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1 Executive	
  Summary	
  
This report is part of an overarching Lunar Surface Systems (LSS) Software Architecture 
Trade Study that identifies candidate architectures for the key software that will be used 
for each LSS Element.1 One goal is to estimate the level of effort and cost required for 
software development relative to architectural features and system capabilities.  
 
The report systematically analyzes data from the Mobile Agents Project, funded by 
NASA’s Intelligent Systems and Human-Systems Integration Exploration Technology 
Development Programs (2002-2006) with the objective of developing an open 
architecture for an end-to-end exploration system focusing on science EVAs in which the 
crew cannot rely on ground support.  
 
The Mobile Agents Architecture (MAA) provides a common goal-oriented, model-based 
interface that automates communication of information and commands in a distributed, 
concurrent system of systems, consisting of a diversity of hardware and software systems 
interacting in a mobile, distributed environment. The objective of this report is to use the 
engineering data from the sequence of field experiments to recommend informative 
metrics for software open architecture. This report also provides the groundwork for a 
Phase 2 interoperability trade study using prescribed workflows in EVA scenarios 
(Clancey and Lowry, 2012).  
 
In particular, this study sought data to access whether the incremental buildup of an 
exploration system for long-duration capabilities is facilitated by an open architecture 
whose APIs are specifically designed to facilitate integration of new components, and 
thus minimize costs by reducing changes to the existing system and consequent rework. 
The study shows the advantages of composite APIs that map conventional component 
APIs (which provide access to the functional methods and data objects of components) to 
a service-oriented language through which people and subsystems (including external 
interfaces) communicate. For the Mobile Agents project, this service-oriented language is 
in terms of messages about tasks (e.g., an EVA plan, astronauts, life support, tools such 
as cameras, robotic assistants) and the external interfaces include voice commanding. 
This kind of composite API effectively enables a diversity of hardware and software 
components (including COTS) to provide task-oriented services to the overall exploration 
system.  
 
In the mature software architecture described here, called the Mobile Agent Architecture 
(MAA) an open architecture consisting of a workflow backbone of services (“agents”) 
and composite APIs enabled distributed, mobile agents to handle simultaneous goal-
oriented requests on a non-reliable network. This architecture was developed from field 
experience with different existing hardware and software systems for both field science 
and routine habitat operations. The key architectural lessons concern how distributed 
mobile subsystems communicate, how task-level information and commands are 

                                                
1 See Clancey et al. (2011) for a conference paper version of this report.   
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represented, how services operating on the surface communicate with remote support 
teams, and how asynchronous services manage multiple, simultaneous requests.   
 
This report also succinctly considers a related open-architecture developed at JPL that is 
centered on goals as the external interface language and services. Goals are constraints on 
state variables that are monitored and actively maintained. The qualitative experience is 
that a goal-oriented architecture is more robust than conventional control software, and 
more conducive to adding new components (see Appendix V). 

1.1 Field	
  Experiments	
  and	
  Data	
  Analyzed	
  

The field experiments for MAA were based on the methodology of empirical 
requirements analysis, in which prototype exploration systems were used for assisting 
crew members in simulated surface missions. In particular, the project explored how 
existing components (robots, cameras, computers, biosensors, GPS devices, electric 
power systems, databases, email, heads-up display, etc.) could be made into an integrated 
exploration system that was easily reconfigured for different EVAs and settings.  
 
The data analyzed in this report consists of four different kinds of configurations or 
“product lines” comprising ten systems designed, developed, and tested by NASA Ames 
and JSC from 2002 through 2008: 
 

− “Automating	
  Capcom”	
  Configurations:	
  	
  
o DRATS02,	
  MDRS03,	
  MDRS04	
  (all	
  using	
  EVA	
  robotic	
  assistant)	
  
o MDRS05,	
  DRATS05	
  (Scout	
  vehicle),	
  CDS05(K9	
  &	
  Gromit	
  robots)	
  	
  
o DRATS06	
  (pressurized	
  suits,	
  JSC	
  ExPOC,	
  and	
  GeoPhone	
  Array)	
  

− “Power	
  Agents”	
  Configuration:	
  MDRS06	
  
− Metabolic	
  Advisor	
  Configuration:	
  POGO07	
  
− iMAS	
  Scientist’s	
  Field	
  Assistant:	
  MMAMA08	
  (HI,	
  NM,	
  Belize)	
  

 
Exploration system configurations can be viewed structurally in terms of hardware and 
software components (e.g., a planning system) and integrative software (agents), and 
functionally in terms of workflow “capabilities” provided to the astronaut crew. A 
workflow capability, as the name implies, pertains to the flow of information requests, 
commands, and work products, initiated by either people or software in the context of a 
crew’s work activity. Workflow capabilities usually take the form of requests for 
information that require data to be interpreted (e.g., how many hours will the batteries on 
some device last given current draw and planned usage?) or operations for subsystems to 
perform that require automated coordination of subsystems over time  (e.g., “K9, inspect 
the area around waypoint 5”).  Workflow capabilities also include direct requests for data 
readouts (“what is the current battery voltage?”) and primitive subsystem operations 
(“Scout, turn on headlights”). Some functions require ongoing monitoring of sensor data 
(“Tell me when the generator is off-line”). 
 
Overall 134 workflow capabilities were developed for astronaut health monitoring, 
system health monitoring, location tracking, human-robot coordination, plan 
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management, science data logging, voice command interface controls, and alert 
management. The Mobile Agents systems were developed to illustrate typical 
functionalities that may be useful to scientist-astronauts during EVAs in which real-time 
communication with mission support is not possible due to time delay (Clancey 2004a; 
b). Voice commanding capabilities were designed to assist creating documented EVA 
products while flexibly following an EVA plan, keeping on route and schedule, and 
remaining aware of logistic/safety constraints and limitations.  
 
The sources of data analyzed include: code repositories; project reports, schedules, email, 
and budgets; and expedition records. Analysis produced statistics about software 
modification (e.g., direct reuse or number of lines of code added) and personnel effort 
(e.g., size and distribution of teams; FTE for agents and integration only, not 
subsystems).  Statistics were charted to determine advantages of the open architecture for 
phased development of LSS capabilities, such as adding robotic systems in the same 
production line (e.g., MDRS05 added a second ERA to MDRS04), adding a new robotic 
system by adapting existing software (e.g., Scout), and incorporating existing capabilities 
for different purposes (e.g., creating PA06 from DRATS05). Productivity calculations 
reflect the different kinds of work required for revising the system in these ways. In 
particular, a distinction is made between: Reusing a task-level service (no change), 
adding functionality to a service, and adapting a service for a different subsystem.  
 
Analysis also examined the ability  to reconfigure the exploration system for different 
work contexts, such as adding new kinds of external systems (shifting among science 
instruments, electric power systems, and life support systems) and directly using existing 
services (e.g., email alerts) for new purposes or changing communication media (e.g., 
from email to HUD to voice loop) without modifying code. Cost for these changes was 
estimated and correlated by counting workflow capabilities, thousands of source lines of 
code (KSLOC), and programming time comparatively in a series of system 
reconfigurations. 

1.2 Analysis	
  Overview	
  
The analysis confirmed three primary hypotheses: 
 

1. An	
  agent-­‐oriented	
  workflow	
  system	
  using	
  composite	
  APIs	
  enables	
  integrating	
  
components	
  (e.g.,	
  biomedical	
  algorithms,	
  robots,	
  databases)	
  without	
  modifying	
  
them.	
  

2. Cost/capability	
  is	
  not	
  increasing	
  as	
  new	
  capabilities	
  are	
  added.	
  
3. KSLOC/capability	
  is	
  not	
  increasing	
  as	
  new	
  capabilities	
  are	
  added.	
  	
  

 
Analysis showed that a workflow service backbone was established in the third year 
(MDRS05) and was reused for subsequent configurations, ranging from 85% carryover 
when entirely different robots and a planning system were incorporated to 100% 
carryover when shifting from an EVA system to a habitat power monitoring system. At 
the same time, in developing the workflow service backbone, nearly half of the APIs 
were unchanged. Architecture changes focused on reconfiguring workflow services to 
respond to interface requirements, rather than re-integration with subsystems.  That is, the 
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data show that enhancement of workflow capabilities is often possible without modifying 
existing systems and their APIs, in an open architecture in which integration occurs 
through task-level communications. 
 

 
 
Figure 1. Total KSLOC (thousands of lines of code) for each system configuration 
(columns, broken into Workflow Backbone and Communication Agent parts) and 
new KSLOC (for new or modified agents; shown as lines).  Code for Communication 
Agents dominates; they translate between service-oriented (task-level) messages and 
subsystem APIs. 
 
Furthermore, in the aggregate 80% of added KSLOC for system reconfigurations was for 
task-level API translators (“communication agents”; CAs) to integrate new components 
(Figure 1).  But a relatively small amount was added for each configuration after the 
architecture was mature. On average Workflow KSLOC was increased by 14% and CA 
KSLOC by 13% for each reconfiguration.  
 
Depending on the component, API translators for complex systems such as rovers might 
require 20 KSLOC (1 FTE or more), while simple systems such as cameras might require 
2 KSLOC (.1 FTE).  
 
The ratio of total workflow KSLOC to the total system KSLOC (Figure 2) remained 
surprisingly constant at 16%, which demonstrates that the amount of code required is 
linear with the number of capabilities, and additions require only incremental changes to 
affected workflow functions. 
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Figure 2. Percentage of KSLOC added to Communication Agents and Workflow 
Agents for each configuration; Percentage of KSLOC Workflow Agents relative to 
the system total KSLOC. 
 
The series of exploration system experiments demonstrated efficiency in designing, 
developing and testing new systems. The average (and median) DDT&E elapsed time per 
configuration was 172 days with five programmers on average (varying from nine to 
one). Programming effort varied from 3.4 FTE to less than one month FTE. 
 

 
 
Figure 3. Additional KSLOC required per new capability (kind of information 
request or command). 
 
The three key productivity findings are: code added for each new workflow capability 
trends downwards from 1.5 to less than 1 KSLOC (Figure 3); new capabilities/FTE 
trends upwards from 10 to 20 (Figure 4); and KSLOC/FTE trends upwards from 15 to 20.  
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These data show that size of the modifications and effort required are generally 
predictable and constant, with addition of task-level APIs for new automated hardware 
and software systems requiring more code and time. These data suggest that the overall 
exploration system architecture is stable and new capabilities neither interfere with 
existing capabilities nor require increasing complexity of interactions.  Therefore, in 
using an open architecture with APIs providing task-level services, we can treat 
capabilities abstractly and make predictions at design time of the amount of code and 
effort required to build or modify an exploration system configuration.  Specifically, the 
analysis predicts that each workflow capability added by an experienced team will 
require 1.5 KSLOC or less and .07 FTE or less.  
 

 
 
Figure 4. Number of new capabilities per Full-Time Equivalent effort (annualized 
over development period). 
 
Viewing the field configurations in the aggregate, 134 capabilities were developed with 
13 FTE in total DDT&E time of about 4 years. The overall average of 10 new capabilities 
per FTE closely fits the development efficiency of creating the mature architecture (2002-
2005), when 64% of the total system capabilities were developed with 70% of the total 
FTE.  Subsequent systems introduced relatively fewer new capabilities with increased 
productivity (Figure 4).  Effort for DRATS/CDS05 and DRATS06 reflects significantly 
more complex robotic commanding for four different robotic systems. 
 
