTWARE.	
 GOAL-­‐ORIENTED	
 COMMANDING	
 OF	
 THE	
 K9	

ROBOT	
 IS	
 ENABLED	
 FOR	
 BOTH	
 THE	
 ASTRONAUT	
 (VIA	
 VERBAL	
 REQUESTS	
 MEDIATED	
 BY	
 AGENTS,	
 E.G.,	
 “INSPECT	

ROCK	
 NAMED	
 BROCCOLI	
 WHEN	
 ABLE”)	
 AND	
 THE	
 ROVER	
 OPERATOR	
 IN	
 THE	
 HABITAT	
 (VIA	
 DIRECT	
 MANIPULATION	

Clancey et al.: LSS Study: Open Architecture

	
 iv

OF	
 THE	
 VISUAL	
 DISPLAY	
 INTERFACE).	
 PREPARED	
 PLANS	
 INITIATED	
 BY	
 ASTRONAUTS	
 ON	
 EVA	
 DID	
 NOT	
 REQUIRE	

ROVER	
 OPERATOR	
 INTERVENTION	
 (PEDERSEN,	
 ET	
 AL.,	
 2006).	
 ..	
 43	

FIGURE	
 16.	
 CDS05	
 PLATFORM	
 AND	
 NETWORK	
 CONFIGURATION.	
 K9	
 AND	
 GROMIT	
 PERSONAL	
 AGENTS	
 ARE	
 DIRECTLY	

ADAPTED	
 FROM	
 THOSE	
 USED	
 IN	
 THE	
 MDRS05	
 CONFIGURATION	
 (ERAS	
 NAMED	
 BOUDREAUX	
 AND	

THIBODEAUX).	
 (SLIDE	
 PROVIDED	
 BY	
 RICK	
 ALENA,	
 NASA/AMES.)	
 ...	
 44	

FIGURE	
 17.	
 DESERT-­‐RATS	
 2006	
 EVA	
 EXPLORATION	
 SYSTEM	
 CONFIGURATION	
 (METEOR	
 CRATER,	
 SEPTEMBER	

2006;	
 CLANCEY	
 ET	
 AL.	
 [2007]).	
 RECONFIGURATION	
 OF	
 MDRS05	
 TO	
 USE	
 SCOUT	
 ROVER	
 INSTEAD	
 OF	
 ERAS,	

USING	
 AGENTS	
 TO	
 CONTROL	
 ITS	
 GEOPHONE	
 DEPLOYMENT	
 SYSTEM	
 FROM	
 THE	
 EXPOC	
 AGENT	
 PLATFORM	
 IN	

HOUSTON.	
 	
 THIS	
 CONFIGURATION	
 DEMONSTRATED	
 HOW	
 TWO	
 KERNEL	
 SUPPORT	
 SYSTEMS,	
 ONE	
 LOCAL	

(HABCOM)	
 AND	
 THE	
 OTHER	
 REMOTE	
 (EXPOC),	
 COULD	
 BE	
 USED	
 TO	
 COORDINATE	
 THE	
 FLOW	
 OF	
 DATA,	

INFORMATION,	
 AND	
 GOAL-­‐DIRECTED	
 COMMANDS	
 COMING	
 FROM	
 EVA	
 ASTRONAUTS,	
 THE	
 SURFACE	
 HABITAT	

OPERATOR,	
 AND	
 THE	
 REMOTE	
 GROUND	
 SUPPORT	
 OPERATOR.	
 ..	
 45	

FIGURE	
 18.	
 POWER	
 SYSTEM	
 CONFIGURATION	
 OF	
 MARS	
 DESERT	
 RESEARCH	
 STATION	
 (APRIL	
 2006).	
 	
 XANTREX	

INVERTER	
 CONTAINED	
 A	
 POWER	
 MANAGEMENT	
 SYSTEM	
 FOR	
 CHARGING	
 OR	
 DRAWING	
 FROM	
 HABITAT	
 BACKUP	

BATTERY	
 SYSTEM,	
 RECEIVING	
 AC	
 INPUT	
 FROM	
 THE	
 DIESEL	
 GENERATOR.	
 DC	
 POWER	
 WAS	
 ALSO	
 PROVIDED	
 BY	

SOLAR	
 ELECTRIC	
 PANELS.	
 THE	
 ONEMETER	
 CHANNEL	
 METER	
 SYSTEM	
 INSTRUMENTED	
 THESE	
 VARIOUS	
 SOURCES	

TO	
 PROVIDE	
 DATA	
 TO	
 THE	
 POWER	
 AGENT	
 SYSTEM	
 (FIGURE	
 19).	
 ..	
 46	

FIGURE	
 19.	
 MOBILE	
 AGENTS	
 POWER	
 AGENTS	
 CONFIGURATION.	
 	
 THE	
 CREW	
 AND	
 HABCOM	
 SYSTEMS	
 INCLUDE	
 A	

“PERSONAL	
 AGENT”	
 FOR	
 COORDINATING	
 COMMUNICATIONS	
 (COMMAND	
 PROCESSING,	
 ALERTING,	
 AND	

DATAFLOW)	
 WITH	
 CREW	
 MEMBERS.	
 THE	
 LINK	
 TO	
 THE	
 XANTREX	
 INVERTER	
 (
 ..	
 47	

FIGURE	
 20.	
 METABOLIC	
 RATE	
 ADVISOR	
 (POGO,	
 A	
 VARIANT	
 OF	
 IMAS,	
 THE	
 INDIVIDUAL	
 MOBILE	
 AGENT	
 SYSTEM).	
 	

THE	
 MOBILE	
 AGENT	
 SYSTEM	
 REFERRED	
 TO	
 AS	
 POGO07	
 IS	
 A	
 VARIANT	
 OF	
 THE	
 STANDALONE	
 MOBILE	
 AGENTS	

SYSTEM,	
 FOR	
 USE	
 ON	
 A	
 SINGLE	
 PLATFORM	
 THAT	
 DURING	
 OPERATION	
 IS	
 NOT	
 NECESSARILY	
 COMMUNICATING	

WITH	
 OTHER	
 AGENT	
 PLATFORMS.	
 TWO	
 AGENTS	
 WERE	
 ADDED:	
 THE	
 LEGACI	
 CA,	
 WHICH	
 RECEIVED	
 METABOLIC	

RATE	
 AND	
 CONSUMABLES	
 DATA	
 FROM	
 THE	
 LEGACI	
 PROGRAM	
 IMPLEMENTED	
 IN	
 EXCEL,	
 AND	
 THE	
 MEDICAL	

ASSISTANT	
 WORKFLOW	
 AGENT,	
 WHICH	
 INTERPRETED	
 THE	
 DATA,	
 TRANSMITTED	
 ALERTS	
 TO	
 THE	
 CREW	
 MEMBER	

(VIA	
 THE	
 DIALOG	
 AGENT),	
 AND	
 RESPONDED	
 TO	
 THE	
 CREW	
 MEMBERS	
 REQUESTS	
 FOR	
 STATUS	
 INFORMATION.	
 	

LEGACI	
 RECEIVED	
 TELEMETRY	
 DATA	
 FROM	
 THE	
 PRESSURIZED	
 SPACESUIT	
 LIFE	
 SUPPORT	
 SYSTEM	
 AND	

BIOSENSORS	
 WORN	
 BY	
 THE	
 ASTRONAUT	
 IN	
 THE	
 PARTIAL	
 GRAVITY	
 SIMULATOR	
 (POGO)	
 AT	
 JOHNSON	
 SPACE	

CENTER.	
 ...	
 49	

FIGURE	
 21.	
 ORBITAL	
 COMMUNICATIONS	
 ADAPTER	
 (OCA)	
 MANAGEMENT	
 SYSTEM	
 (OCAMS),	
 REVISION	
 4	

WORKFLOW	
 SYSTEM	
 FOR	
 ISS	
 FILE	
 COMMUNICATIONS.	
 GREEN	
 CIRCLES	
 ARE	
 AGENTS;	
 BLUE	
 RECTANGLES	
 ARE	

COMPONENTS	
 (E.G.,	
 EFN	
 FLIGHT	
 NOTE	
 SYSTEM,	
 MICROSOFT	
 WORD,	
 NOMAD	
 EMAIL,	
 SWRDFSH	
 FTP).	
 R3	

DEPLOYED	
 IN	
 EARLY	
 2010	
 AUTOMATES	
 MIRRORING,	
 ARCHIVING,	
 LOGGING,	
 DELIVERY	
 AND	
 NOTIFICATION	
 OF	

FILES	
 TRANSFERRED	
 BETWEEN	
 ISS	
 CREW	
 AND	
 GROUND	
 SUPPORT.	
 R4	
 WILL	
 AUTOMATE	
 UPLINK	
 AND	
 DOWNLINK	

USING	
 SWRDFSH;	
 GROUND	
 SUPPORT	
 TEAMS	
 WILL	
 MAKE	
 REQUESTS	
 TO	
 OCAMS	
 THROUGH	
 FLIGHT	
 NOTES	
 AND	

EMAIL;	
 FILES	
 ARE	
 USUALLY	
 TRANSFERRED	
 USING	
 DROP-­‐BOXES	
 (DEDICATED	
 FOLDERS	
 IN	
 JSC	
 MCC	
 AND	

ONBOARD	
 THE	
 ISS).	
 ESTIMATED	
 80%	
 OF	
 PREVIOUS	
 24-­‐7	
 MCC	
 BACKROOM	
 OFFICER	
 POSITION	
 IS	
 AUTOMATED.	

THIS	
 ARCHITECTURE	
 USES	
 THE	
 COLLABORATIVE	
 INFRASTRUCTURE	
 FOR	
 DATA	
 TRANSFER	
 ACROSS	
 MULTIPLE	

NETWORK	
 WITH	
 DIFFERENT	
 SECURITY	
 SYSTEMS	
 (SEE	
 GLOSSARY).	
 IN	
 A	
 TYPICAL	
 CONFIGURATION,	
 AGENTS	
 ARE	

NETWORKED	
 OVER	
 TWO	
 MAS	
 (FLIGHT	
 CONTROLLER)	
 PLATFORMS,	
 TWO	
 OCA	
 CLIENTS	
 NETWORKED	
 TO	
 THE	
 ISS,	

AND	
 THE	
 MIRRORLAN	
 STAGING	
 MACHINE	
 FOR	
 CREATING	
 THE	
 MIRRORED	
 FILE	
 SYSTEM.	
 	
 50	

FIGURE	
 22.	
 IDENTIFYING	
 THE	
 SYSTEM	
 UNDER	
 CONTROL	
 AND	
 HOW	
 IT	
 FITS	
 IN	
 THE	
 OPERATING	
 ENVIRONMENT.	
 	
 61	

Clancey et al.: LSS Study: Open Architecture

	
 1

1 Executive	
 Summary	

This report is part of an overarching Lunar Surface Systems (LSS) Software Architecture
Trade Study that identifies candidate architectures for the key software that will be used
for each LSS Element.1 One goal is to estimate the level of effort and cost required for
software development relative to architectural features and system capabilities.

The report systematically analyzes data from the Mobile Agents Project, funded by
NASA’s Intelligent Systems and Human-Systems Integration Exploration Technology
Development Programs (2002-2006) with the objective of developing an open
architecture for an end-to-end exploration system focusing on science EVAs in which the
crew cannot rely on ground support.

The Mobile Agents Architecture (MAA) provides a common goal-oriented, model-based
interface that automates communication of information and commands in a distributed,
concurrent system of systems, consisting of a diversity of hardware and software systems
interacting in a mobile, distributed environment. The objective of this report is to use the
engineering data from the sequence of field experiments to recommend informative
metrics for software open architecture. This report also provides the groundwork for a
Phase 2 interoperability trade study using prescribed workflows in EVA scenarios
(Clancey and Lowry, 2012).

In particular, this study sought data to access whether the incremental buildup of an
exploration system for long-duration capabilities is facilitated by an open architecture
whose APIs are specifically designed to facilitate integration of new components, and
thus minimize costs by reducing changes to the existing system and consequent rework.
The study shows the advantages of composite APIs that map conventional component
APIs (which provide access to the functional methods and data objects of components) to
a service-oriented language through which people and subsystems (including external
interfaces) communicate. For the Mobile Agents project, this service-oriented language is
in terms of messages about tasks (e.g., an EVA plan, astronauts, life support, tools such
as cameras, robotic assistants) and the external interfaces include voice commanding.
This kind of composite API effectively enables a diversity of hardware and software
components (including COTS) to provide task-oriented services to the overall exploration
system.

In the mature software architecture described here, called the Mobile Agent Architecture
(MAA) an open architecture consisting of a workflow backbone of services (“agents”)
and composite APIs enabled distributed, mobile agents to handle simultaneous goal-
oriented requests on a non-reliable network. This architecture was developed from field
experience with different existing hardware and software systems for both field science
and routine habitat operations. The key architectural lessons concern how distributed
mobile subsystems communicate, how task-level information and commands are

1 See Clancey et al. (2011) for a conference paper version of this report.

Clancey et al.: LSS Study: Open Architecture

	
 2

represented, how services operating on the surface communicate with remote support
teams, and how asynchronous services manage multiple, simultaneous requests.

This report also succinctly considers a related open-architecture developed at JPL that is
centered on goals as the external interface language and services. Goals are constraints on
state variables that are monitored and actively maintained. The qualitative experience is
that a goal-oriented architecture is more robust than conventional control software, and
more conducive to adding new components (see Appendix V).

1.1 Field	
 Experiments	
 and	
 Data	
 Analyzed	

The field experiments for MAA were based on the methodology of empirical
requirements analysis, in which prototype exploration systems were used for assisting
crew members in simulated surface missions. In particular, the project explored how
existing components (robots, cameras, computers, biosensors, GPS devices, electric
power systems, databases, email, heads-up display, etc.) could be made into an integrated
exploration system that was easily reconfigured for different EVAs and settings.

The data analyzed in this report consists of four different kinds of configurations or
“product lines” comprising ten systems designed, developed, and tested by NASA Ames
and JSC from 2002 through 2008:

− “Automating	
 Capcom”	
 Configurations:	
 	

o DRATS02,	
 MDRS03,	
 MDRS04	
 (all	
 using	
 EVA	
 robotic	
 assistant)	

o MDRS05,	
 DRATS05	
 (Scout	
 vehicle),	
 CDS05(K9	
 &	
 Gromit	
 robots)	
 	

o DRATS06	
 (pressurized	
 suits,	
 JSC	
 ExPOC,	
 and	
 GeoPhone	
 Array)	

− “Power	
 Agents”	
 Configuration:	
 MDRS06	

− Metabolic	
 Advisor	
 Configuration:	
 POGO07	

− iMAS	
 Scientist’s	
 Field	
 Assistant:	
 MMAMA08	
 (HI,	
 NM,	
 Belize)	

Exploration system configurations can be viewed structurally in terms of hardware and
software components (e.g., a planning system) and integrative software (agents), and
functionally in terms of workflow “capabilities” provided to the astronaut crew. A
workflow capability, as the name implies, pertains to the flow of information requests,
commands, and work products, initiated by either people or software in the context of a
crew’s work activity. Workflow capabilities usually take the form of requests for
information that require data to be interpreted (e.g., how many hours will the batteries on
some device last given current draw and planned usage?) or operations for subsystems to
perform that require automated coordination of subsystems over time (e.g., “K9, inspect
the area around waypoint 5”). Workflow capabilities also include direct requests for data
readouts (“what is the current battery voltage?”) and primitive subsystem operations
(“Scout, turn on headlights”). Some functions require ongoing monitoring of sensor data
(“Tell me when the generator is off-line”).

Overall 134 workflow capabilities were developed for astronaut health monitoring,
system health monitoring, location tracking, human-robot coordination, plan

Clancey et al.: LSS Study: Open Architecture

	
 3

management, science data logging, voice command interface controls, and alert
management. The Mobile Agents systems were developed to illustrate typical
functionalities that may be useful to scientist-astronauts during EVAs in which real-time
communication with mission support is not possible due to time delay (Clancey 2004a;
b). Voice commanding capabilities were designed to assist creating documented EVA
products while flexibly following an EVA plan, keeping on route and schedule, and
remaining aware of logistic/safety constraints and limitations.

The sources of data analyzed include: code repositories; project reports, schedules, email,
and budgets; and expedition records. Analysis produced statistics about software
modification (e.g., direct reuse or number of lines of code added) and personnel effort
(e.g., size and distribution of teams; FTE for agents and integration only, not
subsystems). Statistics were charted to determine advantages of the open architecture for
phased development of LSS capabilities, such as adding robotic systems in the same
production line (e.g., MDRS05 added a second ERA to MDRS04), adding a new robotic
system by adapting existing software (e.g., Scout), and incorporating existing capabilities
for different purposes (e.g., creating PA06 from DRATS05). Productivity calculations
reflect the different kinds of work required for revising the system in these ways. In
particular, a distinction is made between: Reusing a task-level service (no change),
adding functionality to a service, and adapting a service for a different subsystem.

Analysis also examined the ability to reconfigure the exploration system for different
work contexts, such as adding new kinds of external systems (shifting among science
instruments, electric power systems, and life support systems) and directly using existing
services (e.g., email alerts) for new purposes or changing communication media (e.g.,
from email to HUD to voice loop) without modifying code. Cost for these changes was
estimated and correlated by counting workflow capabilities, thousands of source lines of
code (KSLOC), and programming time comparatively in a series of system
reconfigurations.

1.2 Analysis	
 Overview	

The analysis confirmed three primary hypotheses:

1. An	
 agent-­‐oriented	
 workflow	
 system	
 using	
 composite	
 APIs	
 enables	
 integrating	

components	
 (e.g.,	
 biomedical	
 algorithms,	
 robots,	
 databases)	
 without	
 modifying	

them.	

2. Cost/capability	
 is	
 not	
 increasing	
 as	
 new	
 capabilities	
 are	
 added.	

3. KSLOC/capability	
 is	
 not	
 increasing	
 as	
 new	
 capabilities	
 are	
 added.	
 	

Analysis showed that a workflow service backbone was established in the third year
(MDRS05) and was reused for subsequent configurations, ranging from 85% carryover
when entirely different robots and a planning system were incorporated to 100%
carryover when shifting from an EVA system to a habitat power monitoring system. At
the same time, in developing the workflow service backbone, nearly half of the APIs
were unchanged. Architecture changes focused on reconfiguring workflow services to
respond to interface requirements, rather than re-integration with subsystems. That is, the

Clancey et al.: LSS Study: Open Architecture

	
 4

data show that enhancement of workflow capabilities is often possible without modifying
existing systems and their APIs, in an open architecture in which integration occurs
through task-level communications.

Figure 1. Total KSLOC (thousands of lines of code) for each system configuration
(columns, broken into Workflow Backbone and Communication Agent parts) and
new KSLOC (for new or modified agents; shown as lines). Code for Communication
Agents dominates; they translate between service-oriented (task-level) messages and
subsystem APIs.

Furthermore, in the aggregate 80% of added KSLOC for system reconfigurations was for
task-level API translators (“communication agents”; CAs) to integrate new components
(Figure 1). But a relatively small amount was added for each configuration after the
architecture was mature. On average Workflow KSLOC was increased by 14% and CA
KSLOC by 13% for each reconfiguration.