These data show the upfront cost is relatively small given the functionality provided to 
the crew, with direct reuse (at no cost) of code and functionalities in very different 
settings. The upfront investment pays off as much smaller teams reused the existing 
workflow backbone, making only incremental changes to introduce completely different 
kinds of components (e.g., power and life support systems) with new kinds of support for 
crew self-reliance and safety (e.g., providing status information and alerts relevant to 
using resources during ongoing work activities).  
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1.3 Conclusions	
  and	
  Recommendations	
  

An open software architecture enables adding, upgrading and swapping hardware and 
software components in an exploration system. From the perspective of LSS and human 
space exploration more broadly, the objective is to support upgrading and incorporating 
new elements (e.g., vehicles, robots, instruments, habitat modules), allowing for new 
forms of automation, migration and changing distribution of mission support functions, 
as well as new and more complex simultaneous distributed operations (Rader, 2008).  
This objective is often referred to in the context of “growth potential” and “incremental 
buildup,” emphasizing technology upgrades. After analyzing a series of ten 
systematically developed surface systems that integrated a variety of hardware and 
software, we found evidence that incremental buildup of an exploration system for long-
duration capabilities is facilitated by an open architecture with appropriate-level APIs, 
specifically designed to facilitate integration of new components, and this minimizes 
costs by reducing changes to the existing system. Specifically, the study shows the 
advantages of composite APIs that map or translate conventional component APIs (which 
provide access to the functional methods and data objects of components) to the language 
of the task (in terms of an EVA plan; names and relationships of people, places, and 
robots; and features of work products). This kind of API effectively enables the 
components (including COTS) to provide task-oriented services to the overall exploration 
system.  

2 Introduction	
  	
  
This report is part of an overarching Lunar Surface Systems (LSS) Software Architecture 
Trade Study that identifies candidate architectures for the key software that will be used 
for each LSS Element (e.g., space suit, vehicle, robot, habitat).  The trade study examines 
three main areas: minimalist architecture, EVA workflow, and real-time avionics and 
middleware. One goal is to estimate the level of effort and cost required for software 
development relative to architectural features and system capabilities.  
 
We assume that regardless of destination and mission complexity, lifecycle cost is 
important, especially as it relates to facilitating international partnership, but initial costs 
will likely dominate decision-making. Appropriate trades might justify an upfront 
software investment, but the budget is necessarily bounded. Using engineering data from 
NASA’s research in Exploration Technology and Intelligent Systems may enable 
generating cost data that can be used for budget planning. 
 
This report focuses on an open architecture that provides a common goal-oriented, 
model-based interface that enables interoperability of a diversity of hardware and 
software systems whose dynamic interactions in a mobile, distributed environment create 
an EVA workflow automation system. The report systematically analyzes data from the 
Mobile Agents Project, funded by NASA’s Intelligent Systems and Human-Systems 
Integration Exploration Technology Development Programs (2002-2006), with the 
objective of developing an open architecture for an end-to-end exploration system 
focusing on science EVAs.  The objective of this report is to use the engineering data 
from the sequence of field experiments to recommend informative metrics for software 
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Open Architecture, providing the groundwork for a Phase 2 interoperability trade study 
using prescribed workflows in EVA scenarios.  

2.1 Integrating	
  Components	
  by	
  Converting	
  them	
  into	
  Services	
  

Recent work in interoperability has suggested the advantages of a service-oriented 
architecture, in which systems interact not by invoking each other directly or only 
exchanging data, but by requesting an abstract function (service) to be accomplished.  In 
the agent-based open architecture described here, components (subsystems) are integrated 
by converting them into services to the exploration system (for example, see Figure 14).   
 
More specifically, the components are effectively converted into agents so they can 
communicate in a common messaging scheme at the task level with other agents that 
manage the workflow of information requests, alerts, and commands among people and 
systems (referred to in this report as the “workflow backbone”). Essentially, a secondary 
API called a Communication Agent (CA) acts in consort with the component’s API, 
serving as a “wrapper” that “agentifies” the component.2  
 
A CA must implement certain generic agent lifecycle methods so that it may be properly 
controlled by the agent hosting environment: initialize, start, pause, resume, stop, and 
reset. The other methods provided by the CA are oriented around the “speech acts” in 
which requests and information are conveyed among agents and ultimately among the 
subsystems that provide the services the agents require to accomplish their goals.  Speech 
acts specify the goals the agents must accomplish; for example, an astronaut might ask, 
“Where is the next activity?” which an agent will answer by consulting the EVA plan and 
its model of the  astronaut’s current location and activity.  An agent might pass on the 
entire request or decompose it into parts that other agents are specialized to handle. 
 
In the context of an EVA workflow system, the workflow backbone of agents will be 
relatively static (e.g., an astronaut’s personal agent, the navigation assistant, the plan 
assistant), while the attached external systems (e.g., robots, instruments, databases, 
biosensors) will vary from one EVA to other. Dynamic reconfiguration for an EVA is 
possible by including the external system in the network of communicating systems, such 
that its presence makes new services available within a framework of existing EVA 
capabilities.  For example, the command “Scout, take a picture of Astronaut 2” would use 
whatever camera is currently configured on Scout.  Such systems are inherently robust by 
handling interactions at the work domain level. For example, if the location of Astronaut 
2 cannot be determined, an agent could ask the location, which might be provided by a 
person or other system (e.g., “90 degrees at 20 meters from your current heading” or “at 
the location of the last activity”). We discovered that natural language commanding, 
which makes it easier for people to operate systems through voice, has the important side 
effect of facilitating interoperability between subsystems as well. 
 

                                                
2 Terms are further defined and explained in the Glossary, Appendix VI. For a more detailed explanation  
distinguishing agents and services and comparison of the Mobile Agents SOA to related approaches, see 
Appendix I. 
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In developing the agent-based workflow system studied here, changes were made based 
on field experiments that used a variety of existing hardware and software systems for 
both field science and routine habitat operations.  The key architectural goals addressed: 
 

1) How mobile agents find each other on the network (design shifted from “proxy 
agents” with fixed network addresses to a centralized and finally to a distributed 
directory service in the “Collaborative Infrastructure” [Clancey et al. 2010]) 

2) How speech acts are represented (shifted from a simple “object” with attribute to 
a formalized SpeechAct object that generally followed the FIPA protocol to a 
formal FIPA implementation in “Communication Acts”; see “FIPA” in Glossary).   

3) How the agents communicate with the external world (e.g., remote science team) 
and local astronauts not participating in the immediate work tasks (shifted from 
one platform handling all transactions to including a habitat platform, “HabCom,” 
that mediated between the mobile workflow agents and the science database, local 
computer display interface, and external communications). 

4) How asynchronous agents manage multiple, simultaneous requests (shifted from 
strictly serial operation to managing tasks through specialized “plan assistants”).	
  	
  

 
In the mature software architecture described here, called the Mobile Agent Architecture 
(MAA) these methods and representations permit distributed, mobile agents to handle 
simultaneous goal-oriented requests on a non-reliable network. 

2.2 Analysis	
  of	
  Field-­‐Tested	
  Workflow	
  Configurations	
  	
  

The study proceeds by synthesizing engineering data and lessons learned from field-
tested EVA-prototype configurations using an evolving Mobile Agent Architecture over 
eight years (Appendix I and Appendix II).  This section provides an overview to the field 
experiments; the next section describes the different field configurations; subsequently 
the data are analyzed to quantify the advantages of the architecture. 
 
As explained below, the field experiments were research projects that explored the use of 
agent-based system integration for directly assisting crew members in a simulated surface 
mission. Put another way, the project explored how existing components (robots, 
cameras, computers, biosensors, GPS devices, electric power systems, etc.) could be 
made interoperable through a combination of agents, APIs, and voice commanding.  
 
It is worth noting upfront that voice commanding is not just another interface modality, 
which is interchangeable with a conventional tabular or graphic display. Rather by virtue 
of the descriptive specificity of natural language and its on-the-spot availability, voice 
commanding provides a distinct way of getting information and controlling systems.3 In 
particular, the use of voice commanding led to the discovery that requiring systems to 
respond to speech acts from astronauts provided a common, goal-oriented interface 
(using a model-based language expressed in terms of the tasks, activities, and objects of 

                                                
3 Natural language commanding can of course be provided by a visual computer interface in which one 
types in text or builds sentences from menus, but it lacks the always-on, “in the air” access provided by a 
speech interface.  
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the work domain) by which the EVA exploration system developers could integrate new 
components to interact with existing systems. Put another way, the goal-oriented, model-
based language required for voice commanding serves as a layer of abstraction that unites 
the diversity of hardware and software (implemented in different languages and using 
different operating systems) that are located on distributed, mobile computer platforms. 
 
The series of field experiments from 2002-2006 enabled exercising and measuring the 
architecture’s capability for efficiently configuring new exploration systems.  The data 
analysis section evaluates a variety of hypotheses in terms of how software agents were 
modified (e.g., direct reuse or number of lines of code added) and personnel effort (e.g., 
size and distribution of teams).  These hypotheses relate to advantages of the open 
architecture for phased development of LSS capabilities: 
 

− Ability to incrementally add new capabilities that satisfy requirements for crew 
self-reliance, safety, and productivity to an exploration system with existing 
components: 

o Ease of adding robotic systems in the same production line 
o Ease of adding a new robotic system by adapting existing software 
o Ease of incorporate existing capability for different purpose (e.g., voice 

mail created from voice annotations) 
− Ability to reconfigure the exploration system for a different work context:  

o Ability to add new kinds external systems (e.g., science instruments, 
electric power systems, life support systems & biosensors) 

o Ability to directly use existing services without changing subsystems (e.g., 
email alerts) 

 
Cost for these changes is estimated and correlated by counting functionalities (workflow 
capabilities), source lines of code, and programming time comparatively in a series of 
system reconfigurations. 
 
Evaluation of an architecture must be with respect to operational requirements that 
require components to interact; otherwise the architecture with the lowest cost with 
simplest incremental buildup is trivially a system with components that can’t interact.  In 
particular, consideration of workflow functionalities provides a way of assessing the 
power and affordability of an architecture.  A proper trade study would compare an 
agent-based architecture to other open architectures that provide workflow 
communications (i.e., command and information exchange services). In the absence of 
comparative data, this report focuses on describing the functionalities developed and 
using them to illustrate how the agent-based architecture is designed and operates.  The 
available data, outlined above, enables quantifying the amount of code, the reuse of code, 
and some extent the required effort for creating workflow capabilities. 
 
Each field test configuration implemented an integrated collection of automated 
capabilities, such as biomedical monitoring, robot and instrument control, habitat system 
monitoring, and science data collection.  These capabilities are described in the section 
that details the field configurations (Table 1).  The capabilities address typical operational 



Clancey et al.: LSS Study: Open Architecture  

	
   11 

requirements pertaining to productivity, crew safety, and crew self-reliance. Security is 
not addressed in these field tests, however it is a key requirement of OCAMS (Figure 21; 
Clancey et al. 2008), a mission operations system using the MAA with the addition of the 
Collaborative Infrastructure. 

3 Description	
  of	
  System	
  Configurations	
  	
  and	
  Data	
  Analyzed	
  	
  
The data analyzed in this report consists of four different kinds of configurations or 
“product lines” comprising ten systems designed, developed, and tested by NASA Ames 
and JSC from 2002 through 2008: 
 

− “Automating Capcom” Configurations:  
o DRATS 2002, MDRS 2003, 2004 (all using EVA robotic assistant) 
o MDRS 2005, DRATS05 (Scout vehicle), CDS05 (K9 and Gromit robots)  
o DRATS 2006 (pressurized suits, JSC ExPOC, and GeoPhone Array) 

− “Power Agents” Configuration: MDRS 2006 
− Metabolic Advisor Configuration: POGO 2007 
− iMAS Scientist’s Field Assistant: MMAMA 2008 (HI, NM, BZE) 

	
  
The “automating Capcom” configurations presumed an EVA scenario with time-delay 
that required astronaut self-sufficiency in carrying out EVA plans according to location 
and duration, storing correlated data (e.g., associating photographs with EVA activity, 
astronaut, location, time, and related data such as a voice annotation), and monitoring 
personal health, life support, and other system resources.  These capabilities are described 
further below. 
	
  
The software developed for the Automating Capcom product line includes the 
Collaborative Decision Systems (CDS) Project, funded by ESMD (spacecraft autonomy) 
and SMD (autonomy and operations). This field configuration, directly adapted from 
MDRS05 and using the same code base as DRATS05, was designed to demonstrate that 
spacecraft autonomy may require human operations, and there is therefore a place for an 
agent system that integrates spacecraft with databases and human work flow.  The report 
concluded: 
	
  

[CDS	
  2005]	
  focused	
  on	
  pragmatic	
  ways	
  of	
  combining	
  autonomy	
  with	
  human	
  
activities	
   and	
   capabilities.	
  	
   One	
   perspective	
   is	
   that	
   there	
   will	
   always	
   be	
   a	
  
combination	
   of	
   automated	
   and	
   human-­‐controlled	
   operations,	
   through	
  
interfaces	
   for	
   local	
   astronauts	
   in	
   the	
   habitat	
   or	
   remote	
   mission	
   support	
  
teams.	
  Thus,	
   one	
   should	
   not	
   focus	
   on	
   the	
   particular	
   aspects	
   that	
   we	
   have	
  
automated	
  or	
  require	
  operator	
  intervention.	
  	
  Rather,	
  our	
  point	
  is	
  to	
  define	
  a	
  
simple	
   example	
   of	
   such	
   a	
   combination	
   and	
   how	
   it	
   might	
   be	
   implemented	
  
using	
   a	
   variety	
   of	
   planning,	
   voice-­‐commanding,	
   and	
   visualizing	
   systems.	
  
(Pedersen,	
  et	
  al.,	
  2006)	
  

	
  
Three quite different EVA system configurations were directly adapted from the 2005 
configurations for getting information about a habitat power system (MDRS 2006), for 



Clancey et al.: LSS Study: Open Architecture  

	
   12 

monitoring and understanding the relation of personal metabolic performance and life 
support resources (POGO 2007; Human Research Program funding), and for stand-alone 
data surveys on an EVA (iMAS 2008; Science Missions Directorate funding).  These 
systems are derived from each other chronologically described further below (Table	
  3).  
Configuration diagrams appear in Appendix II. 
 
The sources of data analyzed include: 
 

− Code	
  repositories	
  (snapshot	
  as	
  of	
  completion	
  of	
  field	
  work)	
  
− Highlight	
  reports,	
  papers,	
  presentations,	
  and	
  diagrams	
  
− Project	
  schedules,	
  email,	
  budgets	
  
− Expedition	
  records	
  

	
  
Source code snapshots are available starting with MDRS2004; earlier systems have a 
somewhat different architecture for distributed communications, which became mature in 
MDRS05.4 The data about different system configurations and personnel have been 
organized in spreadsheets, as outlined in Appendix IV.  

3.1 Categorization	
  of	
  Workflow	
  Automation	
  Capabilities	
  	
  

Exploration system configurations can be viewed structurally in terms of components 
(hardware, software) and agent software, and functionally in terms of workflow 
capabilities (or functionalities) provided to the astronaut crew for controlling and 
monitoring subsystems and EVA-related tasks, with alerting. Categories of system 
workflow functions are shown in Table 1 with brief explanation of what is included.  The 
actual capabilities for each system are summarized in Appendix III. 
 
Table 1. Categorization of EVA Workflow Automation Capabilities 
 

 

                                                
4  Additional data are available for the OCA Management System (OCAMS) deployed at JSC in MCC 
since July 2008 using the same agent-based systems integration architecture, but are not analyzed in this 
report. OCAMS received the JSC Exceptional Software Award in June 2010. 

 Hardware Integration Robots, cameras, sensors, instruments,  displays, etc. 

 
Software Integration 
 

Software incorporated as separate components, e.g., 
planning system, Excel 

 Astronaut Health Monitoring Available data and alerts, e.g., heart rate 
 System Health Monitoring Computer, Power, & Life Support systems 

 
Location Tracking 
 

All aspects of logging, tracking, finding assets in the 
field 

 Human-Robot Coordination Commands involving robotic systems  
 Plan Management Getting status and changing the work plan 
 Science Data Logging All aspects of data collection during EVA 
 Voice Mail  Crew communication via recorded messages 
 Alert Management Control of alert types and modality 
 Voice Command Controls Control of voice interface 
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Workflow automation capabilities exemplified by those listed here facilitate crew self-
sufficiency, safety, and productivity; in turn these capabilities are facilitated by a 
software architecture that facilitates communications between subsystems in the language 
of the task domain (Section 2.1). The capabilities of the workflow automation are 
demonstrated here qualitatively, through the descriptions of the system configurations. 
 
It should be noted that the systems being analyzed were developed to illustrate typical 
functionalities that are useful to scientist-astronauts during EVAs in which real-time 
communication with mission support is not possible due to time delay. The voice 
commanding capabilities were designed especially for: 1) creating documented EVA 
products, 2) by executing the EVA plan, keeping it on route and schedule, 3) while 
remaining aware of logistic/safety constraints and limitations.  
 
The MAA research objective focused on developing and demonstrating an open software 
architecture that enables workflow automation with COTS components (e.g., a camera, 
spreadsheet software) and previously developed exploration system components (e.g., the 
K9 rover). The systems were developed to experimentally test under authentic 
exploration conditions whether people would find it advantageous to make requests for 
information and actions in natural language (i.e., as speech acts5) using voice 
commanding. Hence the system configurations focus on developing a range of useful 
capabilities with a range of existing hardware and software components, rather than 
creating a complete, recommended configuration and capabilities.   
 
All capabilities were introduced based on direct, empirical experience with field 
scientists, our experience living in the simulation habitat (for Power Agents 
configuration), and Apollo experience (for both science data collection capabilities and 
POGO07, the metabolic rate advisor).  For example the alerting capabilities focus on 
obviously useful information (e.g., astronaut’s backpack computer battery is low; the 
diesel generator has stopped charging the habitat’s batteries) and illustrate how different 
kinds of information can be integrated from different sources for generating context-
sensitive alerts and advice (e.g., emergency walk back route advice that relates the 
astronaut’s current location, metabolic rate, consumables remaining, and the terrain).  By 
contrast, other research and development efforts might focus on a particular subsystem, 

                                                
5 Speech acts are utterances in the language of the task domain, occurring in everyday speech as well as a 
semi-formal commanding language, with implicit assumptions about the desired response.  Conventionally, 
“Can you pass the salt?” is not an information request, but a command, “Please pass me the salt.” 
Commanding a robot, “Go to Waypoint 2” might mean by a convention adopted by the crew, “…and wait 
there until you are told to move again”). All commanding, whether by spoken language or a display menu 
with formal operators and operands, involves implicit meanings known to designers and system operators. 
The notion of speech acts becomes salient when developing a system for voice commanding workflow 
operations, where goals and constraints are not necessarily explicit (however agents may ask for 
clarification when necessary). As another example, “Associate voice note with the last image” means to 
store “the voice note I just recorded” in the science database (accessed via the HabCom computer), linking 
the voice note to “the last photograph downloaded from my camera” in the context of “me, my current 
EVA activity, the current time, and this location.” To document this implicit character of communications 
between people and among agents, the agent-based architecture described here packages messages between 
the spoken language interface and agents using the Speech Act formalization of the FIPA standard. 
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for example to show how to monitor all safety rules and engineering constraints while 
driving an unpressurized vehicle (e.g., Scout).  

3.2 Exploration	
  System	
  Component	
  Configurations	
  and	
  Product	
  Line	
  Relations	
  

Table 2 provides an overview of the EVA system configurations according to number of 
computer platforms running workflow agents, number of functionalities (as categorized 
by Table 1), robotic systems included, and other integrated subsystems. For details about 
subsystems, see Table 3, which also mentions how the architecture evolved.  
Functionalities here are grouped by kind of request per subsystem; for example, 
requesting the status of the life support scrubber, feedwater, or inlet temperature counts 
as one capability.  Other examples of a single capability are: being able to turn on or off a 
system and to pair-wise associate voice notes, sample bags, images, and locations. Thus 
in general a capability was realized as multiple grammatical forms and of course an 
unlimited number of specific utterances naming particular objects, people, places, 
activities, and times.  
 
Table 2. Mobile Agent System Configurations  
Systems are listed chronologically by field test; “agent platforms” are laptop computers 
running agent systems with the Brahms Virtual Machine; Functions include all categories 
of voice commands and alerts, see Table 1; external systems are any devices or software 
with APIs communicating with agents, e.g., biosensors, cameras, email, RIALIST, 
Xantrex inverter, including robotic systems; see Table 3 for further descriptions. 
 
SYSTEM	
   FTE	
   #	
  Agent	
  

Platforms	
  
#	
  	
  

Func	
  
Robotic	
  Systems	
  (adapting	
  ERA	
  CA)	
   #	
  

External	
  
Systems	
  

ERA1	
   ERA2	
   SCOUT	
  
	
  

K9	
   Gromit	
  

DRATS02	
   2	
   1	
   3	
   X	
   	
   	
   	
   	
   4	
  
MDRS03	
   1.4	
   4	
   29	
   X	
   	
   	
   	
   	
   7	
  
MDRS04	
   2.8	
   4	
   53	
   X	
   	
   	
   	
   	
   10	
  
MDRS05	
   2.9	
   5	
   82	
   X	
   X	
   	
   	
   	
   13	
  
DRATS05	
   .9	
   4	
   77	
   	
   	
   X	
   	
   	
   14	
  
CDS05	
   .9	
   4	
   80	
   	
   	
   	
   X	
   X	
   11	
  
PA06	
   1.1	
   5	
   45	
   	
   	
   	
   	
   	
   10	
  
iMAS06	
   .1	
   1	
   51	
   	
   	
   	
   	
   	
   5	
  
DRATS06 
	
   .7	
  

5	
   91	
   	
   	
   X	
   	
   	
   16	
  

POGO07	
   .3	
   1	
   63	
   	
   	
   	
   	
   	
   7	
  
iMAS08	
   .05	
   1	
   50	
   	
   	
   	
   	
   	
   5	
  
	
  
To make clearer how the systems were derived from each other, each has a “product line 
code.” Thus the systems numbered “1” in Table 3 were developed sequentially in the 
order shown, 1A was adapted to produce 1B, from which 1C was produced, etc.  The 
systems numbered “2” represent a substantially different configuration (i.e., integrating 
habitat power systems instead of EVA robots and devices), but were nevertheless adapted 
from the deemed mature MDRS05 architecture and specific agents in that configuration.  
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Specifically, in the second product line iMAS06 is identical to PA06, but configured for a 
scientist working on an EVA off the wireless network.  That is to say, all of the science 
data logging, location tracking, and plan management capabilities (Table 1) developed 
for MDRS05 are contained in the second product line, but are only meaningful to use in 
the EVA context (with GPS and camera attached).  Accordingly, in the Power Agents 
configuration (with inverter and power channel monitors attached, but no GPS), one 
could ask “Where am I?” and the system would indicate it is unable to determine your 
location.  And in the iMAS06 configuration one could ask “When did the generator come 
on line?” and be told that no generator data is available.  Because of the functional 
decomposition of agents introduced in MDRS05, many modules are carried over 
unchanged (e.g., from MDRS05 to PA06) and changes are almost always incremental.  
 
To continue the description of product lines, number three, which is represented only by 
DRATS06 (a collaboration with Frank Delgado, Susan Tourney, and Joe Kosmo from 
JSC, Houston; see Clancey, et al. 2007) constitutes again a substantial change. It is 
derived directly from CDS05 (thus contains all of DRATS05), but now includes 
workflow agents running at a remote site (ExPOC in Building 30 at JSC, Houston), 
which enabled a controller to use voice commands to control a geophone array 
deployment device operated by the Scout rover. Integration with the rover and 
pressurized suit audio system was much improved from DRATS05, enabling all of the 
science collection functionalities from MDRS05 to be exercised successfully, with 
additional capabilities to remotely control the rover (e.g., “Scout, go to waypoint 2”).6   
 
Next, iMAS06 from the second product line was reconfigured to create POGO07, 
providing life support and consumables alerting using data from metabolic rate algorithm, 
which was itself integrated with a biosensor system and suit life support system. POGO 
was used by an astronaut in a pressurized suit supported by a partial gravity harness.  In 
the harness none of the science collection capabilities are meaningful; instead only the 
astronaut and system health functions are used.  Once again, inherited voice commands 
will be recognized, as the vocabulary grows incrementally, but without corresponding 
subsystems (and their agents) attached, the system responds gracefully to the lack of data.  
 