Depending on the component, API translators for complex systems such as rovers might
require 20 KSLOC (1 FTE or more), while simple systems such as cameras might require
2 KSLOC (.1 FTE).

The ratio of total workflow KSLOC to the total system KSLOC (Figure 2) remained
surprisingly constant at 16%, which demonstrates that the amount of code required is
linear with the number of capabilities, and additions require only incremental changes to
affected workflow functions.

0.0	

20.0	

40.0	

60.0	

80.0	

100.0	

120.0	

M
DR
S0
4	

M
DR
S0
5	

DR
AT
S0
5	

CD
S0
5	

PA
06
	

IM
AS
06
	

DR
AT
S0
6	

PO
GO
07
	

iM
AS
08
	

K
SL
O
C	

Total	
 and	
 Added	
 KSLOC	
 for	
 Field	
 System	

ConVigurations	

TOTAL	
 CA	
 KSLOC	

TOTAL	
 WF	
 KSLOC	

Added	
 CA	
 KSLOC	

	
 Added	
 WF	
 KSLOC	

Clancey et al.: LSS Study: Open Architecture

	
 5

Figure 2. Percentage of KSLOC added to Communication Agents and Workflow
Agents for each configuration; Percentage of KSLOC Workflow Agents relative to
the system total KSLOC.

The series of exploration system experiments demonstrated efficiency in designing,
developing and testing new systems. The average (and median) DDT&E elapsed time per
configuration was 172 days with five programmers on average (varying from nine to
one). Programming effort varied from 3.4 FTE to less than one month FTE.

Figure 3. Additional KSLOC required per new capability (kind of information
request or command).

The three key productivity findings are: code added for each new workflow capability
trends downwards from 1.5 to less than 1 KSLOC (Figure 3); new capabilities/FTE
trends upwards from 10 to 20 (Figure 4); and KSLOC/FTE trends upwards from 15 to 20.

0%	

20%	

40%	

60%	

80%	

100%	

120%	

Percent	
 KSLOC	
 Added	
 and	
 WorkVlow	
 KSLOC	
 as	

Percent	
 of	
 Total	
 System	
 KSLOC	

%	
 Add	
 CA	

%	
 Add	
 WF	

WF	
 %	
 of	
 total	

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

Added	
 KSLOC/New	
 Capability	

Clancey et al.: LSS Study: Open Architecture

	
 6

These data show that size of the modifications and effort required are generally
predictable and constant, with addition of task-level APIs for new automated hardware
and software systems requiring more code and time. These data suggest that the overall
exploration system architecture is stable and new capabilities neither interfere with
existing capabilities nor require increasing complexity of interactions. Therefore, in
using an open architecture with APIs providing task-level services, we can treat
capabilities abstractly and make predictions at design time of the amount of code and
effort required to build or modify an exploration system configuration. Specifically, the
analysis predicts that each workflow capability added by an experienced team will
require 1.5 KSLOC or less and .07 FTE or less.

Figure 4. Number of new capabilities per Full-Time Equivalent effort (annualized
over development period).

Viewing the field configurations in the aggregate, 134 capabilities were developed with
13 FTE in total DDT&E time of about 4 years. The overall average of 10 new capabilities
per FTE closely fits the development efficiency of creating the mature architecture (2002-
2005), when 64% of the total system capabilities were developed with 70% of the total
FTE. Subsequent systems introduced relatively fewer new capabilities with increased
productivity (Figure 4). Effort for DRATS/CDS05 and DRATS06 reflects significantly
more complex robotic commanding for four different robotic systems.

These data show the upfront cost is relatively small given the functionality provided to
the crew, with direct reuse (at no cost) of code and functionalities in very different
settings. The upfront investment pays off as much smaller teams reused the existing
workflow backbone, making only incremental changes to introduce completely different
kinds of components (e.g., power and life support systems) with new kinds of support for
crew self-reliance and safety (e.g., providing status information and alerts relevant to
using resources during ongoing work activities).

0	

5	

10	

15	

20	

25	

30	

#	
 New	
 Capabilities/FTE	

Clancey et al.: LSS Study: Open Architecture

	
 7

1.3 Conclusions	
 and	
 Recommendations	

An open software architecture enables adding, upgrading and swapping hardware and
software components in an exploration system. From the perspective of LSS and human
space exploration more broadly, the objective is to support upgrading and incorporating
new elements (e.g., vehicles, robots, instruments, habitat modules), allowing for new
forms of automation, migration and changing distribution of mission support functions,
as well as new and more complex simultaneous distributed operations (Rader, 2008).
This objective is often referred to in the context of “growth potential” and “incremental
buildup,” emphasizing technology upgrades. After analyzing a series of ten
systematically developed surface systems that integrated a variety of hardware and
software, we found evidence that incremental buildup of an exploration system for long-
duration capabilities is facilitated by an open architecture with appropriate-level APIs,
specifically designed to facilitate integration of new components, and this minimizes
costs by reducing changes to the existing system. Specifically, the study shows the
advantages of composite APIs that map or translate conventional component APIs (which
provide access to the functional methods and data objects of components) to the language
of the task (in terms of an EVA plan; names and relationships of people, places, and
robots; and features of work products). This kind of API effectively enables the
components (including COTS) to provide task-oriented services to the overall exploration
system.

2 Introduction	
 	

This report is part of an overarching Lunar Surface Systems (LSS) Software Architecture
Trade Study that identifies candidate architectures for the key software that will be used
for each LSS Element (e.g., space suit, vehicle, robot, habitat). The trade study examines
three main areas: minimalist architecture, EVA workflow, and real-time avionics and
middleware. One goal is to estimate the level of effort and cost required for software
development relative to architectural features and system capabilities.

We assume that regardless of destination and mission complexity, lifecycle cost is
important, especially as it relates to facilitating international partnership, but initial costs
will likely dominate decision-making. Appropriate trades might justify an upfront
software investment, but the budget is necessarily bounded. Using engineering data from
NASA’s research in Exploration Technology and Intelligent Systems may enable
generating cost data that can be used for budget planning.

This report focuses on an open architecture that provides a common goal-oriented,
model-based interface that enables interoperability of a diversity of hardware and
software systems whose dynamic interactions in a mobile, distributed environment create
an EVA workflow automation system. The report systematically analyzes data from the
Mobile Agents Project, funded by NASA’s Intelligent Systems and Human-Systems
Integration Exploration Technology Development Programs (2002-2006), with the
objective of developing an open architecture for an end-to-end exploration system
focusing on science EVAs. The objective of this report is to use the engineering data
from the sequence of field experiments to recommend informative metrics for software

Clancey et al.: LSS Study: Open Architecture

	
 8

Open Architecture, providing the groundwork for a Phase 2 interoperability trade study
using prescribed workflows in EVA scenarios.

2.1 Integrating	
 Components	
 by	
 Converting	
 them	
 into	
 Services	

Recent work in interoperability has suggested the advantages of a service-oriented
architecture, in which systems interact not by invoking each other directly or only
exchanging data, but by requesting an abstract function (service) to be accomplished. In
the agent-based open architecture described here, components (subsystems) are integrated
by converting them into services to the exploration system (for example, see Figure 14).

More specifically, the components are effectively converted into agents so they can
communicate in a common messaging scheme at the task level with other agents that
manage the workflow of information requests, alerts, and commands among people and
systems (referred to in this report as the “workflow backbone”). Essentially, a secondary
API called a Communication Agent (CA) acts in consort with the component’s API,
serving as a “wrapper” that “agentifies” the component.2

A CA must implement certain generic agent lifecycle methods so that it may be properly
controlled by the agent hosting environment: initialize, start, pause, resume, stop, and
reset. The other methods provided by the CA are oriented around the “speech acts” in
which requests and information are conveyed among agents and ultimately among the
subsystems that provide the services the agents require to accomplish their goals. Speech
acts specify the goals the agents must accomplish; for example, an astronaut might ask,
“Where is the next activity?” which an agent will answer by consulting the EVA plan and
its model of the astronaut’s current location and activity. An agent might pass on the
entire request or decompose it into parts that other agents are specialized to handle.

In the context of an EVA workflow system, the workflow backbone of agents will be
relatively static (e.g., an astronaut’s personal agent, the navigation assistant, the plan
assistant), while the attached external systems (e.g., robots, instruments, databases,
biosensors) will vary from one EVA to other. Dynamic reconfiguration for an EVA is
possible by including the external system in the network of communicating systems, such
that its presence makes new services available within a framework of existing EVA
capabilities. For example, the command “Scout, take a picture of Astronaut 2” would use
whatever camera is currently configured on Scout. Such systems are inherently robust by
handling interactions at the work domain level. For example, if the location of Astronaut
2 cannot be determined, an agent could ask the location, which might be provided by a
person or other system (e.g., “90 degrees at 20 meters from your current heading” or “at
the location of the last activity”). We discovered that natural language commanding,
which makes it easier for people to operate systems through voice, has the important side
effect of facilitating interoperability between subsystems as well.

2 Terms are further defined and explained in the Glossary, Appendix VI. For a more detailed explanation
distinguishing agents and services and comparison of the Mobile Agents SOA to related approaches, see
Appendix I.

Clancey et al.: LSS Study: Open Architecture

	
 9

In developing the agent-based workflow system studied here, changes were made based
on field experiments that used a variety of existing hardware and software systems for
both field science and routine habitat operations. The key architectural goals addressed:

1) How mobile agents find each other on the network (design shifted from “proxy
agents” with fixed network addresses to a centralized and finally to a distributed
directory service in the “Collaborative Infrastructure” [Clancey et al. 2010])

2) How speech acts are represented (shifted from a simple “object” with attribute to
a formalized SpeechAct object that generally followed the FIPA protocol to a
formal FIPA implementation in “Communication Acts”; see “FIPA” in Glossary).

3) How the agents communicate with the external world (e.g., remote science team)
and local astronauts not participating in the immediate work tasks (shifted from
one platform handling all transactions to including a habitat platform, “HabCom,”
that mediated between the mobile workflow agents and the science database, local
computer display interface, and external communications).

4) How asynchronous agents manage multiple, simultaneous requests (shifted from
strictly serial operation to managing tasks through specialized “plan assistants”).	
 	

In the mature software architecture described here, called the Mobile Agent Architecture
(MAA) these methods and representations permit distributed, mobile agents to handle
simultaneous goal-oriented requests on a non-reliable network.

2.2 Analysis	
 of	
 Field-­‐Tested	
 Workflow	
 Configurations	
 	

The study proceeds by synthesizing engineering data and lessons learned from field-
tested EVA-prototype configurations using an evolving Mobile Agent Architecture over
eight years (Appendix I and Appendix II). This section provides an overview to the field
experiments; the next section describes the different field configurations; subsequently
the data are analyzed to quantify the advantages of the architecture.

As explained below, the field experiments were research projects that explored the use of
agent-based system integration for directly assisting crew members in a simulated surface
mission. Put another way, the project explored how existing components (robots,
cameras, computers, biosensors, GPS devices, electric power systems, etc.) could be
made interoperable through a combination of agents, APIs, and voice commanding.

It is worth noting upfront that voice commanding is not just another interface modality,
which is interchangeable with a conventional tabular or graphic display. Rather by virtue
of the descriptive specificity of natural language and its on-the-spot availability, voice
commanding provides a distinct way of getting information and controlling systems.3 In
particular, the use of voice commanding led to the discovery that requiring systems to
respond to speech acts from astronauts provided a common, goal-oriented interface
(using a model-based language expressed in terms of the tasks, activities, and objects of

3 Natural language commanding can of course be provided by a visual computer interface in which one
types in text or builds sentences from menus, but it lacks the always-on, “in the air” access provided by a
speech interface.

Clancey et al.: LSS Study: Open Architecture

	
 10

the work domain) by which the EVA exploration system developers could integrate new
components to interact with existing systems. Put another way, the goal-oriented, model-
based language required for voice commanding serves as a layer of abstraction that unites
the diversity of hardware and software (implemented in different languages and using
different operating systems) that are located on distributed, mobile computer platforms.

The series of field experiments from 2002-2006 enabled exercising and measuring the
architecture’s capability for efficiently configuring new exploration systems. The data
analysis section evaluates a variety of hypotheses in terms of how software agents were
modified (e.g., direct reuse or number of lines of code added) and personnel effort (e.g.,
size and distribution of teams). These hypotheses relate to advantages of the open
architecture for phased development of LSS capabilities:

− Ability to incrementally add new capabilities that satisfy requirements for crew
self-reliance, safety, and productivity to an exploration system with existing
components:

o Ease of adding robotic systems in the same production line
o Ease of adding a new robotic system by adapting existing software
o Ease of incorporate existing capability for different purpose (e.g., voice

mail created from voice annotations)
− Ability to reconfigure the exploration system for a different work context:

o Ability to add new kinds external systems (e.g., science instruments,
electric power systems, life support systems & biosensors)

o Ability to directly use existing services without changing subsystems (e.g.,
email alerts)

Cost for these changes is estimated and correlated by counting functionalities (workflow
capabilities), source lines of code, and programming time comparatively in a series of
system reconfigurations.

Evaluation of an architecture must be with respect to operational requirements that
require components to interact; otherwise the architecture with the lowest cost with
simplest incremental buildup is trivially a system with components that can’t interact. In
particular, consideration of workflow functionalities provides a way of assessing the
power and affordability of an architecture. A proper trade study would compare an
agent-based architecture to other open architectures that provide workflow
communications (i.e., command and information exchange services). In the absence of
comparative data, this report focuses on describing the functionalities developed and
using them to illustrate how the agent-based architecture is designed and operates. The
available data, outlined above, enables quantifying the amount of code, the reuse of code,
and some extent the required effort for creating workflow capabilities.

Each field test configuration implemented an integrated collection of automated
capabilities, such as biomedical monitoring, robot and instrument control, habitat system
monitoring, and science data collection. These capabilities are described in the section
that details the field configurations (Table 1). The capabilities address typical operational

Clancey et al.: LSS Study: Open Architecture

	
 11

requirements pertaining to productivity, crew safety, and crew self-reliance. Security is
not addressed in these field tests, however it is a key requirement of OCAMS (Figure 21;
Clancey et al. 2008), a mission operations system using the MAA with the addition of the
Collaborative Infrastructure.

3 Description	
 of	
 System	
 Configurations	
 	
 and	
 Data	
 Analyzed	
 	

The data analyzed in this report consists of four different kinds of configurations or
“product lines” comprising ten systems designed, developed, and tested by NASA Ames
and JSC from 2002 through 2008:

− “Automating Capcom” Configurations:
o DRATS 2002, MDRS 2003, 2004 (all using EVA robotic assistant)
o MDRS 2005, DRATS05 (Scout vehicle), CDS05 (K9 and Gromit robots)
o DRATS 2006 (pressurized suits, JSC ExPOC, and GeoPhone Array)

− “Power Agents” Configuration: MDRS 2006
− Metabolic Advisor Configuration: POGO 2007
− iMAS Scientist’s Field Assistant: MMAMA 2008 (HI, NM, BZE)

	

The “automating Capcom” configurations presumed an EVA scenario with time-delay
that required astronaut self-sufficiency in carrying out EVA plans according to location
and duration, storing correlated data (e.g., associating photographs with EVA activity,
astronaut, location, time, and related data such as a voice annotation), and monitoring
personal health, life support, and other system resources. These capabilities are described
further below.
	

The software developed for the Automating Capcom product line includes the
Collaborative Decision Systems (CDS) Project, funded by ESMD (spacecraft autonomy)
and SMD (autonomy and operations). This field configuration, directly adapted from
MDRS05 and using the same code base as DRATS05, was designed to demonstrate that
spacecraft autonomy may require human operations, and there is therefore a place for an
agent system that integrates spacecraft with databases and human work flow. The report
concluded:
	

[CDS	
 2005]	
 focused	
 on	
 pragmatic	
 ways	
 of	
 combining	
 autonomy	
 with	
 human	

activities	
 and	
 capabilities.	
 	
 One	
 perspective	
 is	
 that	
 there	
 will	
 always	
 be	
 a	

combination	
 of	
 automated	
 and	
 human-­‐controlled	
 operations,	
 through	

interfaces	
 for	
 local	
 astronauts	
 in	
 the	
 habitat	
 or	
 remote	
 mission	
 support	

teams.	
 Thus,	
 one	
 should	
 not	
 focus	
 on	
 the	
 particular	
 aspects	
 that	
 we	
 have	

automated	
 or	
 require	
 operator	
 intervention.	
 	
 Rather,	
 our	
 point	
 is	
 to	
 define	
 a	

simple	
 example	
 of	
 such	
 a	
 combination	
 and	
 how	
 it	
 might	
 be	
 implemented	

using	
 a	
 variety	
 of	
 planning,	
 voice-­‐commanding,	
 and	
 visualizing	
 systems.	

(Pedersen,	
 et	
 al.,	
 2006)	

	

Three quite different EVA system configurations were directly adapted from the 2005
configurations for getting information about a habitat power system (MDRS 2006), for

Clancey et al.: LSS Study: Open Architecture

	
 12

monitoring and understanding the relation of personal metabolic performance and life
support resources (POGO 2007; Human Research Program funding), and for stand-alone
data surveys on an EVA (iMAS 2008; Science Missions Directorate funding). These
systems are derived from each other chronologically described further below (Table	
 3).
Configuration diagrams appear in Appendix II.

The sources of data analyzed include:

− Code	
 repositories	
 (snapshot	
 as	
 of	
 completion	
 of	
 field	
 work)	

− Highlight	
 reports,	
 papers,	
 presentations,	
 and	
 diagrams	

− Project	
 schedules,	
 email,	
 budgets	

− Expedition	
 records	

	

Source code snapshots are available starting with MDRS2004; earlier systems have a
somewhat different architecture for distributed communications, which became mature in
MDRS05.4 The data about different system configurations and personnel have been
organized in spreadsheets, as outlined in Appendix IV.

3.1 Categorization	
 of	
 Workflow	
 Automation	
 Capabilities	
 	

Exploration system configurations can be viewed structurally in terms of components
(hardware, software) and agent software, and functionally in terms of workflow
capabilities (or functionalities) provided to the astronaut crew for controlling and
monitoring subsystems and EVA-related tasks, with alerting. Categories of system
workflow functions are shown in Table 1 with brief explanation of what is included. The
actual capabilities for each system are summarized in Appendix III.

Table 1. Categorization of EVA Workflow Automation Capabilities

4 Additional data are available for the OCA Management System (OCAMS) deployed at JSC in MCC
since July 2008 using the same agent-based systems integration architecture, but are not analyzed in this
report. OCAMS received the JSC Exceptional Software Award in June 2010.

 Hardware Integration Robots, cameras, sensors, instruments, displays, etc.

Software Integration

Software incorporated as separate components, e.g.,
planning system, Excel

 Astronaut Health Monitoring Available data and alerts, e.g., heart rate
 System Health Monitoring Computer, Power, & Life Support systems

Location Tracking

All aspects of logging, tracking, finding assets in the
field

 Human-Robot Coordination Commands involving robotic systems
 Plan Management Getting status and changing the work plan
 Science Data Logging All aspects of data collection during EVA
 Voice Mail Crew communication via recorded messages
 Alert Management Control of alert types and modality
 Voice Command Controls Control of voice interface

Clancey et al.: LSS Study: Open Architecture

	
 13

Workflow automation capabilities exemplified by those listed here facilitate crew self-
sufficiency, safety, and productivity; in turn these capabilities are facilitated by a
software architecture that facilitates communications between subsystems in the language
of the task domain (Section 2.1). The capabilities of the workflow automation are
demonstrated here qualitatively, through the descriptions of the system configurations.