Finally, iMAS08, a practical system for gathering field geology data at lunar analog sites, 
took POGO07 into the field, with science data collection functions improved (e.g., using 
beeps rather than verbal confirmations and automatically making certain data associations 
between photographs, location, and samples). The metabolic rate subsystem was omitted, 
because the biosensors were unavailable and would be cumbersome for practical use. (An 
offshoot of iMAS08, not described here, included a terrain modeling and EVA route 
planning tool, whose data could be integrated with the metabolic rate information and 
data about consumables, Johnson et al., 2009; Johnson, forthcoming). 
	
  
 
 
                                                
6 See  http://www.youtube.com/watch?v=fTTrFDR9I1I, which includes video excerpts from 
NASA Public Affairs Office. 
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Table 3. Product line “inheritance” relations of MAA configurations.7 
 
SYSTEM Product 

Line 
Code 

Description and Explanation 

DRATS02 1A Initial system build, single laptop platform, camera, biosensors, voice. 
Agent communications represented as Brahms Objects. Includes “proxy 
agents” for potentially queuing requests to agents on inaccessible 
platforms. 

MDRS03 1B Addition of an EVA Robotic Assistant (ERA), 2nd astronaut laptop, and 
habitat computer (for HabCom crew member), i.e., four distributed 
platforms. Agent communication uses KaOS with CORBA as transport 
layer and directory service across network for multiple platforms. 

MDRS04 1C First archived system; fully functional location and plan assistance. ERA 
follows astronauts in canyon, automated video tracking. Agent 
communication via KaOS/CORBA now uses FIPA SpeechAct envelope 
with Brahms “Communication Acts” as payloads; centralized directory 
service on mobile laptop (ATV) acceptable, but single point of failure. 

MDRS05 1D 2nd ERA relay controlled by human operator; temperature probe; 
dynamic reconfiguration of ERA roles during EVA. Personal agents for 
astronauts and robots decomposed to create service-oriented “assistants”; 
Plan Assistant enables agents to handle multiprocessing (simultaneous 
open requests) through task list. Proxy Agents eliminated. 

DRATS05 1E Scout rover is configured to be the ERA; heads-up display. Insufficient 
testing time provided in field to complete integration. 

CDS05 1E Two weeks after DRATS05: Same software package as DRATS05 with 
bugs fixed. EVA system incorporates Gromit and K9 by adapting ERA 
agent; one astronaut, no HUD; HabCom interacts with EUROPA to 
control K9 via agent architecture. 

PA06 2A “Power Agents”; no robots; all inside MDRS habitat; completely new 
functionality in monitoring electric power system, including generator, 
batteries, solar panels. Voice mail implemented during two-week shake 
down test; configuration retains all  science data collection and EVA 
management capabilities. Introduces sound beeps to provide 
confirmation for certain routine commands. 

iMAS06 2A Same software as PA06, but configured for one laptop operating in 
standalone (off-network) mode, for use by field scientist. 

DRATS06 
 

3 Reconfiguration of DRATS/CDS05 to enable second commanding 
console off-site (JSC’s Exploration Planning & Operations Center, 
ExPOC); automated control of geophone deployment from Houston. 
Voice commanding by crew in pressurized suits with special 
microphones. Demonstrated autonomous driving of Scout (“Go to 
waypoint” “Follow astronaut one”). 

POGO07 2B Based on iMAS06; integrates with Metabolic Algorithm (Excel VBA) 
connected to biosensors in pressurized suit during partial-gravity 
experiments. Language grammar rebuilt from scratch to be more 

                                                
7 Reports and video highlights are available for MDRS and DRATS field tests: 
http://homepage.mac.com/WJClancey/%7EWJClancey/WJCMarsSociety.html 
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compact, enabling much faster compilation.   
iMAS08 2C Based on POGO07, with more automated science data logging; used in 

practical settings by geologists in Hi and NM and by divers with scuba 
gear (Belize). 

 
To summarize, the product line relationships are of different types: Incremental 
components and functionalities (1A -> 1E; 2A -> 2C), conversion to a different setting 
and kind of functionality (1E -> 2A), identical software packages with different platforms 
and components included (1E, 2A), major reconfigurations (1E -> 3).   These different 
relationships require fairly detailed analysis to understand productivity calculations (e.g., 
KSLOC/FTE) because the work required to transition the system from one configuration 
to another is qualitatively different. In particular, a distinction must be made between: 
Reusing an agent (no change), adding functionality to an agent, and adapting the agent 
for a different subsystem (e.g., rewriting the ERA CA twice, for use by K9 and Gromit). 
On the other hand, Table 3 reveals an architecture of great flexibility, particularly when 
one considers that the programming time per system configuration (developing agents 
and APIs) varied between less than 1 FTE and 3 FTEs, and often four or five distinct 
project teams at NASA Ames and JSC were collaborating.  After the architecture reached 
maturity with MDRS05, new configurations were built in 3 to 5 months by 5 to 7 part-
time programmers and two system designer/managers. 

4 Analysis	
  of	
  Field	
  Configuration	
  and	
  DDT&E	
  Data	
  	
  
The data (outlined in Appendix IV) has been analyzed to reveal and explain patterns to 
extract architectural features that were advantageous for reconfiguration into new systems 
with increasing workflow assistance capabilities. The objective was to quantify the 
advantages of an open architecture promoting interoperability for DDT&E when building 
an agent-oriented workflow system that facilitated crew self-reliance, safety, and 
productivity.  The three primary hypotheses are: 
  

1. The	
  agent-­‐oriented	
  workflow	
  system	
  enables	
  integrating	
  components	
  	
  (e.g.,	
  
biomedical	
  algorithms,	
  robots,	
  databases)	
  without	
  redesigning	
  them:	
  
Workflow	
  agents,	
  in	
  consort	
  with	
  CAs	
  using	
  SpeechActs,	
  provide	
  a	
  means	
  for	
  
new	
  components	
  to	
  work	
  together	
  with	
  existing	
  components	
  to	
  provide	
  task-­‐
oriented	
  services,	
  i.e.,	
  programming	
  effort	
  was	
  at	
  the	
  agent	
  level,	
  not	
  the	
  
applications.	
  
	
  

2. Cost/capability	
  is	
  not	
  increasing:	
  DDT&E	
  effort	
  for	
  constructing	
  	
  systems	
  in	
  
new	
  contexts	
  (Power	
  Agents	
  and	
  POGO)	
  is	
  at	
  least	
  comparable	
  to	
  adding	
  
capabilities	
  in	
  the	
  mature	
  architecture	
  (MDRS05),	
  involving	
  effectively	
  no	
  
effort	
  to	
  modify	
  the	
  pre-­‐existing	
  capabilities,	
  i.e.,	
  cost	
  is	
  incrementally	
  
proportional	
  to	
  number	
  of	
  added	
  capabilities.	
  	
  	
  

 
3. KSLOC/capability	
  is	
  not	
  increasing:	
  Making	
  a	
  system	
  more	
  complex	
  in	
  terms	
  

of	
  number	
  of	
  capabilities	
  does	
  not	
  cause	
  an	
  exponential	
  increase	
  in	
  size	
  of	
  
code	
  because	
  capabilities	
  tend	
  to	
  involve	
  similar	
  numbers	
  of	
  component	
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interactions	
  and	
  functionally	
  specialized	
  agents	
  provide	
  common	
  services,	
  so	
  
they	
  are	
  invoked	
  and	
  used	
  in	
  new	
  contexts	
  without	
  modification.	
  

4.1 Analysis	
  of	
  Changes	
  to	
  the	
  Agent	
  System	
  	
  

Figure 5 and Figure 6 show how the agents in the exploration system were modified for 
each configuration.  The percentage of the total size in thousands of lines of source code 
(KSLOC) is categorized by code attributed to new, modified, and unchanged agents (for 
workflow agents and communication agents respectively in the two figures). The 
percentage of code in the configuration attributable to modified agents is further broken 
into that part which was added and the part that was pre-existing (parts may have been 
revised rather than simply carried over).  The code added to communication agents is 
broken out to show that portion that corresponds to the RIALIST CA (“dialog agent”).  
 

 
 
Figure 5. Reuse and additions to workflow agents for each field configuration, 
shown chronologically. 
  
Figure 5 shows that a workflow agent backbone was established after MDRS05 (Figure 
14) and was reused for subsequent configurations.  Workflow agents were all restructured 
in developing both MDRS04 and MDRS05 (all appear as “new”), but DRATS05 
workflow agent code was about 85% carried over from MDRS05. CDS05 was identical 
to the system used for DRATS05 because the systems were built as a single unit to 
operate any combination of the three robots, Gromit, K9, and Scout.  DRATS06 
contained no new workflow agents, and about 20% of the workflow agent network 
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consisted of code added to existing agents.  PA06 and POGO06, systems in entirely very 
different settings, were similar to DRATS05 in requiring some new workflow agents for 
new kinds of capabilities, but otherwise retained the workflow agent backbone.  iMAS is 
effectively a repackaging of an existing configuration for standalone use in the field, so 
the only coding required was for revised capabilities in iMAS08, including a new “user 
model” workflow agent to manage crew member preferences.  
 
The analysis of the communication agent reuse (Figure 6) is similar to the workflow 
agents, with some important differences. Although workflow agents were completely 
restructured in developing MDRS05, nearly half of the communication agents were 
unchanged. Thus the improvements focused on the workflow functional decomposition 
of services to respond to speech acts, rather than the integration with the external 
systems.  This demonstrates how workflow automation using Speech Acts for 
communication can be enhanced without requiring changes to existing systems or the 
agents that mediate with existing systems. 
 

 
Figure 6. Reuse and additions to communication agents for each field configuration, 
shown chronologically. Modified agents are broken into percentage of the module 
that is added and portion carried over (perhaps edited). (Source code data begins 
with MDRS04, so all agents are categorized as “new,” despite carryover from DRATS02 
and MDRS03.) 
 
On the other hand, for CDS05 no workflow agent changes were required, but more than 
20% of the communication agent code was added to integrate with new external systems 
(Gromit and K9 robots and Europa planner software). This demonstrates how the 
workflow backbone can provide services to completely new components without 
requiring changes to the workflow agents. 
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Power Agents (PA06) required both new kinds of capabilities and new external systems 
to be integrated, so the changes to workflow and communication agents are similar. As 
expected, creating iMAS06 required no changes to communication agents because there 
are no added systems.  DRATS06 on the other hand shows somewhat more modifications 
to communication agents (specifically Scout’s version of the ERA CA), because of the 
new capabilities provided by Scout’s Geophone deployment device, cameras, and 
automated drive mode. 
 
For iMAS08 small changes to three modules (11 lines added to the Compendium 
database CAs 4684 lines; 9 lines to the Science Data Collector’s 1056 lines; and 24 lines 
to the GPS CAs 571 lines) show up as a large proportion of modified code.  Although 
measuring internal edits requires analyzing the code directly, the actual increase in 
module size per added capability is worth examining, as is shown subsequently. 
 
It is useful to relate these proportional charts to the total code base (Figure 1; see 
Executive Summary section). This chart reveals that the majority of the code was for CAs 
(80% of added KSLOC), but as is evident in the preceding chart, a relatively small 
amount is added for each configuration (starting with MDRS05, the average addition was 
14% of workflow KSLOC and 13% of CA KSLOC). Figure 2 (see Executive Summary) 
shows that the ratio of total workflow KSLOC to the total system KSLOC remained 
surprisingly constant at 16%,. 

4.2 Relation	
  of	
  Code	
  Size	
  to	
  Added	
  Capabilities	
  
Figure 3 relates the number of workflow capabilities added in creating a configuration to 
the increase in the lines of code added to workflow and communication agents combined. 
The data show about 1500 source lines of code were added on average for each workflow 
capability (as defined by Section 3.1).  Overall the chart shows a decrease over time to 
about 1000 KSLOC/capability, perhaps because of increased stability (direct reuse) of 
functions provided by the workflow backbone.   
 
What accounts for the apparent extra work in creating DRATS/CDS05?  To begin, it is 
important to remember that DRATS05 was developed with the design configuration of 
CDS05 in mind, so their data are combined here.  In particular, all changes to the dialog 
agent (RIALIST CA) appear in the source code for DRATS05, even though most were 
only exercised in the CDS05 configuration. 
 