It should be noted that the systems being analyzed were developed to illustrate typical
functionalities that are useful to scientist-astronauts during EVAs in which real-time
communication with mission support is not possible due to time delay. The voice
commanding capabilities were designed especially for: 1) creating documented EVA
products, 2) by executing the EVA plan, keeping it on route and schedule, 3) while
remaining aware of logistic/safety constraints and limitations.

The MAA research objective focused on developing and demonstrating an open software
architecture that enables workflow automation with COTS components (e.g., a camera,
spreadsheet software) and previously developed exploration system components (e.g., the
K9 rover). The systems were developed to experimentally test under authentic
exploration conditions whether people would find it advantageous to make requests for
information and actions in natural language (i.e., as speech acts5) using voice
commanding. Hence the system configurations focus on developing a range of useful
capabilities with a range of existing hardware and software components, rather than
creating a complete, recommended configuration and capabilities.

All capabilities were introduced based on direct, empirical experience with field
scientists, our experience living in the simulation habitat (for Power Agents
configuration), and Apollo experience (for both science data collection capabilities and
POGO07, the metabolic rate advisor). For example the alerting capabilities focus on
obviously useful information (e.g., astronaut’s backpack computer battery is low; the
diesel generator has stopped charging the habitat’s batteries) and illustrate how different
kinds of information can be integrated from different sources for generating context-
sensitive alerts and advice (e.g., emergency walk back route advice that relates the
astronaut’s current location, metabolic rate, consumables remaining, and the terrain). By
contrast, other research and development efforts might focus on a particular subsystem,

5 Speech acts are utterances in the language of the task domain, occurring in everyday speech as well as a
semi-formal commanding language, with implicit assumptions about the desired response. Conventionally,
“Can you pass the salt?” is not an information request, but a command, “Please pass me the salt.”
Commanding a robot, “Go to Waypoint 2” might mean by a convention adopted by the crew, “…and wait
there until you are told to move again”). All commanding, whether by spoken language or a display menu
with formal operators and operands, involves implicit meanings known to designers and system operators.
The notion of speech acts becomes salient when developing a system for voice commanding workflow
operations, where goals and constraints are not necessarily explicit (however agents may ask for
clarification when necessary). As another example, “Associate voice note with the last image” means to
store “the voice note I just recorded” in the science database (accessed via the HabCom computer), linking
the voice note to “the last photograph downloaded from my camera” in the context of “me, my current
EVA activity, the current time, and this location.” To document this implicit character of communications
between people and among agents, the agent-based architecture described here packages messages between
the spoken language interface and agents using the Speech Act formalization of the FIPA standard.

Clancey et al.: LSS Study: Open Architecture

	
 14

for example to show how to monitor all safety rules and engineering constraints while
driving an unpressurized vehicle (e.g., Scout).

3.2 Exploration	
 System	
 Component	
 Configurations	
 and	
 Product	
 Line	
 Relations	

Table 2 provides an overview of the EVA system configurations according to number of
computer platforms running workflow agents, number of functionalities (as categorized
by Table 1), robotic systems included, and other integrated subsystems. For details about
subsystems, see Table 3, which also mentions how the architecture evolved.
Functionalities here are grouped by kind of request per subsystem; for example,
requesting the status of the life support scrubber, feedwater, or inlet temperature counts
as one capability. Other examples of a single capability are: being able to turn on or off a
system and to pair-wise associate voice notes, sample bags, images, and locations. Thus
in general a capability was realized as multiple grammatical forms and of course an
unlimited number of specific utterances naming particular objects, people, places,
activities, and times.

Table 2. Mobile Agent System Configurations
Systems are listed chronologically by field test; “agent platforms” are laptop computers
running agent systems with the Brahms Virtual Machine; Functions include all categories
of voice commands and alerts, see Table 1; external systems are any devices or software
with APIs communicating with agents, e.g., biosensors, cameras, email, RIALIST,
Xantrex inverter, including robotic systems; see Table 3 for further descriptions.

SYSTEM	
 FTE	
 #	
 Agent	

Platforms	

#	
 	

Func	

Robotic	
 Systems	
 (adapting	
 ERA	
 CA)	
 #	

External	

Systems	

ERA1	
 ERA2	
 SCOUT	

	

K9	
 Gromit	

DRATS02	
 2	
 1	
 3	
 X	
 	
 	
 	
 	
 4	

MDRS03	
 1.4	
 4	
 29	
 X	
 	
 	
 	
 	
 7	

MDRS04	
 2.8	
 4	
 53	
 X	
 	
 	
 	
 	
 10	

MDRS05	
 2.9	
 5	
 82	
 X	
 X	
 	
 	
 	
 13	

DRATS05	
 .9	
 4	
 77	
 	
 	
 X	
 	
 	
 14	

CDS05	
 .9	
 4	
 80	
 	
 	
 	
 X	
 X	
 11	

PA06	
 1.1	
 5	
 45	
 	
 	
 	
 	
 	
 10	

iMAS06	
 .1	
 1	
 51	
 	
 	
 	
 	
 	
 5	

DRATS06
	
 .7	

5	
 91	
 	
 	
 X	
 	
 	
 16	

POGO07	
 .3	
 1	
 63	
 	
 	
 	
 	
 	
 7	

iMAS08	
 .05	
 1	
 50	
 	
 	
 	
 	
 	
 5	

	

To make clearer how the systems were derived from each other, each has a “product line
code.” Thus the systems numbered “1” in Table 3 were developed sequentially in the
order shown, 1A was adapted to produce 1B, from which 1C was produced, etc. The
systems numbered “2” represent a substantially different configuration (i.e., integrating
habitat power systems instead of EVA robots and devices), but were nevertheless adapted
from the deemed mature MDRS05 architecture and specific agents in that configuration.

Clancey et al.: LSS Study: Open Architecture

	
 15

Specifically, in the second product line iMAS06 is identical to PA06, but configured for a
scientist working on an EVA off the wireless network. That is to say, all of the science
data logging, location tracking, and plan management capabilities (Table 1) developed
for MDRS05 are contained in the second product line, but are only meaningful to use in
the EVA context (with GPS and camera attached). Accordingly, in the Power Agents
configuration (with inverter and power channel monitors attached, but no GPS), one
could ask “Where am I?” and the system would indicate it is unable to determine your
location. And in the iMAS06 configuration one could ask “When did the generator come
on line?” and be told that no generator data is available. Because of the functional
decomposition of agents introduced in MDRS05, many modules are carried over
unchanged (e.g., from MDRS05 to PA06) and changes are almost always incremental.

To continue the description of product lines, number three, which is represented only by
DRATS06 (a collaboration with Frank Delgado, Susan Tourney, and Joe Kosmo from
JSC, Houston; see Clancey, et al. 2007) constitutes again a substantial change. It is
derived directly from CDS05 (thus contains all of DRATS05), but now includes
workflow agents running at a remote site (ExPOC in Building 30 at JSC, Houston),
which enabled a controller to use voice commands to control a geophone array
deployment device operated by the Scout rover. Integration with the rover and
pressurized suit audio system was much improved from DRATS05, enabling all of the
science collection functionalities from MDRS05 to be exercised successfully, with
additional capabilities to remotely control the rover (e.g., “Scout, go to waypoint 2”).6

Next, iMAS06 from the second product line was reconfigured to create POGO07,
providing life support and consumables alerting using data from metabolic rate algorithm,
which was itself integrated with a biosensor system and suit life support system. POGO
was used by an astronaut in a pressurized suit supported by a partial gravity harness. In
the harness none of the science collection capabilities are meaningful; instead only the
astronaut and system health functions are used. Once again, inherited voice commands
will be recognized, as the vocabulary grows incrementally, but without corresponding
subsystems (and their agents) attached, the system responds gracefully to the lack of data.

Finally, iMAS08, a practical system for gathering field geology data at lunar analog sites,
took POGO07 into the field, with science data collection functions improved (e.g., using
beeps rather than verbal confirmations and automatically making certain data associations
between photographs, location, and samples). The metabolic rate subsystem was omitted,
because the biosensors were unavailable and would be cumbersome for practical use. (An
offshoot of iMAS08, not described here, included a terrain modeling and EVA route
planning tool, whose data could be integrated with the metabolic rate information and
data about consumables, Johnson et al., 2009; Johnson, forthcoming).
	

6 See http://www.youtube.com/watch?v=fTTrFDR9I1I, which includes video excerpts from
NASA Public Affairs Office.

Clancey et al.: LSS Study: Open Architecture

	
 16

Table 3. Product line “inheritance” relations of MAA configurations.7

SYSTEM Product

Line
Code

Description and Explanation

DRATS02 1A Initial system build, single laptop platform, camera, biosensors, voice.
Agent communications represented as Brahms Objects. Includes “proxy
agents” for potentially queuing requests to agents on inaccessible
platforms.

MDRS03 1B Addition of an EVA Robotic Assistant (ERA), 2nd astronaut laptop, and
habitat computer (for HabCom crew member), i.e., four distributed
platforms. Agent communication uses KaOS with CORBA as transport
layer and directory service across network for multiple platforms.

MDRS04 1C First archived system; fully functional location and plan assistance. ERA
follows astronauts in canyon, automated video tracking. Agent
communication via KaOS/CORBA now uses FIPA SpeechAct envelope
with Brahms “Communication Acts” as payloads; centralized directory
service on mobile laptop (ATV) acceptable, but single point of failure.

MDRS05 1D 2nd ERA relay controlled by human operator; temperature probe;
dynamic reconfiguration of ERA roles during EVA. Personal agents for
astronauts and robots decomposed to create service-oriented “assistants”;
Plan Assistant enables agents to handle multiprocessing (simultaneous
open requests) through task list. Proxy Agents eliminated.

DRATS05 1E Scout rover is configured to be the ERA; heads-up display. Insufficient
testing time provided in field to complete integration.

CDS05 1E Two weeks after DRATS05: Same software package as DRATS05 with
bugs fixed. EVA system incorporates Gromit and K9 by adapting ERA
agent; one astronaut, no HUD; HabCom interacts with EUROPA to
control K9 via agent architecture.

PA06 2A “Power Agents”; no robots; all inside MDRS habitat; completely new
functionality in monitoring electric power system, including generator,
batteries, solar panels. Voice mail implemented during two-week shake
down test; configuration retains all science data collection and EVA
management capabilities. Introduces sound beeps to provide
confirmation for certain routine commands.

iMAS06 2A Same software as PA06, but configured for one laptop operating in
standalone (off-network) mode, for use by field scientist.

DRATS06

3 Reconfiguration of DRATS/CDS05 to enable second commanding
console off-site (JSC’s Exploration Planning & Operations Center,
ExPOC); automated control of geophone deployment from Houston.
Voice commanding by crew in pressurized suits with special
microphones. Demonstrated autonomous driving of Scout (“Go to
waypoint” “Follow astronaut one”).

POGO07 2B Based on iMAS06; integrates with Metabolic Algorithm (Excel VBA)
connected to biosensors in pressurized suit during partial-gravity
experiments. Language grammar rebuilt from scratch to be more

7 Reports and video highlights are available for MDRS and DRATS field tests:
http://homepage.mac.com/WJClancey/%7EWJClancey/WJCMarsSociety.html

Clancey et al.: LSS Study: Open Architecture

	
 17

compact, enabling much faster compilation.
iMAS08 2C Based on POGO07, with more automated science data logging; used in

practical settings by geologists in Hi and NM and by divers with scuba
gear (Belize).

To summarize, the product line relationships are of different types: Incremental
components and functionalities (1A -> 1E; 2A -> 2C), conversion to a different setting
and kind of functionality (1E -> 2A), identical software packages with different platforms
and components included (1E, 2A), major reconfigurations (1E -> 3). These different
relationships require fairly detailed analysis to understand productivity calculations (e.g.,
KSLOC/FTE) because the work required to transition the system from one configuration
to another is qualitatively different. In particular, a distinction must be made between:
Reusing an agent (no change), adding functionality to an agent, and adapting the agent
for a different subsystem (e.g., rewriting the ERA CA twice, for use by K9 and Gromit).
On the other hand, Table 3 reveals an architecture of great flexibility, particularly when
one considers that the programming time per system configuration (developing agents
and APIs) varied between less than 1 FTE and 3 FTEs, and often four or five distinct
project teams at NASA Ames and JSC were collaborating. After the architecture reached
maturity with MDRS05, new configurations were built in 3 to 5 months by 5 to 7 part-
time programmers and two system designer/managers.

4 Analysis	
 of	
 Field	
 Configuration	
 and	
 DDT&E	
 Data	
 	

The data (outlined in Appendix IV) has been analyzed to reveal and explain patterns to
extract architectural features that were advantageous for reconfiguration into new systems
with increasing workflow assistance capabilities. The objective was to quantify the
advantages of an open architecture promoting interoperability for DDT&E when building
an agent-oriented workflow system that facilitated crew self-reliance, safety, and
productivity. The three primary hypotheses are:

1. The	
 agent-­‐oriented	
 workflow	
 system	
 enables	
 integrating	
 components	
 	
 (e.g.,	

biomedical	
 algorithms,	
 robots,	
 databases)	
 without	
 redesigning	
 them:	

Workflow	
 agents,	
 in	
 consort	
 with	
 CAs	
 using	
 SpeechActs,	
 provide	
 a	
 means	
 for	

new	
 components	
 to	
 work	
 together	
 with	
 existing	
 components	
 to	
 provide	
 task-­‐
oriented	
 services,	
 i.e.,	
 programming	
 effort	
 was	
 at	
 the	
 agent	
 level,	
 not	
 the	

applications.	

	

2. Cost/capability	
 is	
 not	
 increasing:	
 DDT&E	
 effort	
 for	
 constructing	
 	
 systems	
 in	

new	
 contexts	
 (Power	
 Agents	
 and	
 POGO)	
 is	
 at	
 least	
 comparable	
 to	
 adding	

capabilities	
 in	
 the	
 mature	
 architecture	
 (MDRS05),	
 involving	
 effectively	
 no	

effort	
 to	
 modify	
 the	
 pre-­‐existing	
 capabilities,	
 i.e.,	
 cost	
 is	
 incrementally	

proportional	
 to	
 number	
 of	
 added	
 capabilities.	
 	
 	

3. KSLOC/capability	
 is	
 not	
 increasing:	
 Making	
 a	
 system	
 more	
 complex	
 in	
 terms	

of	
 number	
 of	
 capabilities	
 does	
 not	
 cause	
 an	
 exponential	
 increase	
 in	
 size	
 of	

code	
 because	
 capabilities	
 tend	
 to	
 involve	
 similar	
 numbers	
 of	
 component	

Clancey et al.: LSS Study: Open Architecture

	
 18

interactions	
 and	
 functionally	
 specialized	
 agents	
 provide	
 common	
 services,	
 so	

they	
 are	
 invoked	
 and	
 used	
 in	
 new	
 contexts	
 without	
 modification.	

4.1 Analysis	
 of	
 Changes	
 to	
 the	
 Agent	
 System	
 	

Figure 5 and Figure 6 show how the agents in the exploration system were modified for
each configuration. The percentage of the total size in thousands of lines of source code
(KSLOC) is categorized by code attributed to new, modified, and unchanged agents (for
workflow agents and communication agents respectively in the two figures). The
percentage of code in the configuration attributable to modified agents is further broken
into that part which was added and the part that was pre-existing (parts may have been
revised rather than simply carried over). The code added to communication agents is
broken out to show that portion that corresponds to the RIALIST CA (“dialog agent”).

Figure 5. Reuse and additions to workflow agents for each field configuration,
shown chronologically.

Figure 5 shows that a workflow agent backbone was established after MDRS05 (Figure
14) and was reused for subsequent configurations. Workflow agents were all restructured
in developing both MDRS04 and MDRS05 (all appear as “new”), but DRATS05
workflow agent code was about 85% carried over from MDRS05. CDS05 was identical
to the system used for DRATS05 because the systems were built as a single unit to
operate any combination of the three robots, Gromit, K9, and Scout. DRATS06
contained no new workflow agents, and about 20% of the workflow agent network

Clancey et al.: LSS Study: Open Architecture

	
 19

consisted of code added to existing agents. PA06 and POGO06, systems in entirely very
different settings, were similar to DRATS05 in requiring some new workflow agents for
new kinds of capabilities, but otherwise retained the workflow agent backbone. iMAS is
effectively a repackaging of an existing configuration for standalone use in the field, so
the only coding required was for revised capabilities in iMAS08, including a new “user
model” workflow agent to manage crew member preferences.

The analysis of the communication agent reuse (Figure 6) is similar to the workflow
agents, with some important differences. Although workflow agents were completely
restructured in developing MDRS05, nearly half of the communication agents were
unchanged. Thus the improvements focused on the workflow functional decomposition
of services to respond to speech acts, rather than the integration with the external
systems. This demonstrates how workflow automation using Speech Acts for
communication can be enhanced without requiring changes to existing systems or the
agents that mediate with existing systems.

Figure 6. Reuse and additions to communication agents for each field configuration,
shown chronologically. Modified agents are broken into percentage of the module
that is added and portion carried over (perhaps edited). (Source code data begins
with MDRS04, so all agents are categorized as “new,” despite carryover from DRATS02
and MDRS03.)

On the other hand, for CDS05 no workflow agent changes were required, but more than
20% of the communication agent code was added to integrate with new external systems
(Gromit and K9 robots and Europa planner software). This demonstrates how the
workflow backbone can provide services to completely new components without
requiring changes to the workflow agents.

Clancey et al.: LSS Study: Open Architecture

	
 20

Power Agents (PA06) required both new kinds of capabilities and new external systems
to be integrated, so the changes to workflow and communication agents are similar. As
expected, creating iMAS06 required no changes to communication agents because there
are no added systems. DRATS06 on the other hand shows somewhat more modifications
to communication agents (specifically Scout’s version of the ERA CA), because of the
new capabilities provided by Scout’s Geophone deployment device, cameras, and
automated drive mode.

For iMAS08 small changes to three modules (11 lines added to the Compendium
database CAs 4684 lines; 9 lines to the Science Data Collector’s 1056 lines; and 24 lines
to the GPS CAs 571 lines) show up as a large proportion of modified code. Although
measuring internal edits requires analyzing the code directly, the actual increase in
module size per added capability is worth examining, as is shown subsequently.

It is useful to relate these proportional charts to the total code base (Figure 1; see
Executive Summary section). This chart reveals that the majority of the code was for CAs
(80% of added KSLOC), but as is evident in the preceding chart, a relatively small
amount is added for each configuration (starting with MDRS05, the average addition was
14% of workflow KSLOC and 13% of CA KSLOC). Figure 2 (see Executive Summary)
shows that the ratio of total workflow KSLOC to the total system KSLOC remained
surprisingly constant at 16%,.