DRATS/CDS05 includes improvements based on the MDRS05 experience, including 
revisions to the HabCom console agent, GPS agent, and Network Assistant. But the most 
important changes were to the ERA CA for handling Scout (1685 additional lines), and 
new CAs for handling Gromit (8654 lines) and K9 (6475 lines). These additions for the 
three new robots account for 65% of the additional code. At the same time, not many new 
capabilities were introduced relative to what was added to previous reconfigurations 
(Table 4).  In this chart and what follows, DRATS02 and MDRS03 are treated as a single 
combined effort, adding the 3 capabilities that were operational during DRATS02 field 
tests and the 26 that were completed or added during MDRS03, and adding the effort data 
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(FTE) for the two periods.  This is justified because the initial field test during 
DRATS02—the first use of Mobile Agents in the field—was not sufficient to fix all of 
the bugs and a great deal was learned about how to configure the power, GPS, voice 
headset, and wireless systems to be robust under field conditions.  Because KSLOC data 
are missing for DRATS02 and MDRS03, that entry is missing from the KSLOC analysis 
charts. 
 
Table 4. Number of new capabilities for each system configuration. 
 

SYSTEM 
# New 

Capabilities 
DRATS02/MDRS03 29 
MDRS04 25 
MDRS05 32 
DRATS05 2 
CDS05 6 
PA06 21 
DRATS06 9 
POGO07 9 
IMAS08 1 

 
The two new capabilities introduced in DRATS05 were a heads-up display for displaying 
procedures on command and creation of a dynamic map displaying where data was 
collected (e.g., photographs) during the EVA.  CDS05 included a handful of commands 
for moving Gromit and commanding K9 to plan a path; independently, CDS05 also 
introduced the capability to ask, “What is my current activity?” (to verify the personal 
agent’s model of what the astronaut was doing).  
 
As an example of a perhaps typical case that is easily circumscribed, POGO07 introduced 
9 new capabilities with 4.5 KSLOC (.5 KSLOC/capability), which is broken down in 
Table 5.  One new workflow agent and one new CA were added, which with 
corresponding modifications to the dialog agent. This ratio is clearly related to the 
functionality of the external system. In this case the metabolic rate advisor is a complex 
software program that provides a wide variety of data related to metabolic rate, life 
support, power, and the spacesuit, which provide four kinds of information requests and 
four kinds of threshold alerts, plus one integrative alert that a walkabout emergency has 
occurred. Obviously, how one aggregates “capabilities” strongly affects the calculation; 
however, the very different functions provided by DRATS06, PA06, and POGO07 
suggest that the analysis is internally consistent.   
 
The iMAS08 data provides a useful case because only one capability was added to 
POGO07, namely to disable/enable automatically contextually associating data in the 
science database during the EVA. As noted above, this change involved 44 new lines of 
CA code plus 596 added to the Dialog Agent and a new workflow “user model” agent of 
259 lines, which yields 859, or approximately 1 KSLOC for this capability. In this case 
separating out handling of user preferences was desirable because two geologists were 
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using iMAS08 in the field (without networking), and differently configured systems were 
desired. 
 
Table 5. Source Lines of Code (KSLOC) added in POGO07 configuration. 
 

Code Modifications for POGO07 KSLOC 
New WF Agent 1.8 
Added to existing WF Agents .1 
New CA 1.2 
Added to Dialog Agent (RIALIST CA) 1.4 
Added to existing CA 0 

TOTAL Added KSLOC 4.5 
  
We can conclude that with experience, even when providing very different functions 
relevant to crew health and safety, science data collection, and self-reliance (the power 
system and metabolic rate advisors), the amount of code to provide new capabilities 
dropped and averages about 1.5 KSLOC/capability (Figure 3, see Executive Summary). 
Note that this does not include code changes that might have been required to component 
APIs or changes to internal component applications, such as a robot’s operating system, 
because the data are not available.  We do know that most if not all changes occurred in 
APIs because the commands provided by Gromit (e.g., move a certain distance at a 
certain bearing) and K9 pre-existed integration into the workflow system. COTS 
components (GPS, biosensors, Excel, One Channel system) were not modified at all, 
including their APIs, for the integration process.   
 
The extra effort worked for the DRATS/CDS05 configuration suggests that adding a 
component such as a robot that provides a variety of different capabilities will require a 
substantially more complex CA (e.g., compare integrating a camera that can only 
download images to adding a robot that controls two kinds of cameras, drives 
autonomously, follows people, etc.).   

4.3 Relation	
  of	
  Voice	
  Commanding	
  Interface	
  to	
  Capabilities	
  

We should expect the amount of code added to the Dialog Agent (RIALIST CA) to be 
proportional to the number of capabilities added. The data indicate each capability on 
average required about 300 lines of code to be added to this communication agent, which 
passed voice commands (as Speech Acts) to workflow agents for processing. The 
iMAS08 single added one capability required 600 lines; other configurations such as 
MDRS and DRATS with 20 to 30 capabilities averaged fewer lines.  The iMAS08 
configuration, whose source code is being compared here to POGO07, also included 
improvements that do not appear as new capabilities. For example, the following 
responses were included as being equivalent to “yes”: yeah, yup, sure, affirmative, okay, 
concur. If we count this as another capability, then the ratio is .3, which is within 
previous bounds; so the variation for iMAS08 can be ignored.  
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Figure 7. Source lines of code added to Dialog Agent (RIALIST Communication 
Agent) for each Capability. 
Relation of Communication Agent Code to Kind of Component 
Figure 8 shows the lines of code for the communication agents for each of the indicate 
hardware and software components.  When CAs were modified for subsequent field 
experiments, the chart indicates the initial and final sizes.  The components are sorted 
with hardware followed by software from left to right.  The chart indicates that CA size 
for hardware components varies greatly, as expected, with devices that are providing only 
measurements (data) and/or status information (battery monitor, camera, GPS, 
biosensors) have relatively small CAs, while robotic systems are relatively very large.  
The average software system integrated required on average smaller CAs.  Compendium 
organizes and stores EVA data as graphic networks; Science Organizer organizes the data 
into a semantic database, dynamically arranged into an Explorer-style browser on web 
pages available on the Internet. 

4.4 Productivity	
  Analysis	
  
This section examines the productivity (effort required) for adding workflow source code, 
including both workflow and communication agents (but as before, excluding APIs 
because those data were not archived). Although KSLOC data are complete and reliable, 
the FTE data are estimates and subject to large errors, as indicated in  
Figure 9. 
 

0.0	
  
0.1	
  
0.2	
  
0.3	
  
0.4	
  
0.5	
  
0.6	
  
0.7	
  

Added	
  Dialog	
  KSLOC/	
  New	
  Capability	
  



Clancey et al.: LSS Study: Open Architecture  

	
   24 

 
 
Figure 8. Source Lines of Code for Communication Agents for Integrating 
Hardware and Software Components.  
 

 
 
Figure 9. Ratio of Source Lines of Code for new or added to Workflow and 
Communication Agents to Programmer Effort (Full-Time Equivalent). Effort is 
annualized over the development period (i.e., effort during period * (number of period 
days / 365 days)).  Error bars indicate range for underestimating effort (“error low,” 
deemed to be more likely) and overestimating (“error high,” unlikely). 
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Figure 9 shows KSLOC/FTE. The error in FTE data as depicted in the graph cautions that 
we not over-interpret the pattern, but it is nevertheless striking that the productivity for 
adding capabilities was relatively constant (though perhaps improving) in the first three 
configurations, as the architecture was maturing. As noted in discussing Figure 3, the 
establishment of the workflow agent backbone required for an EVA exploration system 
allowed development of new capabilities after MDRS05 to focus on the new CAs (if any) 
and changes to the Dialog Agent to accommodate new voice commands. 
 
MDRS04 KSLOC/FTE productivity is calculated as if it were the first year as if all 
modules were created from scratch because it is the first year for which archived source 
code exists. In some respects, this is not a problem because we know that the source code 
from MDRS03 was significantly revised and reorganized. Also, in counting new 
capabilities and KSLOC, we appropriately exclude those that were operational as a result 
of MDRS03 development and testing. What is missing therefore are the KSLOC 
productivity data from the two earlier iterations: DRATS02 in which the personal agent 
of the astronaut (with science data collection, biosensor monitoring, and GPS tracking) 
was developed, and MDRS03 in which the personal agent of the ERA (with capability to 
take photographs, follow astronauts, and move on command) was developed. 
 
The data indicate that KSLOC/FTE productivity was relatively constant for the EVA 
exploration systems starting with MDRS04, increasing for the last configuration 
(DRAT06).  The apparently decreased productivity are not significant given the error 
possible in the FTE data. However, a slight decrease is not surprising for 
DRATS05/CDS05 because of the involvement of two new teams at NASA Ames who 
developed Gromit and K9. We previously noted that added KSLOC per new capability 
significantly increased for DRATS05/CDS05 (Figure 3) because of the complexity of the 
three robotic systems that were integrated. 
 
An obvious correlation is that the increased productivity for DRATS06 occurs because 
the team added capabilities to the existing set of components developed (but not 
sufficiently tested) for DRATS05.  Including ExPOC at JSC in DRATS06 essentially 
required only installing a copy of the HabCom system, which was already operating 
remotely via the Internet in MDRS05 (and had been configured for the Meteor Crater). 
 
Productivity increased in developing the PA06 system and iMAS08 (which included only 
one new capability and no new components), but productivity for POGO07 is more 
similar to the EVA exploration systems. Development of PA06 might have been 
relatively productive because it is the only configuration in which all of the developers 
belonged to one organization (the NASA Ames Brahms group). In contrast, developing 
POGO07 involved a new collaboration with a NASA JSC team in the Human Research 
Program, with considerable work to understand the Metabolic Rate Advisor and develop 
its CA. As noted before, iMAS08 is counted as having only one new capability, so the 
error bar in the KSLOC/FTE ratio is high.  
 
An important trend to consider is that KSLOC added, number of new capabilities, and 
development effort are dropping over time for new configurations, relative to the original 
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MDRS04 and MDRS05 systems (Figure 10). New systems and revisions after 2005 show 
strong correlation between number of new capabilities and added lines of code as effort 
required drops. This fits the claim that a workflow backbone was in place by MDRS05, 
such that it and most CAs were reused (with only incremental modifications) for 
subsequent configurations.  What is striking is that these subsequent configurations 
provided capabilities for commanding very different kinds of components.  As previously 
mentioned, DRATS/CDS05 required relatively more code for the number of new 
capabilities, explained by the complexity of integrating with three new robotic systems.  
However, the relation of KSLOC to FTE remained about the same, showing that the 
programming team’s efficiency was relatively constant. One can also see again here (as 
noted for Figure 3) that the amount of new code for MDRS04 and MDRS05 per 
capability was relatively high compared to later systems, as would be expected because 
that develop involved creating (and reconfiguring) the workflow backbone.   
 

 
 
Figure 10. Additional Lines of Workflow and CA Code Compared to Number of 
New Capabilities and FTE.  
 
The relation of added KSLOC and number of new capabilities (Figure 3) suggests that 
new capabilities/FTE should also be correlated (see Figure 4 in Executive Summary).  
Indeed, we see a marked improvement in productivity over time, with dips for 
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DRATS/CDS05 and DRATS06 possibly because of the number of people involved 
integrating the new systems. Figure 4 includes the number of new capabilities and FTE 
data from the combined DRATS02 and MDRS03 field seasons.  It is not surprising that 
both values are at or near the maximums, fitting the claim that these are proportional 
(Figure 4) and upfront effort was relatively high.  
 
The productivity of DRATS06, relative to the MDRS and DRATS/CDS configurations, 
is noteworthy because it involved commanding SCOUT to deploy a new instrument and 
to drive autonomously, and all commands could be initiated in the field by the crew, in 
the habitat, or remotely at JSC (ExPOC).  One could anticipate very different results if 
adding new capabilities increased component and workflow interactions. Instead, the 
workflow backbone and CA architecture is designed to make capabilities completely 
modular, so adding new capabilities requires adding, but rarely revising code.  
 
In summary, Figure 4 shows that after 2005 very different system configurations—
involving a habitat power system, remote operation of Scout and its instruments from 
ExPOC, life support systems and metabolic rate interpretations—were provided with 
increasing efficiency.   Furthermore, the same systems developed for MDRS05 and then 
PA06 were repackaged for iMAS08 to allow operation off the network in a standalone 
mode (with downloading of data after return to the “habitat”)—with effectively no 
change to the workflow automation.  iMAS08 was field tested in lunar analog sites in 
Hawaii and New Mexico, as well as used for surveying a coral reef (using a SCUBA 
system with a voice loop8).  
 
Some effort was made to quantify the “complexity” of the systems in terms of number of 
interacting components and relate to productivity, such measures are always far courser 
than the count of capabilities and KSLOC.   However, one basic measure of interest is the 
number of components integrated in the system (Figure 11). 
 
The data show as expected that the number of components is increasing through the 
development DRATS/CDS05, with a slight decrease for DRATS06 because of the 
absence of the robots Gromit and K9 and Europa planning system. The configurations 
developed for other purposes —PA06, POGO07, and iMAS08—naturally have a 
different number of components and can be seen to be simpler.  This pattern partly 
showed in Figure 10, where we saw the number of capabilities added and FTE required 
significantly decreased as well. One could argue that the reduced number of components 
in these systems reduces the interactions that occur in the workflow (and among the 
programmers working across organizations), perhaps accounting for the increased 
productivity in adding capabilities (Figure 4). 
 

                                                
8 Distortions in the articulation of SCUBA divers required that their voice commands were repeated by an 
operator (HabCom) on a nearby boat; however, the computer-generated replies were directly heard and 
responded to by the divers. 
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Figure 11. Number of Components (Hardware and Software) Integrated for 
Workflow Interoperability in the Exploration Systems 

5 Lessons	
  Learned	
  and	
  Recommendations	
  
This section summarizes the lessons learned and makes recommendations for an agent-
based open architecture that promotes interoperability.  The fundamental conclusion from 
the series of ten configurations developed using this architecture from 2002-2008 is that a 
workflow service-oriented approach enables increasing the number of interacting 
systems  across diverse SW and HW components while maintaining or even improving 
developers’ productivity.  The systems integrated included software COTS (e.g., 
Microsoft Office), peripheral instruments and sensors (e.g., digital camera, pancam, 
biosensors), automated  “autonomous” machines (e.g., robotic assistant, robotic vehicle, 
science rover), and automated monitoring and control software (e.g., pressurized suit life 
support system; robot planning and control system; metabolic rate monitor). In addition, 
crew interactions with these systems were all accomplished through voice commanding 
using a spoken dialogue system (RIALIST, a research variant of the commercial 
NUANCE program).  The workflow interactions demonstrated involved automated data 
integration and commanding among components; feedback managed by the workflow 
processes dynamically related state data and commanded the systems for goal-oriented 
actions requested by the crew (e.g., having a vehicle or camera follow an astronaut on 
EVA). 

5.1 Review	
  of	
  Findings	
  Experimenting	
  with	
  an	
  Agent-­‐Based	
  Workflow	
  Architecture	
  	
  

We showed that basic support for crew self-sufficiency, safety, and productivity can be 
provided by workflow automation, which is facilitated by interoperability that occurs in 
the language of the task domain, rather than interactions between components in the 
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programming language of the applications (data objects and methods) or simply via data 
exchange standards and protocols. An important subsidiary claim that lies outside the 
scope of this report is that enabling the crew to communicate in spoken language 
increases crew self-reliance, safety, and productivity. 
 
The language of the task domain is in terms of activities, named entities (including 
places, people, devices, robotics, routes, etc.), dynamic goal-oriented relations (e.g., 
“associate” “follow” “tell me when…”), schedules, etc. The language is formalized 
internally as Speech Acts according to the FIPA standard for agent communications. The 
translation between these two levels is provided by an agent-based architecture in which 
specialized “Communication Agents” mediate between component APIs and a relatively 
stable backbone of workflow agents (e.g., see Figure 14).   
 
Adding or replacing a component involves developing a CA for that component and 
possibly making adjustments to the component’s API to expose operations desired for 
workflow automation.  When the workflow capabilities are already implemented, 
incorporating the new component is handled by a Directory Service that allows agents to 
find and refer to that component by name and physical location (geographic and network 
address).  Otherwise, adding new workflow capabilities involving human interaction 
requires modifying the interface and the interface’s CA to appropriately receive new 
kinds of requests and pass them to the appropriate workflow agent. In the preferred 
architecture the interface recognizes and generates spoken language, but display menus, 
button controls, and menu/touch screen interfaces may be also used to formulate requests 
in the language of the task domain, and other interfaces (e.g., tones and lights) can be 
used for communicating information. These interfaces could be integrated with additional 
communication agents.  
 
This report also showed that incremental buildup of exploration systems, assuming 
workflow automation for reasons given above, is enhanced by an open architecture. In 
terms of the agent-based approach, this means that workflow agents can be practically 
modified to communicate with new or revised CAs and provide additional workflow 
services in an incremental manner. Put another way, if agent-based workflow automation 
were adopted to provide interoperability as described above, but modifying this 
automation were too complex, than the architecture would not be practically open to 
modification and make incremental building too costly.   
 
In actuality, the data showed that the agent-based approach, effectively converting 
components into agents by enabling them to provide services (through CAs) at the level 
of the task domain, provides a practical open architecture.  Perhaps the best example is 
the reconfiguration for DRATS/CDS05 in which three robotic systems and a planning 
tool were added to the exploration system (totaling 17 hardware and software 
components), involving a 25% increase in the number of workflow capabilities (from 32 
to 40). The source lines of code (KSLOC) added per capability were significantly higher 
than in the mature architecture that was being revised (MDRS05), explained by the 
complexity of the CAs required for the robotic and planning systems (relative to past 
experience in adding primarily passive instruments).  The number of capabilities added 
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per FTE also dropped slightly.  However, the KSLOC/FTE was similar to previous 
experience, showing that the team encountered no design or coding difficulties—the 
work was restricted to managing the translation between the components and the 
workflow system, not in modifying the workflow backbone to accommodate the new 
components.  This example demonstrates the advantage of an agent-based workflow 
backbone architecture, with component systems not interacting with each other directly 
(as in many object-oriented systems promoted by CORBA), but through agents that 
providing services required by the crew. Again, notably these services are internally 
provided and communicated in the language of the crew’s work domain, not the objects 
and methods of the components exposed by their APIs. 

5.2 Advantages	
  of	
  the	
  Information	
  Exchange	
  Services	
  Layer	
  

In summary, an agent-based workflow architecture including agents for translating 
between component APIs and the language of the task domain provides an appropriate 
level for plug-in/upgrade of components for both data and control integration.  To make 
this kind of interoperability explicit, it is recommended to add Information Exchange 
(Workflow) Services to the C3I Architecture.  Rather than having components interact 
only (or primarily) through Data Exchange Services, data exchange is used by the 
Communication Agents that translate between the language of the task domain the 
component APIs.  This means that components need only expose data and methods 
required for workflow once, and the many-to-many mappings required by different 
workflow capabilities are handled primarily by the workflow agents in gathering required 
data and passing on parameterized Speech Acts to the CAs of the components involved 
(illustrated by the diagrams in Appendix II). These Information Exchange Services are 
built upon existing inter-process communication methods including CORBA and HTTP.  
 
In contrast with methods for integration that require individual component developers to 
learn and speak in a common language, an exploration systems architecture with 
information exchange services enables the embedded components to be implemented in 
different languages with different operating systems. The information exchange services 
themselves use a common level of abstraction (workflow agents communicating via 
Speech Acts) that the components do not use and their API developers did not need to 
know.  In this manner, both connectivity and information exchange operations are made 
independent of the components, enabling robotic and life support systems, instruments, 
planning and monitoring software, and the like to be developed without regard for how 
interoperability will be managed. The only requirement is that the components provide 
APIs to expose data objects and methods required to provide access to data and external 
control. 
 
The CA-API translation approach might be impractical if a great deal of work were 
required to develop the CA for new components or workflow capabilities. In practice, the 
data show that the amount of code required for a component CA is correlated with the 
number of capabilities requiring that component (Figure 8). Robotic systems and 
monitoring/controlling software can be controlled/configured by crew members and also  
generate data (through the subsystems they control), thus providing a relatively large 
number of possible workflow operations that can be operated (e.g., automatically 
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generating and storing data on a map provided to a remote science team as robots move).  
Such systems generally have commands for configuring them (e.g., “take a picture of the 
rock called Broccoli”) and alerting the crew when certain conditions occur (e.g., “tell me 
when the habitat power usage exceeds 15 amps”). In contrast, instruments, such as 
cameras, are capable of fewer operations, don’t have subsystems, and don’t include 
monitoring functions, so they have relatively few workflow capabilities associated with 
them and their CA is correspondingly smaller. 
 
Other findings related to the efficiency of using this open architecture include (see 
Section 4): 

− Adding the SCOUT rover (DRATS05) was significantly less costly than 
developing the original interface for the ERA (MDRS03). 

− Adding the K9 and Gromit rovers with the Europa planning system required new 
CAs of substantial complexity (CDS05). Productivity measured in KSLOC/FTE 
was similar to previous efforts, but new capabilities/FTE dropped significantly, 
which reflects the inefficiency inherent in a new collaboration with three different 
subgroups. 

− Correspondingly, productivity by both KSLOC and capability measures markedly  
improved when the Brahms team developed a system that did not involve 
programmers from other groups or organizations (PA06). 

5.3 Advantages	
  for	
  Design,	
  Development,	
  Testing,	
  and	
  Evaluation	
  

The series of exploration system experiments demonstrated efficiency in designing, 
developing and testing new systems.  The average (and median) DDT&E elapsed time 
was 172 days with five programmers on average (but varying from nine to one). Average 
total programming effort (excluding two managers’ work on scenario design and project 
coordination) was 1.4 FTE, varying from 3.4 FTE (DRATS02/MDRS03) to less than one 
month FTE (iMAS08). 
 
The findings from the system reconfigurations suggest that the agent-based workflow 
architecture is advantageous because it limits and controls inter-team interactions 
(coordination) required. The design process is strictly oriented to the workflow 
capabilities being introduced—changes to the work activity scenario are related to new 
workflow functions desired. In particular, the subgroups of the development team 
correspond to the logical design levels:  
 

I.  Scenario designers and project managers 
II.  RIALIST (voice commanding) programmer 
III/IV.  Agent modelers/programmers (Workflow Agents = III; CA = IV) 
V.  API programmers for components/subsystems 
VI.  External system developers (e.g., robots).  

 
Levels I-IV were co-located at Ames; Levels V/VI were at JSC or Ames depending on 
the robotic or other external system.  Coordination was most necessary and intensive for 
relating adjacent levels (I-II, II-III, etc.). 
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For example, if an automated tool is introduced, the crew is provided with voice 
commanding for turning on/off the tool, configuring its operation, directing how data be 
configured in the ongoing EVA/science database, etc. After voice commands are agreed 
upon, RIALIST’s grammar is modified accordingly, and Speech Acts are represented to 
carry the requests from the RIALIST CA through the workflow backbone and/or directly 
to component CAs, as necessary to process the request.  If a new type of Speech Act is 
involved, the programmer responsible for the component CA must write code for 
reformulating the Speech Act in terms of the component’s API data objects and methods.  
If the request involves a new kind of automated control or data being provided to the 
crew, then the programmer responsible for the component API will likely need to modify 
the API and possibly the device’s internal operating system (e.g., this occurred with the 
Geophone array deployment device was added to Scout for DRATS06).  In summary, 
modifications required are predominantly modular and narrowly defined by the 
representation of workflow automation as Speech Acts. 
 
Regarding other DDT&E considerations, the architecture has advantages in enabling 
scenario-based design (specifically, a simulation-to-implementation conversion 
methodology, Clancey et al. 2008), human-centered design, distributed development 
teams, and iterative development of partitioned functionalities.  
 