4.2 Relation	
 of	
 Code	
 Size	
 to	
 Added	
 Capabilities	

Figure 3 relates the number of workflow capabilities added in creating a configuration to
the increase in the lines of code added to workflow and communication agents combined.
The data show about 1500 source lines of code were added on average for each workflow
capability (as defined by Section 3.1). Overall the chart shows a decrease over time to
about 1000 KSLOC/capability, perhaps because of increased stability (direct reuse) of
functions provided by the workflow backbone.

What accounts for the apparent extra work in creating DRATS/CDS05? To begin, it is
important to remember that DRATS05 was developed with the design configuration of
CDS05 in mind, so their data are combined here. In particular, all changes to the dialog
agent (RIALIST CA) appear in the source code for DRATS05, even though most were
only exercised in the CDS05 configuration.

DRATS/CDS05 includes improvements based on the MDRS05 experience, including
revisions to the HabCom console agent, GPS agent, and Network Assistant. But the most
important changes were to the ERA CA for handling Scout (1685 additional lines), and
new CAs for handling Gromit (8654 lines) and K9 (6475 lines). These additions for the
three new robots account for 65% of the additional code. At the same time, not many new
capabilities were introduced relative to what was added to previous reconfigurations
(Table 4). In this chart and what follows, DRATS02 and MDRS03 are treated as a single
combined effort, adding the 3 capabilities that were operational during DRATS02 field
tests and the 26 that were completed or added during MDRS03, and adding the effort data

Clancey et al.: LSS Study: Open Architecture

	
 21

(FTE) for the two periods. This is justified because the initial field test during
DRATS02—the first use of Mobile Agents in the field—was not sufficient to fix all of
the bugs and a great deal was learned about how to configure the power, GPS, voice
headset, and wireless systems to be robust under field conditions. Because KSLOC data
are missing for DRATS02 and MDRS03, that entry is missing from the KSLOC analysis
charts.

Table 4. Number of new capabilities for each system configuration.

SYSTEM
New

Capabilities
DRATS02/MDRS03 29
MDRS04 25
MDRS05 32
DRATS05 2
CDS05 6
PA06 21
DRATS06 9
POGO07 9
IMAS08 1

The two new capabilities introduced in DRATS05 were a heads-up display for displaying
procedures on command and creation of a dynamic map displaying where data was
collected (e.g., photographs) during the EVA. CDS05 included a handful of commands
for moving Gromit and commanding K9 to plan a path; independently, CDS05 also
introduced the capability to ask, “What is my current activity?” (to verify the personal
agent’s model of what the astronaut was doing).

As an example of a perhaps typical case that is easily circumscribed, POGO07 introduced
9 new capabilities with 4.5 KSLOC (.5 KSLOC/capability), which is broken down in
Table 5. One new workflow agent and one new CA were added, which with
corresponding modifications to the dialog agent. This ratio is clearly related to the
functionality of the external system. In this case the metabolic rate advisor is a complex
software program that provides a wide variety of data related to metabolic rate, life
support, power, and the spacesuit, which provide four kinds of information requests and
four kinds of threshold alerts, plus one integrative alert that a walkabout emergency has
occurred. Obviously, how one aggregates “capabilities” strongly affects the calculation;
however, the very different functions provided by DRATS06, PA06, and POGO07
suggest that the analysis is internally consistent.

The iMAS08 data provides a useful case because only one capability was added to
POGO07, namely to disable/enable automatically contextually associating data in the
science database during the EVA. As noted above, this change involved 44 new lines of
CA code plus 596 added to the Dialog Agent and a new workflow “user model” agent of
259 lines, which yields 859, or approximately 1 KSLOC for this capability. In this case
separating out handling of user preferences was desirable because two geologists were

Clancey et al.: LSS Study: Open Architecture

	
 22

using iMAS08 in the field (without networking), and differently configured systems were
desired.

Table 5. Source Lines of Code (KSLOC) added in POGO07 configuration.

Code Modifications for POGO07 KSLOC
New WF Agent 1.8
Added to existing WF Agents .1
New CA 1.2
Added to Dialog Agent (RIALIST CA) 1.4
Added to existing CA 0

TOTAL Added KSLOC 4.5

We can conclude that with experience, even when providing very different functions
relevant to crew health and safety, science data collection, and self-reliance (the power
system and metabolic rate advisors), the amount of code to provide new capabilities
dropped and averages about 1.5 KSLOC/capability (Figure 3, see Executive Summary).
Note that this does not include code changes that might have been required to component
APIs or changes to internal component applications, such as a robot’s operating system,
because the data are not available. We do know that most if not all changes occurred in
APIs because the commands provided by Gromit (e.g., move a certain distance at a
certain bearing) and K9 pre-existed integration into the workflow system. COTS
components (GPS, biosensors, Excel, One Channel system) were not modified at all,
including their APIs, for the integration process.

The extra effort worked for the DRATS/CDS05 configuration suggests that adding a
component such as a robot that provides a variety of different capabilities will require a
substantially more complex CA (e.g., compare integrating a camera that can only
download images to adding a robot that controls two kinds of cameras, drives
autonomously, follows people, etc.).

4.3 Relation	
 of	
 Voice	
 Commanding	
 Interface	
 to	
 Capabilities	

We should expect the amount of code added to the Dialog Agent (RIALIST CA) to be
proportional to the number of capabilities added. The data indicate each capability on
average required about 300 lines of code to be added to this communication agent, which
passed voice commands (as Speech Acts) to workflow agents for processing. The
iMAS08 single added one capability required 600 lines; other configurations such as
MDRS and DRATS with 20 to 30 capabilities averaged fewer lines. The iMAS08
configuration, whose source code is being compared here to POGO07, also included
improvements that do not appear as new capabilities. For example, the following
responses were included as being equivalent to “yes”: yeah, yup, sure, affirmative, okay,
concur. If we count this as another capability, then the ratio is .3, which is within
previous bounds; so the variation for iMAS08 can be ignored.

Clancey et al.: LSS Study: Open Architecture

	
 23

Figure 7. Source lines of code added to Dialog Agent (RIALIST Communication
Agent) for each Capability.
Relation of Communication Agent Code to Kind of Component
Figure 8 shows the lines of code for the communication agents for each of the indicate
hardware and software components. When CAs were modified for subsequent field
experiments, the chart indicates the initial and final sizes. The components are sorted
with hardware followed by software from left to right. The chart indicates that CA size
for hardware components varies greatly, as expected, with devices that are providing only
measurements (data) and/or status information (battery monitor, camera, GPS,
biosensors) have relatively small CAs, while robotic systems are relatively very large.
The average software system integrated required on average smaller CAs. Compendium
organizes and stores EVA data as graphic networks; Science Organizer organizes the data
into a semantic database, dynamically arranged into an Explorer-style browser on web
pages available on the Internet.

4.4 Productivity	
 Analysis	

This section examines the productivity (effort required) for adding workflow source code,
including both workflow and communication agents (but as before, excluding APIs
because those data were not archived). Although KSLOC data are complete and reliable,
the FTE data are estimates and subject to large errors, as indicated in
Figure 9.

0.0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

Added	
 Dialog	
 KSLOC/	
 New	
 Capability	

Clancey et al.: LSS Study: Open Architecture

	
 24

Figure 8. Source Lines of Code for Communication Agents for Integrating
Hardware and Software Components.

Figure 9. Ratio of Source Lines of Code for new or added to Workflow and
Communication Agents to Programmer Effort (Full-Time Equivalent). Effort is
annualized over the development period (i.e., effort during period * (number of period
days / 365 days)). Error bars indicate range for underestimating effort (“error low,”
deemed to be more likely) and overestimating (“error high,” unlikely).

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

K
SL
O
C	

Component	
 KSLOC	
 for	
 Communication	
 Agent	

INITIAL	

FINAL	

0	

5	

10	

15	

20	

25	

30	

K
SL
O
C	

KSLOC	
 /	
 FTE	

Error	
 Low	
 (200%	

FTE)	

New	
 +	
 Added	

KSLOC	
 /	
 FTE	

Error	
 High	
 (80%	

FTE)	

Clancey et al.: LSS Study: Open Architecture

	
 25

Figure 9 shows KSLOC/FTE. The error in FTE data as depicted in the graph cautions that
we not over-interpret the pattern, but it is nevertheless striking that the productivity for
adding capabilities was relatively constant (though perhaps improving) in the first three
configurations, as the architecture was maturing. As noted in discussing Figure 3, the
establishment of the workflow agent backbone required for an EVA exploration system
allowed development of new capabilities after MDRS05 to focus on the new CAs (if any)
and changes to the Dialog Agent to accommodate new voice commands.

MDRS04 KSLOC/FTE productivity is calculated as if it were the first year as if all
modules were created from scratch because it is the first year for which archived source
code exists. In some respects, this is not a problem because we know that the source code
from MDRS03 was significantly revised and reorganized. Also, in counting new
capabilities and KSLOC, we appropriately exclude those that were operational as a result
of MDRS03 development and testing. What is missing therefore are the KSLOC
productivity data from the two earlier iterations: DRATS02 in which the personal agent
of the astronaut (with science data collection, biosensor monitoring, and GPS tracking)
was developed, and MDRS03 in which the personal agent of the ERA (with capability to
take photographs, follow astronauts, and move on command) was developed.

The data indicate that KSLOC/FTE productivity was relatively constant for the EVA
exploration systems starting with MDRS04, increasing for the last configuration
(DRAT06). The apparently decreased productivity are not significant given the error
possible in the FTE data. However, a slight decrease is not surprising for
DRATS05/CDS05 because of the involvement of two new teams at NASA Ames who
developed Gromit and K9. We previously noted that added KSLOC per new capability
significantly increased for DRATS05/CDS05 (Figure 3) because of the complexity of the
three robotic systems that were integrated.

An obvious correlation is that the increased productivity for DRATS06 occurs because
the team added capabilities to the existing set of components developed (but not
sufficiently tested) for DRATS05. Including ExPOC at JSC in DRATS06 essentially
required only installing a copy of the HabCom system, which was already operating
remotely via the Internet in MDRS05 (and had been configured for the Meteor Crater).

Productivity increased in developing the PA06 system and iMAS08 (which included only
one new capability and no new components), but productivity for POGO07 is more
similar to the EVA exploration systems. Development of PA06 might have been
relatively productive because it is the only configuration in which all of the developers
belonged to one organization (the NASA Ames Brahms group). In contrast, developing
POGO07 involved a new collaboration with a NASA JSC team in the Human Research
Program, with considerable work to understand the Metabolic Rate Advisor and develop
its CA. As noted before, iMAS08 is counted as having only one new capability, so the
error bar in the KSLOC/FTE ratio is high.

An important trend to consider is that KSLOC added, number of new capabilities, and
development effort are dropping over time for new configurations, relative to the original

Clancey et al.: LSS Study: Open Architecture

	
 26

MDRS04 and MDRS05 systems (Figure 10). New systems and revisions after 2005 show
strong correlation between number of new capabilities and added lines of code as effort
required drops. This fits the claim that a workflow backbone was in place by MDRS05,
such that it and most CAs were reused (with only incremental modifications) for
subsequent configurations. What is striking is that these subsequent configurations
provided capabilities for commanding very different kinds of components. As previously
mentioned, DRATS/CDS05 required relatively more code for the number of new
capabilities, explained by the complexity of integrating with three new robotic systems.
However, the relation of KSLOC to FTE remained about the same, showing that the
programming team’s efficiency was relatively constant. One can also see again here (as
noted for Figure 3) that the amount of new code for MDRS04 and MDRS05 per
capability was relatively high compared to later systems, as would be expected because
that develop involved creating (and reconfiguring) the workflow backbone.

Figure 10. Additional Lines of Workflow and CA Code Compared to Number of
New Capabilities and FTE.

The relation of added KSLOC and number of new capabilities (Figure 3) suggests that
new capabilities/FTE should also be correlated (see Figure 4 in Executive Summary).
Indeed, we see a marked improvement in productivity over time, with dips for

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

4.0	

0.0	

5.0	

10.0	

15.0	

20.0	

25.0	

30.0	

35.0	

40.0	

45.0	

50.0	

Pe
rs
on
	
 Y
ea
rs
	
 (F
TE
)	

Ad
di
ti
on
al
	
 K
SL
O
C	

or
	
 C
ap
ab
ili
ti
es
	

Additional	
 KSLOC,	
 Number	
 of	
 New	
 Capabilities,	
 and	

FTE	
 per	
 Project	

New	
 +	
 Added	
 KSLOC	
 #	
 New	
 Capabilities	
 Annualized	
 FTE	

Clancey et al.: LSS Study: Open Architecture

	
 27

DRATS/CDS05 and DRATS06 possibly because of the number of people involved
integrating the new systems. Figure 4 includes the number of new capabilities and FTE
data from the combined DRATS02 and MDRS03 field seasons. It is not surprising that
both values are at or near the maximums, fitting the claim that these are proportional
(Figure 4) and upfront effort was relatively high.

The productivity of DRATS06, relative to the MDRS and DRATS/CDS configurations,
is noteworthy because it involved commanding SCOUT to deploy a new instrument and
to drive autonomously, and all commands could be initiated in the field by the crew, in
the habitat, or remotely at JSC (ExPOC). One could anticipate very different results if
adding new capabilities increased component and workflow interactions. Instead, the
workflow backbone and CA architecture is designed to make capabilities completely
modular, so adding new capabilities requires adding, but rarely revising code.

In summary, Figure 4 shows that after 2005 very different system configurations—
involving a habitat power system, remote operation of Scout and its instruments from
ExPOC, life support systems and metabolic rate interpretations—were provided with
increasing efficiency. Furthermore, the same systems developed for MDRS05 and then
PA06 were repackaged for iMAS08 to allow operation off the network in a standalone
mode (with downloading of data after return to the “habitat”)—with effectively no
change to the workflow automation. iMAS08 was field tested in lunar analog sites in
Hawaii and New Mexico, as well as used for surveying a coral reef (using a SCUBA
system with a voice loop8).

Some effort was made to quantify the “complexity” of the systems in terms of number of
interacting components and relate to productivity, such measures are always far courser
than the count of capabilities and KSLOC. However, one basic measure of interest is the
number of components integrated in the system (Figure 11).

The data show as expected that the number of components is increasing through the
development DRATS/CDS05, with a slight decrease for DRATS06 because of the
absence of the robots Gromit and K9 and Europa planning system. The configurations
developed for other purposes —PA06, POGO07, and iMAS08—naturally have a
different number of components and can be seen to be simpler. This pattern partly
showed in Figure 10, where we saw the number of capabilities added and FTE required
significantly decreased as well. One could argue that the reduced number of components
in these systems reduces the interactions that occur in the workflow (and among the
programmers working across organizations), perhaps accounting for the increased
productivity in adding capabilities (Figure 4).

8 Distortions in the articulation of SCUBA divers required that their voice commands were repeated by an
operator (HabCom) on a nearby boat; however, the computer-generated replies were directly heard and
responded to by the divers.

Clancey et al.: LSS Study: Open Architecture

	
 28

Figure 11. Number of Components (Hardware and Software) Integrated for
Workflow Interoperability in the Exploration Systems

5 Lessons	
 Learned	
 and	
 Recommendations	

This section summarizes the lessons learned and makes recommendations for an agent-
based open architecture that promotes interoperability. The fundamental conclusion from
the series of ten configurations developed using this architecture from 2002-2008 is that a
workflow service-oriented approach enables increasing the number of interacting
systems across diverse SW and HW components while maintaining or even improving
developers’ productivity. The systems integrated included software COTS (e.g.,
Microsoft Office), peripheral instruments and sensors (e.g., digital camera, pancam,
biosensors), automated “autonomous” machines (e.g., robotic assistant, robotic vehicle,
science rover), and automated monitoring and control software (e.g., pressurized suit life
support system; robot planning and control system; metabolic rate monitor). In addition,
crew interactions with these systems were all accomplished through voice commanding
using a spoken dialogue system (RIALIST, a research variant of the commercial
NUANCE program). The workflow interactions demonstrated involved automated data
integration and commanding among components; feedback managed by the workflow
processes dynamically related state data and commanded the systems for goal-oriented
actions requested by the crew (e.g., having a vehicle or camera follow an astronaut on
EVA).

5.1 Review	
 of	
 Findings	
 Experimenting	
 with	
 an	
 Agent-­‐Based	
 Workflow	
 Architecture	
 	

We showed that basic support for crew self-sufficiency, safety, and productivity can be
provided by workflow automation, which is facilitated by interoperability that occurs in
the language of the task domain, rather than interactions between components in the

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

Number	
 of	
 System	
 Components	

Clancey et al.: LSS Study: Open Architecture

	
 29

programming language of the applications (data objects and methods) or simply via data
exchange standards and protocols. An important subsidiary claim that lies outside the
scope of this report is that enabling the crew to communicate in spoken language
increases crew self-reliance, safety, and productivity.

The language of the task domain is in terms of activities, named entities (including
places, people, devices, robotics, routes, etc.), dynamic goal-oriented relations (e.g.,
“associate” “follow” “tell me when…”), schedules, etc. The language is formalized
internally as Speech Acts according to the FIPA standard for agent communications. The
translation between these two levels is provided by an agent-based architecture in which
specialized “Communication Agents” mediate between component APIs and a relatively
stable backbone of workflow agents (e.g., see Figure 14).

Adding or replacing a component involves developing a CA for that component and
possibly making adjustments to the component’s API to expose operations desired for
workflow automation. When the workflow capabilities are already implemented,
incorporating the new component is handled by a Directory Service that allows agents to
find and refer to that component by name and physical location (geographic and network
address). Otherwise, adding new workflow capabilities involving human interaction
requires modifying the interface and the interface’s CA to appropriately receive new
kinds of requests and pass them to the appropriate workflow agent. In the preferred
architecture the interface recognizes and generates spoken language, but display menus,
button controls, and menu/touch screen interfaces may be also used to formulate requests
in the language of the task domain, and other interfaces (e.g., tones and lights) can be
used for communicating information. These interfaces could be integrated with additional
communication agents.

This report also showed that incremental buildup of exploration systems, assuming
workflow automation for reasons given above, is enhanced by an open architecture. In
terms of the agent-based approach, this means that workflow agents can be practically
modified to communicate with new or revised CAs and provide additional workflow
services in an incremental manner. Put another way, if agent-based workflow automation
were adopted to provide interoperability as described above, but modifying this
automation were too complex, than the architecture would not be practically open to
modification and make incremental building too costly.

In actuality, the data showed that the agent-based approach, effectively converting
components into agents by enabling them to provide services (through CAs) at the level
of the task domain, provides a practical open architecture. Perhaps the best example is
the reconfiguration for DRATS/CDS05 in which three robotic systems and a planning
tool were added to the exploration system (totaling 17 hardware and software
components), involving a 25% increase in the number of workflow capabilities (from 32
to 40). The source lines of code (KSLOC) added per capability were significantly higher
than in the mature architecture that was being revised (MDRS05), explained by the
complexity of the CAs required for the robotic and planning systems (relative to past
experience in adding primarily passive instruments). The number of capabilities added

Clancey et al.: LSS Study: Open Architecture

	
 30

per FTE also dropped slightly. However, the KSLOC/FTE was similar to previous
experience, showing that the team encountered no design or coding difficulties—the
work was restricted to managing the translation between the components and the
workflow system, not in modifying the workflow backbone to accommodate the new
components. This example demonstrates the advantage of an agent-based workflow
backbone architecture, with component systems not interacting with each other directly
(as in many object-oriented systems promoted by CORBA), but through agents that
providing services required by the crew. Again, notably these services are internally
provided and communicated in the language of the crew’s work domain, not the objects
and methods of the components exposed by their APIs.