For testing, the architecture provides for single-platform integration—each developer 
runs the entire system of agents and components (usually as simulations or providing a 
simulated data stream) on one computer.  After these independent, component-level tests, 
the team gathers for about a week of operational-readiness tests.  Two to three weeks 
later, the team goes to the field, usually engaging in about a week of integration tests, 
shifting from wireless connectivity inside a habitat to experimental use in simulated 
EVAs, with progressively more complex scenarios (e.g., at a greater distance for longer 
periods).  
 
Rapid reconfiguration enables redesign during field testing; the agent decomposition of 
services facilitates logging data about speech recognition, network responsiveness, 
message passing throughput and latency, etc.  The modularity and generality of the agent 
workflow backbone and CAs was especially well demonstrated by the introduction of a 
voicemail capability during the MDRS06 field work. Essentially, the voice annotation 
capability for describing science data, which included capabilities to record and replay 
voice notes, was adapted to play a voice note not only on direct request but for a different 
crew member at a prescribed time. This required introducing two new agents, the voice 
mail client and server (Figure 18). The voice mail capability was designed by the team, 
implemented by one person, and in operation within a few days—and these changes 
occurred to the Power Agents configuration in the middle of the two-week field test. 

5.4 Advantages	
  for	
  Reconfiguration	
  Efficiency	
  and	
  System	
  Size	
  

The three key ratios— amount of code added for each new workflow capability, new 
capabilities/FTE, and KSLOC/FTE—show that size of the modifications and effort 
required are generally predictable and constant (with addition of CAs for new automated 



Clancey et al.: LSS Study: Open Architecture  

	
   33 

hardware and software systems requiring more code and time). These data suggest that 
the workflow architecture is stable and new capabilities neither interfere with existing 
capabilities nor require increasing complexity of interactions.  Therefore, in using an 
agent-based workflow architecture with Speech Act communications, we can treat 
capabilities abstractly, and make predictions at design time of the amount of code and 
effort required to build or modify an exploration system configuration. 
 
Viewing the field configurations in the aggregate, 134 capabilities were developed with 
13 FTE in total DDT&E time of about 4 years. The overall average of 10 new capabilities 
per FTE closely fits the development efficiency of the workflow backbone (through 
MDRS05, see Figure 4), when 64% of the capabilities were developed with 70% of the 
total FTE.  Subsequent systems introduced relatively fewer new capabilities with 
increased productivity.  Effort for DRATS/CDS05 and DRATS06 reflects significantly 
more complex robotic commanding for four different robotic systems. 
 
These data show perhaps an upfront cost that is itself rather small given the functionality 
provided to the crew, with direct reuse (at no cost) of code and functionalities in very 
different settings. The upfront investment pays off as much smaller teams reused the 
existing backbone, making only incremental changes to introduce completely different 
kinds of components (e.g., power and life support systems) with new kinds of support for 
crew self-reliance and safety (typically here, providing status information and alerts 
relevant to using resources during ongoing work activities).  
 
On average, after the stable backbone was developed for MDRS05, each configuration 
added about 13% to the code base (Figure 1), with 80% of the added code attributed to 
component CAs. The ratio of total workflow KSLOC to the total system KSLOC 
remained surprisingly constant at 16% (Figure 2), which is perhaps another way of 
demonstrating that the amount of code required is linear with the number of capabilities 
and additions require only incremental changes to affected agents. 

5.5 Lessons	
  Learned	
  from	
  Field	
  Experiments	
  

The development of the workflow agents involved a substantial learning process through 
trial and error in the field experiments, particularly during DRATS02, MDRS03, and 
MDRS04. We found it necessary to explain to other DRATS participants that the Mobile 
Agents system should be viewed as being more akin to a word processor than a 
document; they were focused on particular capabilities (and gaffes) than the generality 
and flexibility of the agent architecture to integrate and access/control a wide variety of 
hardware and software.  One observer of the inaugural trials of the prototype system 
remarked, “Not ready for prime time,” suggesting that he viewed DRATS as an 
opportunity to test systems, to demonstrate operational readiness, rather than to 
experiment and learn. 
 
The methodology of empirical requirements analysis employed during the Mobile Agents 
project (Clancey et al., 2005) involved using the prototype system for authentic scientific 
exploration (e.g., use by scientists in a new terrain that addressed their specialized 
expertise and interests). During these experiments we frequently discovered the value of 
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additional workflow automation (e.g., during iMAS08 it became obvious that explorers 
wanted to ask sometimes “Guide me to <location>”—receiving alerts thereafter to correct 
course—rather than repeatedly asking for the distance and bearing to the desired 
location).  We recognized requirements and invented methods to make the wireless, 
distributed agent communications more robust and to handle loss of communications 
gracefully. And we made many improvements to the interaction between people and their 
personal agents and robotic assistants to make commanding more reliable and simpler 
(e.g., substituting a beep confirmation for non-critical requests; not having an agent speak 
when you are speaking to someone else).  We also discovered some complications that 
will require future research and experimentation (e.g., how to avoid having an agent 
speak to you when you are listening to someone else). 
 
Some of the lessons learned about what services workflow agents should provide and 
how they should be structured include: 
 

− Use of a distributed directory service (CI; Clancey al. 2010) to deal with 
unreliable wireless communication and to allow subsystems to be disabled and 
restored in a running system configuration (a runtime form of “open 
architecture”). 

− Use of a workflow backbone consisting of individual personal agents for people 
and robots, complemented by functional workflow agents for navigation, 
planning, database management, communications (e.g., via email, GUI, voice 
loop, voicemail), distinct from the Component CAs that interface with component 
APIs provides great flexibility for reconfiguring components during an expedition 
for different EVA requirements (e.g., the transformation of MDRS05 to 
DRATS05 and CDS05; MDRS05 to PA06; PA06 to iMAS06, POGO07, and 
iMAS08). 

− Use of a web-based semantic database to consolidate data from different 
sources for a common interplanetary repository (Berrios et al. 2007), using 
persistent queuing and repeated transmission until acknowledgment of delivery 
(fault tolerant if platform reboots). 

− Experimentation with a variety of reconfigurable, mixed communication 
methods for controlling and getting data from arbitrary systems: Voice (including 
shared loudspeaker), menu-based GUI, audible tones, heads-up display of charts, 
internet web pages, and email. 

− Allowing alternative data-exchange services (e.g., SOAP, OAA) for 
communications between CAs and component APIs. 

− Providing methods for creating and relating different types of data for 
different purposes (e.g., photograph files, GPS coordinates, time stamps, 
biosensor and life support system telemetry, alert thresholds, voice recordings, 
terrain maps).  

5.6 Conclusion	
  
We showed that an agent-based architecture with task-level message passing (Speech 
Acts) has measurable advantages for enabling workflow interoperability and efficiently 



Clancey et al.: LSS Study: Open Architecture  

	
   35 

making incremental modifications. Ideally, this software architecture would be compared 
in a trade study to alternatives that promote integration of arbitrary hardware and 
software components.  However, we do not know of any competing architecture for 
which comparable field configurations have been developed, let alone with data 
permitting comparison. The adoption this agent-based architecture by JSC Mission 
Operations Directorate for workflow automation in Mission Control (OCAMS, Figure 
21; Clancey et al. 2008) and its receipt of the JSC Exceptional Software Award in 2010 
shows that the architecture is mature and useful for flight operations. Indeed, the 
DRATS06 configuration with ExPOC at JSC showed that use of this architecture in LSS 
field tests would enable immediate integration between remote and surface work 
activities. 
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Appendix	
  I. Mobile	
  Agents	
  Software	
  Architecture	
  Overview	
  

This appendix provides more detail about the Mobile Agents Architecture. Workflow 
software agents in the Mobile Agents field experiments were implemented in the Brahms 
Language (Clancey et al., 1998; Sierhuis, 2001).  To employ a common messaging 
scheme each subsystem to be integrated is “agentified”—it is made to behave like a 
Brahms workflow agent by “wrapping” it in a Brahms Communications Agent using the 
Brahms JAVA API.  
 
A subsystem is made into an agent (i.e., integrated) by defining SpeechActs (structured 
messages) by which it will interact with other agents in the system. These SpeechActs 
must implement any overarching defined protocol for communication among agents. 
Thus, the API of the subsystem is extended by the Communication Agent to translate its 
API calls to SpeechActs and vice versa.  The subsystem API and Communication Agent 
therefore work together (acting as the wrapping) to enable communication with any 
workflow agent in the system: 
 
{Workflow Agents} ⇔  Communication Agent ⇔  Subsystem API ⇔  Subsystem 
  
Other agent-based languages, such as JADE with its FIPA-like structure using 
SpeechActs, could be used instead of Brahms to implement the architecture described 
here. However, Brahms effectively provides direct support for an open architecture with 
interoperability via its SpeechAct and Communication Agent (CA) structures. Recent 
work on service-oriented architectures (SOA) promotes a similar common messaging 
approach for interoperability, in which subsystems provide “services.”9 The MAA 
illustrates how to provide an SOA by converting subsystems into agents. The variety of 
MAA configurations described in this study support the claim that agents are a good way 
to implement a software service; in particular, to make a component into a service 
“agentify” it. 
 
The MAA provides an open architecture with interoperability by extending CORBA in a 
way that raises it from the level of direct functional communications to the level of 
services.  In doing this, the MAA shifts system design from the level of software objects 
and processes to the level of agents who communicate using the language of components 
and operations in which people naturally describe their goals and activities  (e.g., “Scout, 
take a picture of Astronaut 2”; “Extend the duration of Surveying Worksite 2 by 10 
minutes”). Here we provide a brief overview of how MAA extends CORBA. 
 
In itself, CORBA only enables exposing internal system classes in one object-oriented 
program to another program. This means that a program that uses exposed CORBA 
classes needs to understand the internal functions of the system with which it interacts. 
Every system has its own internal structure and functions, perhaps written in different 
programming languages. For example, CORBA enables calling C++ object methods from 
                                                
9 Mishkin’s backup slides “Command & Control” in Rader (2008) characterize “services” as how C3I 
subsystems are “providing the endpoints of data flows” (p. 57). The term “services” appears throughout the 
roadmap in reference to network, security, and common C2 functions. 
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Java and vice versa. So, provides language independence and also allows calling methods 
in distributed systems with a delayed response (the notion of a “callback function”). 
CORBA enables inter-process communication, by allowing indirect access to the local 
storage of other processes.  
 
In contrast with systems using CORBA and other agent-based middleware architectures 
(for examples, see Bridges and Vladimirova [2011]), the composite APIs 
(communication agents) approach does not expose a software process’ internal methods/ 
functions. It is based instead on a more abstract communication protocol that defines how 
agents communicate messages to each other (their structure and language) and requires 
agents determine how to respond to these messages (by providing data or causing actions 
to occur). The benefit of the communication agent approach that programmers do not 
need to provide CORBA object definitions to each developer of the integrated system and 
which each developer must use.  Instead, the team defines a communication message 
protocol— in MAA this is the syntax and language of SpeechActs—and then the 
developers may work independently.  
 
Other systems use agents as a form of middleware to coordination operations, such as a 
distributed satellite system (Bridges and Vladimirova 2011). The use of communication 
agents in the MAA provides an open architecture, specifically facilitating interoperation 
of legacy hardware and software systems of any type (e.g., contrast with the very 
different problem of integrating a network of identical components designed for 
formation flying or a sensor network).  Consequently, the MAA would be a candidate 
architecture for developing certain kinds of  “virtual satellites”—“a	
  spatially distributed 
group of satellites working as a single unit to perform a specific mission” (Bridges and 
Vladimirova 2011), where the component satellites provide different services and/or 
include legacy systems. 
 