5.2 Advantages	
 of	
 the	
 Information	
 Exchange	
 Services	
 Layer	

In summary, an agent-based workflow architecture including agents for translating
between component APIs and the language of the task domain provides an appropriate
level for plug-in/upgrade of components for both data and control integration. To make
this kind of interoperability explicit, it is recommended to add Information Exchange
(Workflow) Services to the C3I Architecture. Rather than having components interact
only (or primarily) through Data Exchange Services, data exchange is used by the
Communication Agents that translate between the language of the task domain the
component APIs. This means that components need only expose data and methods
required for workflow once, and the many-to-many mappings required by different
workflow capabilities are handled primarily by the workflow agents in gathering required
data and passing on parameterized Speech Acts to the CAs of the components involved
(illustrated by the diagrams in Appendix II). These Information Exchange Services are
built upon existing inter-process communication methods including CORBA and HTTP.

In contrast with methods for integration that require individual component developers to
learn and speak in a common language, an exploration systems architecture with
information exchange services enables the embedded components to be implemented in
different languages with different operating systems. The information exchange services
themselves use a common level of abstraction (workflow agents communicating via
Speech Acts) that the components do not use and their API developers did not need to
know. In this manner, both connectivity and information exchange operations are made
independent of the components, enabling robotic and life support systems, instruments,
planning and monitoring software, and the like to be developed without regard for how
interoperability will be managed. The only requirement is that the components provide
APIs to expose data objects and methods required to provide access to data and external
control.

The CA-API translation approach might be impractical if a great deal of work were
required to develop the CA for new components or workflow capabilities. In practice, the
data show that the amount of code required for a component CA is correlated with the
number of capabilities requiring that component (Figure 8). Robotic systems and
monitoring/controlling software can be controlled/configured by crew members and also
generate data (through the subsystems they control), thus providing a relatively large
number of possible workflow operations that can be operated (e.g., automatically

Clancey et al.: LSS Study: Open Architecture

	
 31

generating and storing data on a map provided to a remote science team as robots move).
Such systems generally have commands for configuring them (e.g., “take a picture of the
rock called Broccoli”) and alerting the crew when certain conditions occur (e.g., “tell me
when the habitat power usage exceeds 15 amps”). In contrast, instruments, such as
cameras, are capable of fewer operations, don’t have subsystems, and don’t include
monitoring functions, so they have relatively few workflow capabilities associated with
them and their CA is correspondingly smaller.

Other findings related to the efficiency of using this open architecture include (see
Section 4):

− Adding the SCOUT rover (DRATS05) was significantly less costly than
developing the original interface for the ERA (MDRS03).

− Adding the K9 and Gromit rovers with the Europa planning system required new
CAs of substantial complexity (CDS05). Productivity measured in KSLOC/FTE
was similar to previous efforts, but new capabilities/FTE dropped significantly,
which reflects the inefficiency inherent in a new collaboration with three different
subgroups.

− Correspondingly, productivity by both KSLOC and capability measures markedly
improved when the Brahms team developed a system that did not involve
programmers from other groups or organizations (PA06).

5.3 Advantages	
 for	
 Design,	
 Development,	
 Testing,	
 and	
 Evaluation	

The series of exploration system experiments demonstrated efficiency in designing,
developing and testing new systems. The average (and median) DDT&E elapsed time
was 172 days with five programmers on average (but varying from nine to one). Average
total programming effort (excluding two managers’ work on scenario design and project
coordination) was 1.4 FTE, varying from 3.4 FTE (DRATS02/MDRS03) to less than one
month FTE (iMAS08).

The findings from the system reconfigurations suggest that the agent-based workflow
architecture is advantageous because it limits and controls inter-team interactions
(coordination) required. The design process is strictly oriented to the workflow
capabilities being introduced—changes to the work activity scenario are related to new
workflow functions desired. In particular, the subgroups of the development team
correspond to the logical design levels:

I. Scenario designers and project managers
II. RIALIST (voice commanding) programmer
III/IV. Agent modelers/programmers (Workflow Agents = III; CA = IV)
V. API programmers for components/subsystems
VI. External system developers (e.g., robots).

Levels I-IV were co-located at Ames; Levels V/VI were at JSC or Ames depending on
the robotic or other external system. Coordination was most necessary and intensive for
relating adjacent levels (I-II, II-III, etc.).

Clancey et al.: LSS Study: Open Architecture

	
 32

For example, if an automated tool is introduced, the crew is provided with voice
commanding for turning on/off the tool, configuring its operation, directing how data be
configured in the ongoing EVA/science database, etc. After voice commands are agreed
upon, RIALIST’s grammar is modified accordingly, and Speech Acts are represented to
carry the requests from the RIALIST CA through the workflow backbone and/or directly
to component CAs, as necessary to process the request. If a new type of Speech Act is
involved, the programmer responsible for the component CA must write code for
reformulating the Speech Act in terms of the component’s API data objects and methods.
If the request involves a new kind of automated control or data being provided to the
crew, then the programmer responsible for the component API will likely need to modify
the API and possibly the device’s internal operating system (e.g., this occurred with the
Geophone array deployment device was added to Scout for DRATS06). In summary,
modifications required are predominantly modular and narrowly defined by the
representation of workflow automation as Speech Acts.

Regarding other DDT&E considerations, the architecture has advantages in enabling
scenario-based design (specifically, a simulation-to-implementation conversion
methodology, Clancey et al. 2008), human-centered design, distributed development
teams, and iterative development of partitioned functionalities.

For testing, the architecture provides for single-platform integration—each developer
runs the entire system of agents and components (usually as simulations or providing a
simulated data stream) on one computer. After these independent, component-level tests,
the team gathers for about a week of operational-readiness tests. Two to three weeks
later, the team goes to the field, usually engaging in about a week of integration tests,
shifting from wireless connectivity inside a habitat to experimental use in simulated
EVAs, with progressively more complex scenarios (e.g., at a greater distance for longer
periods).

Rapid reconfiguration enables redesign during field testing; the agent decomposition of
services facilitates logging data about speech recognition, network responsiveness,
message passing throughput and latency, etc. The modularity and generality of the agent
workflow backbone and CAs was especially well demonstrated by the introduction of a
voicemail capability during the MDRS06 field work. Essentially, the voice annotation
capability for describing science data, which included capabilities to record and replay
voice notes, was adapted to play a voice note not only on direct request but for a different
crew member at a prescribed time. This required introducing two new agents, the voice
mail client and server (Figure 18). The voice mail capability was designed by the team,
implemented by one person, and in operation within a few days—and these changes
occurred to the Power Agents configuration in the middle of the two-week field test.

5.4 Advantages	
 for	
 Reconfiguration	
 Efficiency	
 and	
 System	
 Size	

The three key ratios— amount of code added for each new workflow capability, new
capabilities/FTE, and KSLOC/FTE—show that size of the modifications and effort
required are generally predictable and constant (with addition of CAs for new automated

Clancey et al.: LSS Study: Open Architecture

	
 33

hardware and software systems requiring more code and time). These data suggest that
the workflow architecture is stable and new capabilities neither interfere with existing
capabilities nor require increasing complexity of interactions. Therefore, in using an
agent-based workflow architecture with Speech Act communications, we can treat
capabilities abstractly, and make predictions at design time of the amount of code and
effort required to build or modify an exploration system configuration.

Viewing the field configurations in the aggregate, 134 capabilities were developed with
13 FTE in total DDT&E time of about 4 years. The overall average of 10 new capabilities
per FTE closely fits the development efficiency of the workflow backbone (through
MDRS05, see Figure 4), when 64% of the capabilities were developed with 70% of the
total FTE. Subsequent systems introduced relatively fewer new capabilities with
increased productivity. Effort for DRATS/CDS05 and DRATS06 reflects significantly
more complex robotic commanding for four different robotic systems.

These data show perhaps an upfront cost that is itself rather small given the functionality
provided to the crew, with direct reuse (at no cost) of code and functionalities in very
different settings. The upfront investment pays off as much smaller teams reused the
existing backbone, making only incremental changes to introduce completely different
kinds of components (e.g., power and life support systems) with new kinds of support for
crew self-reliance and safety (typically here, providing status information and alerts
relevant to using resources during ongoing work activities).

On average, after the stable backbone was developed for MDRS05, each configuration
added about 13% to the code base (Figure 1), with 80% of the added code attributed to
component CAs. The ratio of total workflow KSLOC to the total system KSLOC
remained surprisingly constant at 16% (Figure 2), which is perhaps another way of
demonstrating that the amount of code required is linear with the number of capabilities
and additions require only incremental changes to affected agents.

5.5 Lessons	
 Learned	
 from	
 Field	
 Experiments	

The development of the workflow agents involved a substantial learning process through
trial and error in the field experiments, particularly during DRATS02, MDRS03, and
MDRS04. We found it necessary to explain to other DRATS participants that the Mobile
Agents system should be viewed as being more akin to a word processor than a
document; they were focused on particular capabilities (and gaffes) than the generality
and flexibility of the agent architecture to integrate and access/control a wide variety of
hardware and software. One observer of the inaugural trials of the prototype system
remarked, “Not ready for prime time,” suggesting that he viewed DRATS as an
opportunity to test systems, to demonstrate operational readiness, rather than to
experiment and learn.

The methodology of empirical requirements analysis employed during the Mobile Agents
project (Clancey et al., 2005) involved using the prototype system for authentic scientific
exploration (e.g., use by scientists in a new terrain that addressed their specialized
expertise and interests). During these experiments we frequently discovered the value of

Clancey et al.: LSS Study: Open Architecture

	
 34

additional workflow automation (e.g., during iMAS08 it became obvious that explorers
wanted to ask sometimes “Guide me to <location>”—receiving alerts thereafter to correct
course—rather than repeatedly asking for the distance and bearing to the desired
location). We recognized requirements and invented methods to make the wireless,
distributed agent communications more robust and to handle loss of communications
gracefully. And we made many improvements to the interaction between people and their
personal agents and robotic assistants to make commanding more reliable and simpler
(e.g., substituting a beep confirmation for non-critical requests; not having an agent speak
when you are speaking to someone else). We also discovered some complications that
will require future research and experimentation (e.g., how to avoid having an agent
speak to you when you are listening to someone else).

Some of the lessons learned about what services workflow agents should provide and
how they should be structured include:

− Use of a distributed directory service (CI; Clancey al. 2010) to deal with
unreliable wireless communication and to allow subsystems to be disabled and
restored in a running system configuration (a runtime form of “open
architecture”).

− Use of a workflow backbone consisting of individual personal agents for people
and robots, complemented by functional workflow agents for navigation,
planning, database management, communications (e.g., via email, GUI, voice
loop, voicemail), distinct from the Component CAs that interface with component
APIs provides great flexibility for reconfiguring components during an expedition
for different EVA requirements (e.g., the transformation of MDRS05 to
DRATS05 and CDS05; MDRS05 to PA06; PA06 to iMAS06, POGO07, and
iMAS08).

− Use of a web-based semantic database to consolidate data from different
sources for a common interplanetary repository (Berrios et al. 2007), using
persistent queuing and repeated transmission until acknowledgment of delivery
(fault tolerant if platform reboots).

− Experimentation with a variety of reconfigurable, mixed communication
methods for controlling and getting data from arbitrary systems: Voice (including
shared loudspeaker), menu-based GUI, audible tones, heads-up display of charts,
internet web pages, and email.

− Allowing alternative data-exchange services (e.g., SOAP, OAA) for
communications between CAs and component APIs.

− Providing methods for creating and relating different types of data for
different purposes (e.g., photograph files, GPS coordinates, time stamps,
biosensor and life support system telemetry, alert thresholds, voice recordings,
terrain maps).

5.6 Conclusion	

We showed that an agent-based architecture with task-level message passing (Speech
Acts) has measurable advantages for enabling workflow interoperability and efficiently

Clancey et al.: LSS Study: Open Architecture

	
 35

making incremental modifications. Ideally, this software architecture would be compared
in a trade study to alternatives that promote integration of arbitrary hardware and
software components. However, we do not know of any competing architecture for
which comparable field configurations have been developed, let alone with data
permitting comparison. The adoption this agent-based architecture by JSC Mission
Operations Directorate for workflow automation in Mission Control (OCAMS, Figure
21; Clancey et al. 2008) and its receipt of the JSC Exceptional Software Award in 2010
shows that the architecture is mature and useful for flight operations. Indeed, the
DRATS06 configuration with ExPOC at JSC showed that use of this architecture in LSS
field tests would enable immediate integration between remote and surface work
activities.

6 References	

Berrios, D. C. Sierhuis, M.. and Keller, R. M. 2007. Geospatial information integration

for science activity planning at the Mars Desert Research Station. In A. Scharl and K.
Tochtermann (eds.) The Geospatial Web: How Geobrowsers, Social Software and the
Web 2.0 are Shaping the Network Society. Springer-Verlag, London, pp. 131-140.

Bridges, C. P. and Vladimirova, T. 2011. Real-time agent middleware experiments on
java-based processors towards distributed satellite systems. IEEE Aerospace
Conference 2011 (IEEEAC'11), Big Sky, USA, paper #1639.

Clancey, W. J., Sachs, P., Sierhuis, M., & van Hoof, R. 1998. Brahms: Simulating
practice for work systems design. Int. J. Human-Computer Studies, 49, 831-865.

Clancey, W. J. 2002. “Simulating activities: Relating motives, deliberation, and attentive
coordination,” Cognitive Systems Research, 3, No. 3, 471-499.

Clancey, W. J. 2003. Principles for integrating Mars analog science, operations, and
technology research. Workshop on Analog Sites and Facilities for the Human
Exploration of the Moon and Mars, May 21-23, Colorado School of Mines, Golden,
CO.

Clancey, W. J. 2004. Automating Capcom: Pragmatic operations and technology research
for human exploration of Mars. In C. Cockell (ed.) Martian Expedition Planning, Vol.
107, AAS Science and Technology Series, pp. 411-430.

Clancey, W. J. 2004. Roles for agent assistants in field science: Understanding personal
projects and collaboration. IEEE Transactions on Systems, Man and Cybernetics, Part
C: Applications and Reviews, 34 (2) 125-137. Special Issue on Human-Robot
Interaction, May.

Clancey, W. J. and Lowry, M. 2012. Lunar surface systems study: Interoperability.
NASA Technical Publication 2012-216041.

Clancey, W. J., Sierhuis, M., Alena, R., Berrios, D., Dowding, J., Graham, J.S., Tyree,
K.S., Hirsh, R. L., Garry, W.B., Semple, A., Buckingham Shum, S.J., Shadbolt, N. and
Rupert, S. 2005. Automating CapCom using Mobile Agents and robotic assistants.
NASA Technical Publication 2007-214554. Washington, D.C. Available:
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070035904_2007036018.pdf

Clancey, W. J., Sierhuis, M., Alena, R., Dowding, J., Scott, M., van Hoof, R. 2006.
Power system agents: The Mobile Agents 2006 field test at MDRS. Mars Society
Annual Convention. Available:

Clancey et al.: LSS Study: Open Architecture

	
 36

 http://homepage.mac.com/wjclancey/%7EWJClancey/ClanceyMarsSoc2006.pdf
Clancey, W. J., Sierhuis, M., Dowding, J., Berrios, D., Scott, M., van Hoof, R., Delgado,

F., Tourney, S., & Kosmo, J. 2007. Mobile Agents integrate astronauts, rover, and
mission support In Desert-RATS mission simulation. Mars Society Annual Convention
(abstract). Los Angeles.

Clancey, W.J., Sierhuis, M., Seah, C., Buckley, C., Reynolds, F., Hall, T., & Scott, M.
2008. Multi-agent simulation to implementation: a practical engineering methodology
for designing space flight operations. In Engineering Societies in the Agents’ World
VIII. Lecture Notes in Artificial Intelligence (Artikis, A., O’Hare, G., Stathis, K., &
Vouros, G., Eds.), Vol. 4995, pp. 108–123. Heidelberg: Springer.

Clancey, W.J., Sierhuis, M., Nado, R., van Hoof, R. 2010. Collaborative infrastructure
conceptual overview. TM10-0001 NASA Ames Research Center, unpublished.

Clancey, W. J., Lowry, M., Nado, R., Sierhuis, M. 2011. Software productivity of field
experiments using the Mobile Agents open architecture with workflow
interoperability, IEEE Space Mission Challenges for Information Technology, August
2011, Palo Alto, pp. 85-92.

Dowding, J., Alena, R., Clancey, W. J., Graham, J., and Sierhuis, M. 2006. Are you
talking to Me? Dialogue systems supporting mixed teams of humans and robots. AAAI
Fall Symposium 2006: Aurally Informed Performance: Integrating Machine Listening
and Auditory Presentation in Robotic Systems, October, Washington, DC.

Hirsh, R., Graham, J., Tyree, K., Sierhuis, M., Clancey, W. J. 2006. Intelligence for
human-assistant planetary surface robots. In A. M. Howard and E. W. Tunstel (Eds.)
Intelligence for Space Robotics, pp. 261-279. Albuquerque: TSI Press.

Johnson, A. W., Newman, D. J., Waldie, J. M., Hoffman, J. A. 2009. An EVA mission
planning tool based on metabolic cost optimization, SAE 2009-01-2562, 39th
International Conference on Environmental Systems, Savannah, GA, 12-16 July 2009.

Johnson, A.W., An Integrated EVA Mission Planner for Future Planetary Exploration,
M.S. thesis, Massachusetts Institute of Technology, 2010 (forthcoming).

Kaskiris, C., Sierhuis, M., Clancey, W. J., van Hoof, R. 2005. Mobile Agents: A
ubiquitous multi-agent system for human-robotic planetary exploration. 2nd
International Symposium on Systems & Human Science, San Francisco.

Pedersen, L., Clancey, W. J., Sierhuis, M., Muscettola, N., Smith, D.E., Lees, D., Rajan,
K., Ramakrishnan, S., Tompkins, P., Vera, A., Dayton, T. 2006. Field demonstration
of surface human-robotic exploration activity. AAAI-06 Spring Symposium: Where no
human-robot team has gone before.

Rader, S. 2008. Constellation’s Command, Control, Communications, and Information
Architecture (C3I) Overview. Software & Avionics Integration Office (SAVIO)
PowerPoint presentation, December 11.

Sierhuis, M. 2001. Modeling and simulating work practice. Ph.D. thesis, Social Science
and Informatics (SWI), University of Amsterdam, The Netherlands.

Wooldridge, M. 2002. An Introduction to MultiAgent Systems. Chichester, UK: John
Wiley & Sons Ltd.

Clancey et al.: LSS Study: Open Architecture

	
 37

Appendix	
 I. Mobile	
 Agents	
 Software	
 Architecture	
 Overview	

This appendix provides more detail about the Mobile Agents Architecture. Workflow
software agents in the Mobile Agents field experiments were implemented in the Brahms
Language (Clancey et al., 1998; Sierhuis, 2001). To employ a common messaging
scheme each subsystem to be integrated is “agentified”—it is made to behave like a
Brahms workflow agent by “wrapping” it in a Brahms Communications Agent using the
Brahms JAVA API.

A subsystem is made into an agent (i.e., integrated) by defining SpeechActs (structured
messages) by which it will interact with other agents in the system. These SpeechActs
must implement any overarching defined protocol for communication among agents.
Thus, the API of the subsystem is extended by the Communication Agent to translate its
API calls to SpeechActs and vice versa. The subsystem API and Communication Agent
therefore work together (acting as the wrapping) to enable communication with any
workflow agent in the system:

{Workflow Agents} ⇔ Communication Agent ⇔ Subsystem API ⇔ Subsystem

Other agent-based languages, such as JADE with its FIPA-like structure using
SpeechActs, could be used instead of Brahms to implement the architecture described
here. However, Brahms effectively provides direct support for an open architecture with
interoperability via its SpeechAct and Communication Agent (CA) structures. Recent
work on service-oriented architectures (SOA) promotes a similar common messaging
approach for interoperability, in which subsystems provide “services.”9 The MAA
illustrates how to provide an SOA by converting subsystems into agents. The variety of
MAA configurations described in this study support the claim that agents are a good way
to implement a software service; in particular, to make a component into a service
“agentify” it.

The MAA provides an open architecture with interoperability by extending CORBA in a
way that raises it from the level of direct functional communications to the level of
services. In doing this, the MAA shifts system design from the level of software objects
and processes to the level of agents who communicate using the language of components
and operations in which people naturally describe their goals and activities (e.g., “Scout,
take a picture of Astronaut 2”; “Extend the duration of Surveying Worksite 2 by 10
minutes”). Here we provide a brief overview of how MAA extends CORBA.

In itself, CORBA only enables exposing internal system classes in one object-oriented
program to another program. This means that a program that uses exposed CORBA
classes needs to understand the internal functions of the system with which it interacts.
Every system has its own internal structure and functions, perhaps written in different
programming languages. For example, CORBA enables calling C++ object methods from

9 Mishkin’s backup slides “Command & Control” in Rader (2008) characterize “services” as how C3I
subsystems are “providing the endpoints of data flows” (p. 57). The term “services” appears throughout the
roadmap in reference to network, security, and common C2 functions.

Clancey et al.: LSS Study: Open Architecture

	
 38

Java and vice versa. So, provides language independence and also allows calling methods
in distributed systems with a delayed response (the notion of a “callback function”).
CORBA enables inter-process communication, by allowing indirect access to the local
storage of other processes.

In contrast with systems using CORBA and other agent-based middleware architectures
(for examples, see Bridges and Vladimirova [2011]), the composite APIs
(communication agents) approach does not expose a software process’ internal methods/
functions. It is based instead on a more abstract communication protocol that defines how
agents communicate messages to each other (their structure and language) and requires
agents determine how to respond to these messages (by providing data or causing actions
to occur). The benefit of the communication agent approach that programmers do not
need to provide CORBA object definitions to each developer of the integrated system and
which each developer must use. Instead, the team defines a communication message
protocol— in MAA this is the syntax and language of SpeechActs—and then the
developers may work independently.

Other systems use agents as a form of middleware to coordination operations, such as a
distributed satellite system (Bridges and Vladimirova 2011). The use of communication
agents in the MAA provides an open architecture, specifically facilitating interoperation
of legacy hardware and software systems of any type (e.g., contrast with the very
different problem of integrating a network of identical components designed for
formation flying or a sensor network). Consequently, the MAA would be a candidate
architecture for developing certain kinds of “virtual satellites”—“a	
 spatially distributed
group of satellites working as a single unit to perform a specific mission” (Bridges and
Vladimirova 2011), where the component satellites provide different services and/or
include legacy systems.

In summary, Brahms provides a language for creating agents and a communication
infrastructure for agents to interact. Actual transmission of messages occurs within and
through the Brahms Virtual Machine, the agent executive that runs on each platform
containing agents. In the MAA implementation used in the systems described in this
report, a system called KaOS with its central directory service enabled agents to
communicate across distributed platforms (e.g., see Figure 13 and Figure 14). KaOS
used CORBA to implement the actual message transmissions. Because agents
communicate using SpeechActs, system developers did not need to know about CORBA.
For example, the ERA’s API exposed its C++ methods using CORBA objects which the
ERA CA, written in Java, translated to and from SpeechActs used by agents throughout
the exploration system. A later generalization, called the Collaborative Infrastructure (CI)
used in ETDP A40 (“autonomy for operations”) projects and in OCAMS in ISS Mission
Control, handles this translation by providing a toolkit of C++ and Java libraries that
include SpeechActs for “agentifying” an external system (Clancey, et al. 2010).

Conventionally, an object has only internal properties and attributes. In contrast, agents
can have beliefs about other agents, enabling them to model the state of subsystems as
well as the world of people and the environment. Also, in the MAA agents are inherently

Clancey et al.: LSS Study: Open Architecture

	
 39

goal-directed through the Plan Assistants, which maintain an open task structure; object-
oriented design doesn’t in itself provide this functionality. In practice, every SpeechAct
is a task that the agent needs to execute; it is deleted when a response is returned. By
periodically polling and acting on open tasks and agent may select an alternative
approach for accomplishing a task as well as provide a warning to the requester that there
has been an delay (e.g., “Scout is not responding to your request to take a picture”).

In summary, the MAA enables arbitrary object-oriented systems to become agents not
just by exposing their methods, but rather by wrapping the software so communications
between subsystems occur using task-level messages (SpeechActs). The Communication
Agent (CA) is the Java program that straddles the programming domain of the subsystem
(its language, data, and functions) and the agent domain of the integrated workflow
system (represented in terms of the objects and activities of the EVA system). Using a
common language to integrate data and functionality follows the principles of “model-
based” programming, which enables relating semantically different data across hardware
and software systems (Kaskiris, et al. 2005). Consequently, designing an agent to
command a robot is handled in the same manner (at the same semantic level) as
designing an agent to associate a photograph with a map location and sample bag, based
on the voice command of an astronaut. This commanding language among agents and
subsystems is derived on a theory of “speech acts,” which in MAA follows the FIPA
protocol.

Using the MAA, components with appropriate APIs for means of communicating can be
configured into workflow systems, in which data, command, and information is
translated, transformed, interpreted, and conveyed to support the work people are doing.
For example, data flowing from sensors to monitoring software is directed by alerting
functions to output media so it is accessible within the work context (e.g., on a heads-up
display or on a voice loop). Figure 12 provides a broad overview of the hybrid
communications in the overall EVA exploration systems developed using the MAA.
Details are provided in subsequent sections, explaining in particular how
Communications Agents were created and used to produce a comprehensive workflow
system in a variety of contexts.

Clancey et al.: LSS Study: Open Architecture

	
 40

Figure 12. Mobile Agents Architecture Communications Schematic Relating People,
Agents, and External Systems. Voice commanding involves a hybrid of methods for
communicating, including spoken voice (microphone and headphone), radio, wireless
network, and software applications interfaces. Key: RST = Remote Science Team; ERA
= EVA Robotic Assistant. External systems are illustrative. Communication Agents use
APIs of external systems to interface with workflow agents.

Appendix	
 II. Field	
 System	
 Configuration	
 Diagrams	

This appendix provides a chronological sequence of configuration diagrams for the key
exploration systems used in the Mobile Agents field experiments (2002-2006). See
references for details.

Clancey et al.: LSS Study: Open Architecture

	
 41

Figure 13. Wireless Network Configuration for MDRS04 for Hardware and
Software Components. Centralized directory service (implemented in KaOS) enabled
agents to locate each other for requesting and providing data and commanding integrated
subsystems. MDRS05 configuration was similar with a second ERA Robot. Agent
details appear in
Figure 14.

Clancey et al.: LSS Study: Open Architecture

	
 42

Figure 14. MDRS05 EVA Exploration System Configuration. The EVA system
included two astronaut systems and two Robotic EVA systems (ERAs) as shown.
Remote Science Team was distributed in USA, Australia, and England (Clancey, et al.,
2005; Hirsh, et al. 2006). This configuration is the mature version of the four year
sequence: the general structure was introduced in DRATS02, distributed platforms
introduced in MDRS03, and the remote science team added for MDRS04. CDS05 and
DRATS05, which followed four months later, changed the robots and added additional
external software and platforms (see following figures). The green circles represent
agents that constitute the workflow backbone of the exploration system.

Clancey et al.: LSS Study: Open Architecture

	
 43

Figure 15. CDS05 EVA Exploration System Configuration. The field test involved
one astronaut and one K9 Rover; however, the architecture allowed EVA configurations
with multiple astronauts and rovers without changing the software. Goal-oriented
commanding of the K9 robot is enabled for both the astronaut (via verbal requests
mediated by agents, e.g., “Inspect rock named Broccoli when able”) and the rover
operator in the habitat (via direct manipulation of the visual display interface). Prepared
plans initiated by astronauts on EVA did not require rover operator intervention
(Pedersen, et al., 2006).

Clancey et al.: LSS Study: Open Architecture

	
 44

Figure 16. CDS05 Platform and Network Configuration. K9 and Gromit personal
agents are directly adapted from those used in the MDRS05 configuration (ERAs named
Boudreaux and Thibodeaux). (Slide provided by Rick Alena, NASA/Ames.)

Clancey et al.: LSS Study: Open Architecture

	
 45

Figure 17. Desert-RATS 2006 EVA Exploration System Configuration (Meteor
Crater, September 2006; Clancey et al. [2007]). Reconfiguration of MDRS05 to use
Scout rover instead of ERAs, using agents to control its Geophone deployment system
from the ExPOC agent platform in Houston. This configuration demonstrated how two
kernel support systems, one local (HabCom) and the other remote (ExPOC), could be
used to coordinate the flow of data, information, and goal-directed commands coming
from EVA astronauts, the surface habitat operator, and the remote ground support
operator.

Clancey et al.: LSS Study: Open Architecture

	
 46

Figure 18. Power System Configuration of Mars Desert Research Station (April
2006). Xantrex inverter contained a power management system for charging or drawing
from habitat backup battery system, receiving AC input from the diesel generator. DC
power was also provided by solar electric panels. The OneMeter Channel Meter system
instrumented these various sources to provide data to the Power Agent System (Figure
19).

Clancey et al.: LSS Study: Open Architecture

	
 47

Figure 19. Mobile Agents Power Agents Configuration. The crew and HabCom
systems include a “personal agent” for coordinating communications (command
processing, alerting, and dataflow) with crew members. The link to the Xantrex inverter (
Figure 18) provided setup information (e.g., error thresholds); real-time data came only
from the OneMeter system. (Graphic by van Hoof). In the tested configuration, four
copies of the Crew Member Support System were running on four different laptops,
initialized by the first name of the crew member. HabCom’s Voice Mail Server CA
receives voice mails from any crewmember and transmits them to the requested
crewmember (e.g., “Send a voice note to Bill at 1130 AM….”). See text below for
elaboration.

The power system in the Mars Desert Research Station during April 2006 consisted of an
external generator, batteries under the habitat, solar panels, and inverter. A previous crew
had previously deployed the OneMeter (Brand Electronics) electric metering system to
instrument the various power sources. The Mobile Agents configuration consisted of six
laptop computers. One networked computer (HabCom) was placed on the upper deck,
connected to loudspeakers. Four other laptops were paired with wireless (Bluetooth)
headsets that enabled crew members to interact with their Personal Agents from
anywhere in the hab (plus in one test as far as 10 meters outside). A sixth laptop
functioned as a telenet server for the OneMeter device, constituting the Power Support
System (for more details and graphics, see Clancey et al., 2006).

Clancey et al.: LSS Study: Open Architecture

	
 48

Referring to Figure 19, the Power Support System contains five new agents developed for
this configuration and setting:

1. Power Monitoring Agent—processes incoming data from the OneMeter system,
as well as answers queries about historical data.

2. Power Problem Resolution Assistant—Receives an error condition event from the
Power Monitoring Agent; determines the procedure to be followed to resolve the
problem; and sends that procedure back to the Power Monitoring Agent.

3. Procedure Assistant—Receives procedure relating to a fault mode for display to
HabCom operator.

4. One Meter Communication Agent (OneMeter CA)—serves as a telnet server. The
OneMeter connects to this telnet server every 15 minutes (a fixed property of the
OneMeter firmware) and sends the data for all channels. The agent parses and
packages the data and sends it to the Power Monitoring Agent. The data are also
stored in a MySQL database, which is used for responding to historical queries.

5. Xantrex Communication Agent (Xantrex CA)—on request, provides parameter
settings for the Xantrex Inverter to the Power Monitoring Agent.

6. Procedure GUI Communication Agent (Procedure CA)—interacts with the
HabCom GUI to display information relating to power problems, communicated
by the Procedure Assistant.

The key work is performed by the Power Monitoring Agent:

− Incoming Data: On every new reading received from the OneMeter
Communication Agent, evaluates the values for the channels using a set of rules.
The agent is designed to detect five anomalous events (e.g., impending shut-down
of inverter due to low battery voltage). If an anomalous event is found, the agent
sends the condition data to the Problem Resolution Agent for analysis. It forwards
the alert with the procedure to the Notification Assistant in the Habitat Central
Command System (HabCom laptop), which distributes the alert and procedure to
the Personal Agents of the crew and HabCom systems that have subscribed to this
alert. The procedure is extracted by these Personal Agents and sent to their
respective Procedure Assistants, which display the procedure on the associated
display. The alert message is also sent to the respective Dialog Agent for verbal
notification.

− Historical Queries: On receiving a power system inquiry from a crew member or
HabCom Personal Agent, sends the query to the OneMeter Communication
Agent, and returns the desired data (e.g., “what was the maximum habitat
amperage since yesterday?”).

The MDRS49 configuration also included the activity plan loading and tracking
functionality used for previous EVA simulations. In particular, crew members had daily
schedules that indicated what activity they would normally be doing at a given time.
Crew members could inquire about anyone’s current activity. This was part of a related
investigation of how a capability such as the Power Monitoring System might be
augmented by information about the crew’s activities.

Clancey et al.: LSS Study: Open Architecture

	
 49

As an example of repurposing existing agents, an ability to send voice mail among crew
members was designed and implemented during the two-week field experiment. The
voice message is recorded as a standard “voice note,” which is sent to the science data
assistant, from which it is passed to the data collector, the data manager, and then to the
Compendium database (this illustrates how communication agents may interact directly,
without the mediation of workflow agents). When a voice mail is sent out the RIALIST
CA (dialog agent) also sends the voice note to the voice mail client, from which it is sent
to the voice mail server and then to intended recipient at the scheduled time, according to
the sender’s request.

Figure 20. Metabolic Rate Advisor (POGO, a variant of iMAS, the Individual
Mobile Agent System). The Mobile Agent system referred to as POGO07 is a variant of
the standalone Mobile Agents system, for use on a single platform that during operation
is not necessarily communicating with other agent platforms. Two agents were added: the
LEGACI CA, which received metabolic rate and consumables data from the LEGACI
program implemented in Excel, and the Medical Assistant workflow agent, which
interpreted the data, transmitted alerts to the crew member (via the Dialog Agent), and
responded to the crew members requests for status information. LEGACI received
telemetry data from the pressurized spacesuit life support system and biosensors worn by
the astronaut in the partial gravity simulator (POGO) at Johnson Space Center.

Clancey et al.: LSS Study: Open Architecture

	
 50

	

Figure 21. Orbital Communications Adapter (OCA) Management System
(OCAMS), Revision 4 Workflow System for ISS File Communications. Green circles
are agents; Blue rectangles are components (e.g., EFN flight note system, Microsoft
Word, NOMAD email, SWRDFSH FTP). R3 deployed in early 2010 automates
mirroring, archiving, logging, delivery and notification of files transferred between ISS
crew and ground support. R4 will automate uplink and downlink using SWRDFSH;
ground support teams will make requests to OCAMS through flight notes and email; files
are usually transferred using drop-boxes (dedicated folders in JSC MCC and onboard the
ISS). Estimated 80% of previous 24-7 MCC Backroom Officer position is automated.
This architecture uses the Collaborative Infrastructure for data transfer across multiple
network with different security systems (see glossary). In a typical configuration, agents
are networked over two MAS (flight controller) platforms, two OCA clients networked to
the ISS, and the MirrorLAN staging machine for creating the mirrored file system.

Clancey et al.: LSS Study: Open Architecture

	
 51

Appendix	
 III. 	
 Information	
 and	
 Goal-­‐Oriented	
 Services	
 Provided	
 by	

Workflow	
 Agents	
 in	
 Field	
 Experiments	

This table lists the hardware and software components that were integrated in the
indicated system configuration, followed by the workflow capabilities. A plus (“+”)
indicates that the component or capability was introduced for that configuration; an X
indicates that it was included.

	
 D
R
AT
S0
2	

M
D
R
S0
3	

M
D
R
S0
4	

M
D
R
S0
5	

D
R
AT
S0
5	

CD
S0
5	

PA
06
	

iM
AS
06
	

D
R
AT
S0
6	

PO
GO

07
	

iM
AS
08
	

Hardware	
 Integration	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

EVA	
 Agent	
 Platform	
 (used	
 by	
 Astronaut)	
 +	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Stanford	
 Biovest	
 medical	
 sensors	
 +	
 X	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Boudreaux	
 (ERA)	
 Robot	
 +	
 X	
 X	
 X	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Additional	
 Astronaut	
 Platforms	
 (2	
 laptops)	
 	
 +	
 X	
 X	
 X	
 	
 	
 	
 	
 X	
 	
 	

Habitat	
 Monitoring	
 &	
 Server	
 Platform	
 	
 +	
 X	
 X	
 X	
 X	
 X	
 	
 X	
 X	
 	

Digital	
 Camera(s)	
 	
 +	
 X	
 X	
 X	
 X	
 	
 X	
 X	
 	
 X	

Nonin	
 biosensors	
 	
 	
 +	
 X	
 X	
 X	
 	
 X	
 X	
 	
 	

Laptop	
 hardware	
 sensors	
 	
 	
 +	
 X	
 X	
 X	
 X	
 X	
 X	
 X	
 X	

Thibodeaux	
 (ERA)	
 Robot	
 	
 	
 	
 +	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Panoramic	
 Camera	
 (on	
 robot)	
 	
 	
 	
 +	
 X	
 	
 	
 	
 	
 X	
 	
 	

Video	
 Camera	
 (on	
 robot)	
 	
 	
 	
 +	
 X	
 	
 	
 	
 	
 	
 	
 	
 	

CAI	
 backpack	
 (JSC,	
 Glenn)	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 X	
 	
 	

Heads	
 Up	
 Display	
 (Hamilton	
 Sundstrand)	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 X	
 	
 	

SCOUT	
 Rover	
 (JSC)	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 X	
 	
 	

K9	
 Robot	
 (Ames/Fong	
 &	
 Pederson)	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 	
 	

Gromit	
 Robot	
 (Ames/Muscettola)	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 	
 	

Bluetooth	
 headsets	
 worn	
 by	
 habitat	
 crew	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 	

Electric	
 power	
 monitors	
 (OneMeter)	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 	

Solar	
 Electric	
 system	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 	

DC	
 Battery	
 system	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 	

Electric	
 DC-­‐AC	
 inverter	
 system	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 	
 	

Additional	
 Astronaut	
 Platforms	
 (4	
 laptops)	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 	
 	

Geophone	
 Deployment	
 Device	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	

Remote	
 monitoring	
 &	
 control	
 platform	

(ExPOC)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	

Space	
 suit	
 audio	
 system	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 X	
 	

Suit	
 life	
 support	
 sensors	
 (e.g.,	
 consumables)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	

SCUBA	
 headset	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Software	
 Integration	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

RIALIST	
 (voice	
 commanding)	
 +	
 X	
 X	
 X	
 X	
 X	
 X	
 X	
 X	
 X	
 X	

Email	
 System	
 	
 +	
 X	
 X	
 X	
 X	
 	
 	
 X	
 	
 	

Compendium	
 Database	
 	
 	
 +	
 X	
 X	
 X	
 X	
 X	
 X	
 X	
 X	

Science	
 Organizer	
 Web	
 Interface	
 	
 	
 +	
 X	
 X	
 X	
 	
 	
 X	
 	
 	

Europa	
 Planner	
 (Ames)	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 	
 	

Metabolic	
 Rate	
 Advisor	
 (Legaci	
 in	
 Excel/VBA)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	

Clancey et al.: LSS Study: Open Architecture

	
 52

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 D
R
AT
S0
2	

M
D
R
S0
3	

M
D
R
S0
4	

M
D
R
S0
5	

D
R
AT
S0
5	

CD
S0
5	

PA
06
	

iM
AS
06
	

D
R
AT
S0
6	

PO
GO

07
	

iM
AS
08
	

Astronaut	
 Health	
 Monitoring	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Log	
 Biosensors	
 (heart,	
 temp,	
 SPO2)	
 	
 +	
 X	
 X	
 X	
 X	
 	
 X	
 X	
 X	
 	

Log	
 biosensors	
 "every	
 N	
 seconds/minutes"	
 	
 	
 +	
 X	
 X	
 X	
 	
 X	
 X	
 X	
 	

Voice	
 alerts	
 about	
 heart	
 rate,	
 temperature,	

SPO2	
 	
 	
 +	
 X	
 X	
 X	
 	
 X	
 X	
 X	
 	

Change	
 thresholds	
 for	
 SPO2	
 &	
 heart	
 rate	
 alerts	
 	
 	
 	
 +	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Voice	
 queries	
 about	
 met	
 rate,	
 k-­‐cal	
 usage,	
 body	

heat	
 storage,	
 sweat	
 loss	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	

Alerts	
 about	
 met	
 rate,	
 k-­‐cal,	
 heat,	
 sweat	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

System	
 Health	
 Monitoring	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Alert	
 for	
 Laptop	
 low	
 battery	
 	
 	
 +	
 X	
 X	
 X	
 X	
 X	
 X	
 X	
 X	

Alerts	
 of	
 network	
 failures	
 affecting	
 command	

processing	
 	
 	
 +	
 X	
 X	
 X	
 X	
 	
 X	
 X	
 X	

Alert	
 for	
 Laptop	
 CPU	
 temperature	
 too	
 warm	
 	
 	
 	
 +	
 X	
 X	
 X	
 X	
 X	
 X	
 X	

Habitat	
 Batteries	
 status	
 (voltage,	
 amps,	

charging),	
 e.g.,	
 "Are	
 the	
 batteries	
 charging?"	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 	

Generator	
 status	
 (voltage,	
 amps,	
 power	

allocation	
 to	
 habitat	
 and	
 batteries)	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 	

Solar	
 panel	
 power	
 generation	
 status	
 (amps)	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 	

Habitat	
 power	
 status	
 (voltage	
 and	
 amps	
 usage)	

{now	
 |	
 <at	
 time	
 in	
 past>}	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 	

Inverter	
 status	
 (Supplying	
 power,	
 source)	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 	

"When	
 did	
 the	
 generator	
 go	
 offline/online?"	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 	

"When	
 did	
 the	
 batteries	
 start	
 dis/charging?"	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 	

"What	
 did	
 the	
 generator/batteries'	
 status	

change?"	
 	
 	
 	
 	
 	
 	
 	
 	

	

+	
 	
 	
 	
 	
 	

Alert	
 when	
 generator	
 is	
 offline	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 	

Alert	
 when	
 habitat	
 amp	
 use	
 exceeds	
 nominal	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 	

"What	
 was	
 	
 the	
 {Max|Min|Avg|Value}	
 	

{voltage|power|	
 of	

{habitat|generator|batteries|solar}	

{since|during}	
 {time	
 in	
 past	
 |	
 period}?"	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 	

"How	
 many	
 hours	
 will	
 batteries	
 last	
 at	
 current	

draw?"	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 	

Automatic	
 display	
 of	
 repair	
 procedure	
 on	

system	
 error	
 alert	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 	

Ask	
 for	
 parameter	
 setting	
 (e.g.,	
 "What	
 is	
 low	

batter	
 cut	
 out	
 voltage?"	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 	

Ask	
 about	
 life	
 support	
 power	
 status	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	

Ask	
 about	
 life	
 support	
 consumables	
 status	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	

Ask	
 about	
 suit	
 02	
 leakage	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	

Ask	
 about	
 life	
 support	
 scrubber,	
 feedwater,	

inlet	
 temperature	
 status	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	

Clancey et al.: LSS Study: Open Architecture

	
 53

Alerts	
 about	
 life	
 support	
 scrubber,	
 feedwater,	

inlet	
 temperature	
 status	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	

Alerts	
 about	
 power,	
 consumables,	
 suit	
 02	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 D
R
AT
S0
2	

M
D
R
S0
3	

M
D
R
S0
4	

M
D
R
S0
5	

D
R
AT
S0
5	

CD
S0
5	

PA
06
	

iM
AS
06
	

D
R
AT
S0
6	

PO
GO

07
	

iM
AS
08
	

Location	
 Tracking	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

GPS	
 location	
 logging	
 of	
 astronaut	
 and	
 robot	
 +	
 X	
 X	
 X	
 X	
 X	
 	
 X	
 X	
 X	
 X	

"Where	
 am	
 I?"	
 (GPS	
 coordinates)	
 	
 +	
 X	
 X	
 X	
 X	
 	
 X	
 X	
 X	
 X	

"Where	
 is	
 <location>?"	
 (GPS	
 coordinates)	
 	
 +	
 X	
 X	
 X	
 X	
 	
 	
 X	
 	
 	

Location	
 information	
 sent	
 to	
 Remote	
 Science	

Team	
 (RST)	
 at	
 variable	
 intervals	
 	
 +	
 X	
 X	
 X	
 X	
 	
 	
 X	
 	
 	

Location	
 naming	
 by	
 astronaut	
 (waypoint	
 #	
 or	

from	
 predefined	
 list	
 of	
 nouns)	
 	
 +	
 X	
 X	
 X	
 X	
 	
 X	
 X	
 X	
 X	

GPS	
 location	
 logging	
 of	
 robots	
 on	
 demand	
 	
 	
 +	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Alert	
 when	
 lose	
 GPS	
 tracking	
 	
 	
 +	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Global	
 naming	
 management	
 to	
 avoid	
 duplicate	

definition	
 	
 	
 +	
 X	
 X	
 X	
 	
 X	
 X	
 X	
 X	

Location	
 names	
 include	
 predefined	
 map	

locations	
 (e.g.,	
 Lith	
 Canyon)	
 	
 	
 	
 +	
 X	
 X	
 	
 X	
 X	
 X	
 X	

Distinction	
 among	
 Workstation,	
 Worksite,	
 and	

Waypoints	
 	
 	
 	
 +	
 X	
 X	
 	
 X	
 X	
 X	
 X	

Query	
 relative	
 locations	
 of	
 astronauts,	
 robots,	

&	
 habitat	
 	
 for	
 navigation	
 assistance	
 (bearing	
 &	

distance)	
 	
 	
 	
 +	
 X	
 X	
 	
 X	
 X	
 X	
 X	

Allow	
 references	
 to	
 "here"	
 "X's	
 current	

location"	
 	
 	
 	
 +	
 X	
 X	
 	
 	
 X	
 	
 	

Dynamic	
 map	
 location	
 on	
 head-­‐up	
 display	
 	
 	
 	
 	
 +	
 X	
 	
 	
 X	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 D
R
AT
S0
2	

M
D
R
S0
3	

M
D
R
S0
4	

M
D
R
S0
5	

D
R
AT
S0
5	

CD
S0
5	

PA
06
	

iM
AS
06
	

D
R
AT
S0
6	

PO
GO

07
	

iM
AS
08
	

Human-­‐Robot	
 Coordination	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Ask	
 robot	
 to	
 follow/stop	
 following	
 you	
 	
 +	
 X	
 X	
 X	
 X	
 	
 	
 X	
 	
 	

Ask	
 robot	
 to	
 halt	
 	
 +	
 X	
 X	
 X	
 X	
 	
 	
 X	
 	
 	

"Take	
 a	
 picture	
 of	
 {me	
 |	
 <location	
 name>"	
 	
 +	
 X	
 X	
 X	
 X	
 	
 	
 X	
 	
 	

"<robot>	
 go	
 to	
 <location>"	
 (e.g.,	
 waypont	
 #,	

"come	
 here"	
 "return	
 to	
 habitat")	
 	
 +	
 X	
 X	
 X	
 X	
 	
 	
 X	
 	
 	

Ask	
 robot	
 to	
 go	
 to	
 waypoint	
 and	
 wait	
 N	

minutes	
 	
 +	
 X	
 X	
 X	
 X	
 	
 	
 X	
 	
 	

"Where	
 is	
 <robot>?"	
 	
 +	
 X	
 X	
 X	
 X	
 	
 	
 X	
 	
 	

"Take	
 a	
 panorama	
 image	
 {at	
 <location>}"	
 	
 	
 +	
 X	
 X	
 	
 	
 	
 	
 X	
 	
 	

Ask	
 robot	
 to	
 execute	
 a	
 movement	
 plan	
 	
 	
 +	
 X	
 X	
 X	
 	
 	
 X	
 	
 	

Ask	
 robot	
 to	
 watch	
 <astronaut>	
 (video	

camera)	
 	
 	
 +	
 X	
 X	
 X	
 	
 	
 X	
 	
 	

Ask	
 robot	
 to	
 send	
 its	
 traverse	
 map	
 to	
 HabCom	
 	
 	
 +	
 X	
 X	
 X	
 	
 	
 X	
 	
 	

Ask	
 robot	
 to	
 repeat	
 its	
 current	
 activity	
 	
 	
 +	
 X	
 X	
 X	
 	
 	
 X	
 	
 	

Clancey et al.: LSS Study: Open Architecture

	
 54

Ask	
 robot	
 to	
 shift	
 to	
 its	
 next	
 activity	
 	
 	
 +	
 X	
 X	
 X	
 	
 	
 X	
 	
 	

Ask	
 robot	
 if	
 it	
 has	
 network	
 connectivity	
 {to	

<astronaut>	
 |	
 <robot>}	
 	
 	
 	
 +	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Command	
 robot	
 to	
 enable/disable	
 network	

relay	
 	
 	
 	
 +	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Ask	
 robot	
 to	
 enable/disable	
 voice	

commanding	
 	
 	
 	
 +	
 X	
 X	
 	
 	
 X	
 	
 	

Ask	
 robot	
 whom	
 it	
 is	
 following	
 	
 	
 	
 +	
 X	
 X	
 	
 	
 X	
 	
 	

Ask	
 robot	
 whom	
 it	
 is	
 watching	
 	
 	
 	
 +	
 X	
 X	
 	
 	
 X	
 	
 	

Ask	
 robot	
 to	
 power	
 on/off	
 <subsystem>	
 (e.g.,	

brakes,	
 headlights,	
 motors)	
 	
 	
 	
 +	
 X	
 	
 	
 	
 	
 X	
 	
 	

Answer	
 robot	
 by	
 "Yes/No,	
 <robot	
 name>"	
 	
 	
 	
 +	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Robot	
 interprets	
 "there"	
 to	
 be	
 last	
 location	

reference	
 	
 	
 	
 +	
 X	
 X	
 	
 	
 X	
 	
 	

Robot	
 interprets	
 "to	
 <astronaut>"	
 to	
 mean	
 that	

person's	
 current	
 location	
 	
 	
 	
 +	
 X	
 X	
 	
 	
 X	
 	
 	

Tell	
 robot	
 to	
 define	
 its	
 current	
 location	
 as	

<waypoint	
 #>	
 	
 	
 	
 +	
 X	
 X	
 	
 	
 X	
 	
 	

Tell	
 robot	
 to	
 create	
 an	
 elevation/ground	
 track	

map	
 	
 	
 	
 +	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Ask	
 robot	
 to	
 inspect	
 an	
 area/waypoint	
 {using	

<instrument>}	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 	
 	

Tell	
 robot	
 to	
 move	
 N	
 <units>	

forward/backward	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 X	
 	
 	

Tell	
 robot	
 to	
 turn	
 N	
 degrees	
 left/right	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 	
 	

Ask	
 robot	
 to	
 describe	
 its	
 status	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 	
 	

Ask	
 robot	
 to	
 plan	
 a	
 path	
 to	
 <location>	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	

Ask	
 robot	
 to	
 prepare	
 to	
 follow	
 astronaut	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	

Ask	
 robot	
 to	
 watch	
 <location>	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	

Ask	
 robot	
 to	
 execute	
 instrument	
 procedure	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 D
R
AT
S0
2	

M
D
R
S0
3	

M
D
R
S0
4	

M
D
R
S0
5	

D
R
AT
S0
5	

CD
S0
5	

PA
06
	

iM
AS
06
	

D
R
AT
S0
6	

PO
GO

07
	

iM
AS
08
	

Plan	
 Management	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Activity	
 tracking	
 (time	
 &	
 loc)	
 	
 +	
 X	
 X	
 X	
 X	
 X	
 X	
 X	
 X	
 X	

Alert	
 for	
 deviation	
 from	
 planned	
 activity	

duration	
 	
 	
 +	
 X	
 X	
 X	
 X	
 X	
 X	
 X	
 X	
 X	

Alert	
 for	
 deviations	
 from	
 planned	
 activity	
 	

location	
 	
 +	
 X	
 X	
 X	
 X	
 X	
 X	
 X	
 X	
 X	

Alert	
 about	
 total	
 EVA	
 time	
 remaining	
 	
 +	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Voice	
 command	
 to	
 start	
 selected/"next"	

activity	
 	
 +	
 X	
 X	
 X	
 X	
 X	
 X	
 X	
 X	
 X	

Change	
 Activity	
 duration	
 or	
 distance	

thresholds	
 	
 +	
 X	
 X	
 X	
 X	
 X	
 X	
 X	
 X	
 X	

"How	
 much	
 time	
 is	
 left	
 (for	
 current	
 activity)?"	
 	
 +	
 X	
 X	
 X	
 X	
 X	
 X	
 X	
 X	
 X	

Start	
 selected	
 activity	
 at	
 <location	
 name>	
 {for	

<duration>}	
 	
 	
 +	
 X	
 X	
 X	
 X	
 X	
 X	
 X	
 X	

"What	
 is	
 the	
 current	
 activity?"	
 	
 	
 +	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Clancey et al.: LSS Study: Open Architecture

	
 55

Start	
 <selected	
 activity	
 from	
 plan>	
 	
 	
 +	
 X	
 X	
 X	
 X	
 X	
 X	
 X	
 X	

"Start	
 first	
 activity"	
 	
 	
 	
 +	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Plan	
 distribution	
 to	
 mobile	
 agents	
 	
 	
 	
 +	
 X	
 X	
 	
 X	
 X	
 X	
 	

Query	
 	
 activity	
 and	
 remaining	
 time	
 	
 	
 	
 	
 +	
 X	
 X	
 X	
 X	
 X	
 X	
 X	

Allow	
 creating	
 new	
 activity	
 of	
 a	
 type	
 (e.g.,	

sample,	
 survey,	
 walk)	
 at	
 <location>	
 	
 	
 	
 +	
 X	
 X	
 X	
 X	
 X	
 X	
 X	

"What	
 time	
 is	
 it?"	
 	
 	
 	
 +	
 X	
 X	
 X	
 X	
 X	
 X	
 X	

Display	
 <procedure>	
 	
 	
 	
 	
 	
 	
 +	
 X	
 	
 	
 	
 	
 	

"Read	
 the	
 <Nth	
 step>	
 of	
 <procedure>"	
 	
 	
 	
 	
 	
 	
 +	
 X	
 	
 	
 	
 	
 	

"What	
 is	
 <astronaut>'s	
 current	
 activity?"	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 X	
 	
 	

Display	
 {PowerPoint	
 |	
 JPG}	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	

Display	
 next/previous	
 page	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	

Zoom	
 in/out	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	

Pan	
 display	
 left/right	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	

Alert	
 about	
 walk	
 back	
 emergency	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 D
R
AT
S0
2	

M
D
R
S0
3	

M
D
R
S0
4	

M
D
R
S0
5	

D
R
AT
S0
5	

CD
S0
5	

PA
06
	

iM
AS
06
	

D
R
AT
S0
6	

PO
GO

07
	

iM
AS
08
	

Science	
 Data	
 Logging	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Create	
 and	
 number	
 sample	
 bags	
 +	
 X	
 X	
 X	
 X	
 X	
 	
 X	
 X	
 X	
 X	

Record	
 a	
 voice	
 note	
 +	
 X	
 X	
 X	
 X	
 X	
 	
 X	
 X	
 X	
 X	

Play	
 a	
 voice	
 note	
 assoc.	
 w/	
 location	
 or	
 sample	
 	
 +	
 X	
 X	
 X	
 X	
 	
 X	
 X	
 X	
 X	

Associate	
 sample	
 bag	
 or	
 voice	
 note	
 with	

location	
 	
 +	
 X	
 X	
 X	
 X	
 	
 X	
 X	
 X	
 X	

Photographs	
 logged	
 by	
 time	
 &	
 location	
 	
 +	
 X	
 X	
 X	
 X	
 	
 X	
 X	
 X	
 X	

Science	
 data	
 transmitted	
 to	
 Hab	
 and	
 stored	
 on	

habitat	
 agent	
 platform	
 (HabCom)	
 	
 +	
 X	
 X	
 X	
 X	
 	
 	
 X	
 	
 	

Science	
 data	
 emailed	
 to	
 RST	
 (enable/disable)	
 	
 +	
 X	
 X	
 X	
 X	
 X	
 	
 X	
 X	
 X	

Download	
 an/all	
 image(s)	
 from	
 camera	
 	
 +	
 X	
 X	
 X	
 X	
 	
 X	
 X	
 X	
 X	

Science	
 data	
 stored	
 in	
 hierarchical	
 database	

organized	
 by	
 EVA,	
 astronaut,	
 location,	
 time,	
 &	

data	
 type	
 on	
 web	
 pages	
 accessible	
 remotely	

during	
 EVA	
 (includes	
 voice	
 notes	
 &	
 images)	
 	
 	
 +	
 X	
 X	
 X	
 	
 	
 X	
 X	
 	

Define	
 pair-­‐wise	
 association	
 of	
 voice	
 notes,	

sample	
 bags,	
 &	
 images	
 	
 	
 +	
 X	
 X	
 X	
 	
 X	
 X	
 X	
 X	

Sample	
 bags,	
 voice	
 notes,	
 and	
 photographs	

auto-­‐associated	
 with	
 activity	
 of	
 EVA	
 plan	
 	
 	
 +	
 X	
 X	
 X	
 	
 X	
 X	
 X	
 X	

Name	
 the	
 last	
 image	
 or	
 collection	
 	
 	
 +	
 X	
 X	
 X	
 	
 X	
 X	
 X	
 X	

Replay	
 voice	
 note	
 <number>	
 	
 	
 +	
 X	
 X	
 X	
 	
 X	
 X	
 X	
 X	

Name	
 sample	
 bags	
 by	
 pattern	
 LL/DD/DD	

(allowing	
 use	
 of	
 ICA	
 alphabet)	
 	
 	
 +	
 X	
 X	
 X	
 	
 X	
 X	
 X	
 X	

Allow	
 references	
 to	
 "last	
 image"	
 and	
 "last	
 voice	

note"	
 	
 	
 +	
 X	
 X	
 X	
 	
 X	
 X	
 X	
 X	

Automated	
 printing	
 of	
 sample	
 bag	
 label	
 	
 	
 	
 +	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Reference	
 image	
 collections	
 by	
 number	
 or	

location/bag	
 association	
 	
 	
 	
 +	
 X	
 X	
 	
 X	
 X	
 X	
 X	

Clancey et al.: LSS Study: Open Architecture

	
 56

Allow	
 references	
 to	
 "image	
 of	

<bag>|<location>"	
 	
 	
 	
 +	
 X	
 X	
 	
 X	
 X	
 X	
 X	

Reference	
 panoramic	
 images	
 by	
 number,	

location,	
 or	
 "last"	
 	
 	
 	
 +	
 X	
 	
 	
 	
 	
 X	
 	
 	

List	
 locations,	
 sample	
 bags,	
 images,	
 voice	

notes,	
 collections,	
 panoramic	
 images	
 {near	

<location>}	
 on	
 demand	
 	
 	
 	
 +	
 X	
 X	
 	
 X	
 X	
 X	
 X	

Science	
 data	
 accessed	
 from	
 dynamic	
 EVA	
 map	

(TerraServer)	
 	
 	
 	
 	
 +	
 X	
 	
 	
 X	
 	
 	

Enable/Disable	
 automatic	
 data	
 associations	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 D
R
AT
S0
2	

M
D
R
S0
3	

M
D
R
S0
4	

M
D
R
S0
5	

D
R
AT
S0
5	

CD
S0
5	

PA
06
	

iM
AS
06
	

D
R
AT
S0
6	

PO
GO

07
	

iM
AS
08
	

Voice	
 Mail	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

"Tell	
 <astronaut>	
 …	
 <any	
 speech>	
 {at	
 <time>}	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 	

"Play	
 voice	
 message	
 from	
 <astronaut>"	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 	

"Continue	
 last	
 voice	
 note"	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 X	
 X	
 X	
 X	

"Send	
 <voice	
 note>	
 to	
 <person>"	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Alert	
 Management	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Enable/Disable	
 all	
 alerts	
 	
 +	
 X	
 X	
 X	
 X	
 X	
 X	
 X	
 X	
 X	

Enable/Disable	
 last	
 alert	
 	
 +	
 X	
 X	
 X	
 X	
 X	
 X	
 X	
 X	
 X	

Enable/Disable	
 selected	
 alert	
 for	
 <astronaut>	
 	
 	
 +	
 X	
 X	
 X	
 X	
 X	
 X	
 X	
 X	

Enable/Disable	
 all	
 alerts	
 of	
 type	
 X	
 	
 	
 	
 +	
 X	
 X	
 X	
 X	
 X	
 X	
 X	
 X	

Enable/Disable	
 explicit	
 confirmation	
 of	

command	
 interpretation	
 	
 	
 	
 +	
 X	
 X	
 X	
 X	
 X	
 X	
 X	

Enable/Disable	
 conditional	
 alerts	
 (e.g.,	
 "Tell	

me/<person>/everyone	
 when	
 the	
 generator	

comes	
 online.")	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 	
 	
 	
 	
 	

Acknowledge	
 command	
 acceptance	
 via	
 beep	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 X	
 X	
 X	
 X	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Voice	
 Command	
 Controls	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Increase/Decrease	
 Volume	
 	
 	
 	
 +	
 X	
 X	
 X	
 X	
 X	
 X	
 X	

"Say	
 that	
 again"/"Repeat	
 that"	
 	
 	
 	
 +	
 X	
 X	
 X	
 X	
 X	
 X	
 X	

"Stop	
 talking"	
 	
 	
 	
 +	
 X	
 X	
 X	
 X	
 X	
 X	
 X	

"Are	
 you	
 listening?"	
 	
 	
 	
 +	
 X	
 X	
 X	
 X	
 X	
 X	
 X	

"Start/Stop	
 Listening"	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 X	
 X	
 X	
 X	

	

Clancey et al.: LSS Study: Open Architecture

	
 57

Appendix	
 IV. Organization	
 of	
 Data	
 Analysis	
 Table	

The following table provides an overview of the data available and what was calculated
for evaluating the agent-based open architecture.

(Key: KSLOC = Thousand Source Lines of Code; Workflow Agents are written in the
Brahms programming language, sending messages to each other and to Communication
Agents (CA), which are written in Java and usually call external APIs written in Java,
C++, etc. “Packaged” refers to the entire system configuration, which includes multiple
instances of an agent type.)

PERSONNEL CONTRIBUTION
ARC Co-Investigators Project Lead, Scenarios, Field Coordinator
 Project Manager, Scenarios, Integration
Brahms Modelers Workflow & CA Agents
ARC Programmer ScienceOrganizer

ARC MEX Team MEX & GPS, Nonin sensor

ARC Programmer Voice Commanding (RIALIST)
Audio Manager CAIPack HUD, & Suit Audio

Student Intern Stanford Biovest

JSC ERA Team ERA(s) & SCOUT Integration

ARC IRG Team K9 Rover, Gromit, EUROPA

JSC/HRP Scientist MRA EXCEL & Suit integration

Project Time Data PROGRAMMING FTE DURING PERIOD
 Project Development Start Date
 Project Completion Date
 Elapsed DDT&E Days
Effort Data Annualized PROJECT FTE
 FISCAL YEAR
 Dialog Agent Programmer FTE
 Workflow Team FTE
 FY FTE (Workflow Agent Team)
 # Programmers
 FY FTE (all projects)
Software Data Workflow Agent Types Count
 Number of NEW WF Agent Types
 Number of Modified WF Agent Types
 Number NEW + Modified WF Agent Types

Clancey et al.: LSS Study: Open Architecture

	
 58

 New WF Agents KSLOC
 Unchanged WF Agents KSLOC
 Modified WF Agents KSLOC
 Eliminated WF Agents KSLOC
 Modified WF Agents Carried Over KSLOC
 Modified WF Agents KSLOC ADDED
 (Verify KSLOC Calculations = Total)
 All Workflow Agents KSLOC
 % New WF Agents KSLOC
 % Unchanged WF Agents KSLOC
 % Modified WF Agents KSLOC
 (Verify % Calculations = 100%)
 % WF Agent KSLOC New or Modified
 Workflow Agents Packaged Count
 Workflow Agents KSLOC Packaged

 Communication (Integration) Agent Types

Count
 Number of NEW Comm Agent Types
 Number of Modified Comm Agent Types
 Number NEW + Modified Comm Agent Types
 New Comm Agents KSLOC
 Unchanged Comm Agents KSLOC
 Modified Comm Agents KSLOC TOTAL
 Eliminated Comm Agents KSLOC
 Modified CA Carried Over KSLOC
 Modified CA KSLOC ADDED
 Dialog CA KSLOC
 Added KSLOC to Previous Dialog CA

Added KSLOC to Carried over (modified) Comm

Agents excluding Dialog CA additions
 (Verify KSLOC Calculations = Total)
 All Comm Agents KSLOC
 % New CA KSLOC
 % Unchanged CA KSLOC
 % Modified CA KSLOC
 (Verify % Calculations = 100%)
 % CA KSLOC New or Modified

% Modified CA KSLOC attributed to Dialog Agent

Modifications
 Communication Agents Packaged Count
 CA KSLOC Packaged

 Number of All Agent Types (Workflow + CA)
 Change in number of all Agent types
 TOTAL All Agent Types KSLOC
 TOTAL Configuration Package KSLOC
 Change in all Agent Types KSLOC
 CHANGE IN TOTAL PACKAGED KSLOC

Clancey et al.: LSS Study: Open Architecture

	
 59

Productivity Data PRODUCT LINE INHERITANCE
 Number New Capabilities
 Number of Peripheral Systems Added
 Number of Requests/Alerts Added
 Number of Request/Alert Capabilities
 Capabilities added/FY FTE

New + Added Workflow Agent KSLOC/Workflow

Team FTE
 New + Added CA KSLOC/All Teams FTE
 New + Added All Agents KSLOC
 New + Added KSLOC Grouped by Projects

New + Added KSLOC/All Teams FTE, excluding

Dialog CA Programmer

New + Added All Agents KSLOC/All Teams

FTE

New + Added All Agents for Grouped

Projects/All Teams FTE

New + Added All Agents Grouped

Projects/# Programmers
 Change in CA Packaged SLOC/FY FTE
 Change in all Agent Types SLOC/FY FTE
 Change in Package KSLOC /FY FTE
Cost Data Estimated Software Budget ($000)
 Cost ($000)/Total Agent Types KSLOC
 Cost ($000)/Total Packaged KSLOC

Clancey et al.: LSS Study: Open Architecture

	
 60

Appendix	
 V. Completing	
 the	
 Picture:	
 System	
 Specification	
 through	
 a	
 Goal-­‐
Oriented	
 Control	
 Framework	

The lunar surface system capabilities envisioned will almost certainly be realized as a
system-of-systems developed by a multinational, multi-agency set of partners. The open
architecture described thus far addresses many of the most salient features of such
systems, as well as the challenges associated with the planning, developing and
integrating of an incrementally-delivered, distributed system. The open architecture
provides an infrastructure for “plug-and-play” interoperability, scalability and
maintainability.

While an open architecture provides an important set of features, delivering and operating
this lunar surface system-of-systems has a residual number of challenges that can be met
through adoption of a complementary set of architectural principles and approaches; the
principles of Goal-Oriented Control coupled with model-based systems engineering
practices.

A real-time, distributed, safety-critical system with heterogeneous components (which in
many cases have been developed by multiple teams) is a sure recipe for complexity. This
situation warrants an architectural framework which explicitly maps well-stated
properties of interest to the design elements responsible for satisfying them. This
framework needs to be rich enough to cover the concepts of the domain of interest while
ideally facilitating systems engineering best practices (in particular specification and
knowledge capture, analysis, verification and validation). Goal-oriented Control is such a
framework.

Goal-Oriented Control
Goal-oriented control is an architectural framework for specifying a system based on
explicit statement of desired system behavior (which is defined as constraints on states of
the system of interest) and progressively defining the elements to best realize the
aforementioned specifications. Along with a conceptual model, the framework affords a
set of techniques and software tools.

The goal-oriented control approach parallels the systems engineering best practice of
grounding design in well-stated, verifiable and traceable requirements. Goals are defined
as requirements that specify a constraint on a state variable of interest. These state
variables are values that can change over time, and must be controlled in order to meet
system objectives. Goals are progressively elaborated into supporting goals until they are
atomic statements that can be controlled or measured by a single element and readily
verified.

As part of specifying our goals, we also specify the attendant control system to achieve
the goals. This approach is a close analogue to the practice of classic control theory
where a plant description (what you want to control) is coupled with a set of sensors,
actuators and estimators to realize a desired set of global system properties. Designers
start by specifying what properties the system as a whole must exhibit, then they look at

Clancey et al.: LSS Study: Open Architecture

	
 61

the system which must be controlled along with the appropriate influences of the
environment affecting the plant while determining the necessary control system (sensors,
actuators, estimators) to deliver the desired system performance.

Figure 22. Identifying the system under control and how it fits in the operating
environment.

The figure above illustrates the basic analytic process of identifying what is the system
under control and how does it fit in the operating environment. Once identified, the
practitioner has a firm basis to begin the requirements process; defining goals as states of
interest with necessary constraints.

The system under control is ultimately the system hardware operating in the operational
environment. The control system (schedulers, estimators, controllers, sensors) is
comprised of networked distributed software agents. The open architecture described
previously provides the infrastructure for these distributed agents to work together to
achieve the specified system goals.

Models, along with measurements and command histories, provide the control system
with the state knowledge it needs to act appropriately in all operational contexts. The
models used to specify the system in requirements elicitation and system development are
carried over into operations for use in running the actual system, reducing the gaps
between concept, design and operations.

The Benefits of Goal-Oriented Control
The benefits of the Goal-Oriented framework fall under two related though distinct
categories, technical and process. The technical benefits describe the intrinsic quality
premiums of the realized systems, while the process benefits cover the advantages of the
method for addressing project cost, technical and schedule risks.

Clancey et al.: LSS Study: Open Architecture

	
 62

Technical Benefits
Goal-oriented control systems allow the user to specify system behavior as explicit and
verifiable constraints of defined states. As a result, systems have a run-time guarantee of
“correct” (in accordance with specification) behavior. In contrast with a more traditional
procedural implementation, the goal-oriented system “keeps track” of system states and
acts in a closed-loop manner to issue the appropriate commands in to satisfy the operator-
provided goals. As a related benefit, the system also uses its models and measurements
to project states into the future to determine if planned goals can be met based on what
has happened so far. This facilitates a much more nuanced, robust way of specifying
system behavior. This also results in a more integrated and transparent fault protection;
fault protection is rightfully integrated as part of overall behavior management.

The goal-oriented control approach also scales nicely to arbitrarily complex numbers of
distributed elements. As long as the user can state goals as constraints on any time-
varying property, a system and its behavior can be specified by using the small set of
concepts, relationship and patterns of the goal-oriented framework.
The simplicity of the framework also allows flexibility of implementation with regards to
the level of autonomy. While the control system has a running model of the system
under control which it updates through measurements, it is up to the designer to
determine what commands (if any) the system can issue. For instance, the control system
can use its model information in an advisory role to a human actor, suggesting commands
while the human provides the ultimate authority to proceed.

Process Benefits
As mentioned previously, the lunar surface system-of-systems will feature a set of
elements developed by a number of different teams and delivered in an incremental
fashion. Well-formed, unambiguous, system specification through models is becoming
an indispensible tool in the systems engineering and architecture of such systems.
Models help by providing developers, testers and users a common understanding of what
the system should do, how and why. By using a common representation, the program
fielding the system has a lingua franca to discuss and work system issues. Goal-oriented
control, with its innate emphasis on modeling, capitalizes on these benefits. Not only do
the models inform the design process, aiding in the discovery and analysis of
requirements, the models also serve as the “smarts” for the fielded system, providing the
capability for true closed-loop, cognizant control.

Documentation of the system knowledge as models provides a “living record” of issues,
concerns and decisions and ties these artifacts into the actual flight code. The benefits to
maintenance and upgrades over the life cycle of such a comprehensive record are
manifest. Developers and stakeholders have a more unambiguous means for specifying
the system, testers have better requirements to test and operators have a more natural,
powerful language for specification of behaviors for robust execution.

Goal-oriented models also enable developers and testers to employ powerful analytic
means (both simulation and static “theorem provers”) for analyzing and verifying
designs. Model-checking applications are seeing significant use in checking mission-

Clancey et al.: LSS Study: Open Architecture

	
 63

critical systems in many domains, both improving system safety and reducing
development costs. The well-specified goals of the goal-oriented approach and the well-
defined elements and relations of the framework are key to implementing these
techniques. Formal system verification though models allows testers to check a range of
design properties for multiple operational contexts economically.

Clancey et al.: LSS Study: Open Architecture

	
 64

Appendix	
 VI. Glossary	

activity An extended behavior of some agent
occurring in some time-space context, e.g.,
“living on the lunar surface.” Oriented by
motives, which often include goals with
tasks to accomplish. See Clancey (2002).

agent Located, proactive software program with
models of work and local situation;
communicates messages with other agents

autonomous A mode of automated operation in which a
system is programmatically controlled to
pursue (and possibly reformulate) goals
without additional human guidance.

API Application Programming Interface

Brahms Work Practice Modeling and
Simulation System

Multi-agent discrete event simulation
system designed for simulating human
work practices (situated activities),
represented as chronological, located
behaviors with interactions among people
and automated systems and tools.

Collaborative Infrastructure Environment for hosting distributed
software applications and components
providing services that can be used to
simplify management, status monitoring,
network transport, messaging, data
distribution and translation; CI generalizes
the CORBA/Speech Act method of
information exchange developed for the
Mobile Agents exploration systems.
Currently used in OCAMS for ISS file
management (Figure 21).

Communication Agent JAVA program that translates between the
programming language objects and
methods of a component API and Speech
Acts, represented in the language of the
task domain.

component Hardware or software system
interoperating with other components in the
exploration system.

domain model Structured representation for some purpose
of some system and/or processes, e.g., a
geographic model of a lunar region; a

Clancey et al.: LSS Study: Open Architecture

	
 65

model of an EVA traverse; a model of an
exploration system configuration

EVA Robotic Assistant (ERA) Rover designed for science support (Hirsh,
et al. 2006)

exploration system configuration Particular set of integrated hardware and
software that provides support to crew for
some purpose (e.g., science, survival,
mobility, general inquiry of some region)

FIPA The Foundation for Intelligent Physical
Agents (FIPA) developed computer
software standards for heterogeneous and
interacting agents in agent-based systems.
Replaced by IEEE Standards Committee in
2005.

information Interpreted data; more specifically:
Perception of some condition or
conceptual/inferential interpretation of the
meaning of perceived data; e.g., the
meaning of a spoken utterance.

Information Exchange Service Functional capability in a software
architecture that constructs and/or conveys
information by gathering, transforming,
interpreting, packaging, etc. data,
information, and/or commands

RIALIST Software program capability of recognizing
and generating spoken utterances; uses a
grammar of valid utterances and their
Speech Act interpretation; related to
NUANCE commercial products.

Speech Act Broadly, the implicit meaning of an
utterance, viewed as a performance by the
speaker, e.g., promise, command, warning.
Voice commands are implemented by
workflow agents to satisfy the intention
agreed by the crew and exploration system
developers, e.g., “Boudreau, Stop!” means
“stop immediately, don’t ask for
confirmation.” Thus, the “stop” utterance is
a different kind of speech act than the “go
to waypoint N” utterance, which requires
confirmation.

task A functional unit that describes goal-
oriented action; contrasted with “activity.”

Clancey et al.: LSS Study: Open Architecture

	
 66

workflow system In the context of the space program, an
exploration system designed to automate
the creation, storage, and communication
of information among system components,
which may be operating “autonomously”;
usually by interacting with astronauts
and/or remote support teams.