In summary, Brahms provides a language for creating agents and a communication 
infrastructure for agents to interact. Actual transmission of messages occurs within and 
through the Brahms Virtual Machine, the agent executive that runs on each platform 
containing agents.  In the MAA implementation used in the systems described in this 
report, a system called KaOS with its central directory service enabled agents to 
communicate across distributed platforms (e.g., see Figure 13 and Figure 14). KaOS 
used CORBA to implement the actual message transmissions. Because agents 
communicate using SpeechActs, system developers did not need to know about CORBA. 
For example, the ERA’s API exposed its C++ methods using CORBA objects which the 
ERA CA, written in Java, translated to and from SpeechActs used by agents throughout 
the exploration system. A later generalization, called the Collaborative Infrastructure (CI) 
used in ETDP A40 (“autonomy for operations”) projects and in OCAMS in ISS Mission 
Control, handles this translation by providing a toolkit of C++ and Java libraries that 
include SpeechActs for “agentifying” an external system (Clancey, et al. 2010). 
 
Conventionally, an object has only internal properties and attributes. In contrast, agents 
can have beliefs about other agents, enabling them to model the state of subsystems as 
well as the world of people and the environment. Also, in the MAA agents are inherently 
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goal-directed through the Plan Assistants, which maintain an open task structure; object-
oriented design doesn’t in itself provide this functionality.  In practice, every SpeechAct 
is a task that the agent needs to execute; it is deleted when a response is returned. By 
periodically polling and acting on open tasks and agent may select an alternative 
approach for accomplishing a task as well as provide a warning to the requester that there 
has been an delay (e.g., “Scout is not responding to your request to take a picture”). 
 
In summary, the MAA enables arbitrary object-oriented systems to become agents not 
just by exposing their methods, but rather by wrapping the software so communications 
between subsystems occur using task-level messages (SpeechActs).  The Communication 
Agent (CA) is the Java program that straddles the programming domain of the subsystem 
(its language, data, and functions) and the agent domain of the integrated workflow 
system (represented in terms of the objects and activities of the EVA system).  Using a 
common language to integrate data and functionality follows the principles of “model-
based” programming, which enables relating semantically different data across hardware 
and software systems (Kaskiris, et al. 2005).  Consequently, designing an agent to 
command a robot is handled in the same manner (at the same semantic level) as 
designing an agent to associate a photograph with a map location and sample bag, based 
on the voice command of an astronaut.  This commanding language among agents and 
subsystems is derived on a theory of “speech acts,” which in MAA follows the FIPA 
protocol. 
 
Using the MAA, components with appropriate APIs for means of communicating can be 
configured into workflow systems, in which data, command,  and information is 
translated, transformed, interpreted, and conveyed to support the work people are doing. 
For example, data flowing from sensors to monitoring software is directed by alerting 
functions to output media so it is accessible within the work context (e.g., on a heads-up 
display or on a voice loop).  Figure 12 provides a broad overview of the hybrid 
communications in the overall EVA exploration systems developed using the MAA.  
Details are provided in subsequent sections, explaining in particular how 
Communications Agents were created and used to produce a comprehensive workflow 
system in a variety of contexts. 
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Figure 12. Mobile Agents Architecture Communications Schematic Relating People, 
Agents, and External Systems.  Voice commanding involves a hybrid of methods for 
communicating, including spoken voice (microphone and headphone), radio, wireless 
network, and software applications interfaces. Key: RST = Remote Science Team; ERA 
= EVA Robotic Assistant. External systems are illustrative. Communication Agents use 
APIs of external systems to interface with workflow agents. 
 

Appendix	
  II. Field	
  System	
  Configuration	
  Diagrams	
  

This appendix provides a chronological sequence of configuration diagrams for the key 
exploration systems used in the Mobile Agents field experiments (2002-2006). See 
references for details. 
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Figure 13. Wireless Network Configuration for MDRS04 for Hardware and 
Software Components.  Centralized directory service (implemented in KaOS) enabled 
agents to locate each other for requesting and providing data and commanding integrated 
subsystems. MDRS05 configuration was similar with a second ERA Robot.  Agent 
details appear in  
Figure 14. 
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Figure 14. MDRS05 EVA Exploration System Configuration. The EVA system 
included two astronaut systems and two Robotic EVA systems (ERAs) as shown.  
Remote Science Team was distributed in USA, Australia, and England (Clancey, et al., 
2005; Hirsh, et al. 2006).  This configuration is the mature version of the four year 
sequence: the general structure was introduced in DRATS02, distributed platforms 
introduced in MDRS03, and the remote science team added for MDRS04.  CDS05 and 
DRATS05, which followed four months later, changed the robots and added additional 
external software and platforms (see following figures). The green circles represent 
agents that constitute the workflow backbone of the exploration system. 
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Figure 15. CDS05 EVA Exploration System Configuration. The field test involved 
one astronaut and one K9 Rover; however, the architecture allowed EVA configurations 
with multiple astronauts and rovers without changing the software. Goal-oriented 
commanding of the K9 robot is enabled for both the astronaut (via verbal requests 
mediated by agents, e.g., “Inspect rock named Broccoli when able”) and the rover 
operator in the habitat (via direct manipulation of the visual display interface). Prepared 
plans initiated by astronauts on EVA did not require rover operator intervention 
(Pedersen, et al., 2006). 
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Figure 16. CDS05 Platform and Network Configuration. K9 and Gromit personal 
agents are directly adapted from those used in the MDRS05 configuration (ERAs named 
Boudreaux and Thibodeaux). (Slide provided by Rick Alena, NASA/Ames.) 
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Figure 17. Desert-RATS 2006 EVA Exploration System Configuration (Meteor 
Crater, September 2006; Clancey et al. [2007]). Reconfiguration of MDRS05 to use 
Scout rover instead of ERAs, using agents to control its Geophone deployment system 
from the ExPOC agent platform in Houston.  This configuration demonstrated how two 
kernel support systems, one local (HabCom) and the other remote (ExPOC), could be 
used to coordinate the flow of data, information, and goal-directed commands coming 
from EVA astronauts, the surface habitat operator, and the remote ground support 
operator. 
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Figure 18. Power System Configuration of Mars Desert Research Station (April 
2006).  Xantrex inverter contained a power management system for charging or drawing 
from habitat backup battery system, receiving AC input from the diesel generator. DC 
power was also provided by solar electric panels. The OneMeter Channel Meter system 
instrumented these various sources to provide data to the Power Agent System (Figure 
19). 
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Figure 19. Mobile Agents Power Agents Configuration.  The crew and HabCom 
systems include a “personal agent” for coordinating communications (command 
processing, alerting, and dataflow) with crew members. The link to the Xantrex inverter ( 
Figure 18) provided setup information (e.g., error thresholds); real-time data came only 
from the OneMeter system. (Graphic by van Hoof). In the tested configuration, four 
copies of the Crew Member Support System were running on four different laptops, 
initialized by the first name of the crew member. HabCom’s Voice Mail Server CA 
receives voice mails from any crewmember and transmits them to the requested 
crewmember (e.g., “Send a voice note to Bill at 1130 AM….”). See text below for 
elaboration. 
 
The power system in the Mars Desert Research Station during April 2006 consisted of an 
external generator, batteries under the habitat, solar panels, and inverter. A previous crew 
had previously deployed the OneMeter (Brand Electronics) electric metering system to 
instrument the various power sources. The Mobile Agents configuration consisted of six 
laptop computers. One networked computer (HabCom) was placed on the upper deck, 
connected to loudspeakers. Four other laptops were paired with wireless (Bluetooth) 
headsets that enabled crew members to interact with their Personal Agents from 
anywhere in the hab (plus in one test as far as 10 meters outside).  A sixth laptop 
functioned as a telenet server for the OneMeter device, constituting the Power Support 
System (for more details and graphics, see Clancey et al., 2006). 
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Referring to Figure 19, the Power Support System contains five new agents developed for 
this configuration and setting:  
 

1. Power Monitoring Agent—processes incoming data from the OneMeter system, 
as well as answers queries about historical data. 

2. Power Problem Resolution Assistant—Receives an error condition event from the 
Power Monitoring Agent; determines the procedure to be followed to resolve the 
problem; and sends that procedure back to the Power Monitoring Agent. 

3. Procedure Assistant—Receives procedure relating to a fault mode for display to 
HabCom operator. 

4. One Meter Communication Agent (OneMeter CA)—serves as a telnet server. The 
OneMeter connects to this telnet server every 15 minutes (a fixed property of the 
OneMeter firmware) and sends the data for all channels. The agent parses and 
packages the data and sends it to the Power Monitoring Agent.  The data are also 
stored in a MySQL database, which is used for responding to historical queries. 

5. Xantrex Communication Agent (Xantrex CA)—on request, provides parameter 
settings for the Xantrex Inverter to the Power Monitoring Agent. 

6. Procedure GUI Communication Agent (Procedure CA)—interacts with the 
HabCom GUI to display information relating to power problems, communicated 
by the Procedure Assistant. 

 
The key work is performed by the Power Monitoring Agent: 

− Incoming Data: On every new reading received from the OneMeter 
Communication Agent, evaluates the values for the channels using a set of rules. 
The agent is designed to detect five anomalous events (e.g., impending shut-down 
of inverter due to low battery voltage). If an anomalous event is found, the agent 
sends the condition data to the Problem Resolution Agent for analysis. It forwards 
the alert with the procedure to the Notification Assistant in the Habitat Central 
Command System (HabCom laptop), which distributes the alert and procedure to 
the Personal Agents of the crew and HabCom systems that have subscribed to this 
alert. The procedure is extracted by these Personal Agents and sent to their 
respective Procedure Assistants, which display the procedure on the associated 
display. The alert message is also sent to the respective Dialog Agent for verbal 
notification. 

− Historical Queries: On receiving a power system inquiry from a crew member or 
HabCom Personal Agent, sends the query to the OneMeter Communication 
Agent, and returns the desired data (e.g., “what was the maximum habitat 
amperage since yesterday?”). 

 
The MDRS49 configuration also included the activity plan loading and tracking 
functionality used for previous EVA simulations.  In particular, crew members had daily 
schedules that indicated what activity they would normally be doing at a given time.  
Crew members could inquire about anyone’s current activity.  This was part of a related 
investigation of how a capability such as the Power Monitoring System might be 
augmented by information about the crew’s activities. 
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As an example of repurposing existing agents, an ability to send voice mail among crew 
members was designed and implemented during the two-week field experiment. The 
voice message is recorded as a standard “voice note,” which is sent to the science data 
assistant, from which it is passed to the data collector, the data manager, and then to the 
Compendium database (this illustrates how communication agents may interact directly, 
without the mediation of workflow agents). When a voice mail is sent out the RIALIST 
CA (dialog agent) also sends the voice note to the voice mail client, from which it is sent 
to the voice mail server and then to intended recipient at the scheduled time, according to 
the sender’s request. 
 
 

 
 
Figure 20. Metabolic Rate Advisor (POGO, a variant of iMAS, the Individual 
Mobile Agent System).  The Mobile Agent system referred to as POGO07 is a variant of 
the standalone Mobile Agents system, for use on a single platform that during operation 
is not necessarily communicating with other agent platforms. Two agents were added: the 
LEGACI CA, which received metabolic rate and consumables data from the LEGACI 
program implemented in Excel, and the Medical Assistant workflow agent, which 
interpreted the data, transmitted alerts to the crew member (via the Dialog Agent), and 
responded to the crew members requests for status information.  LEGACI received 
telemetry data from the pressurized spacesuit life support system and biosensors worn by 
the astronaut in the partial gravity simulator (POGO) at Johnson Space Center. 
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Figure 21. Orbital Communications Adapter (OCA) Management System 
(OCAMS), Revision 4 Workflow System for ISS File Communications. Green circles 
are agents; Blue rectangles are components (e.g., EFN flight note system, Microsoft 
Word, NOMAD email, SWRDFSH FTP). R3 deployed in early 2010 automates 
mirroring, archiving, logging, delivery and notification of files transferred between ISS 
crew and ground support. R4 will automate uplink and downlink using SWRDFSH; 
ground support teams will make requests to OCAMS through flight notes and email; files 
are usually transferred using drop-boxes (dedicated folders in JSC MCC and onboard the 
ISS). Estimated 80% of previous 24-7 MCC Backroom Officer position is automated. 
This architecture uses the Collaborative Infrastructure for data transfer across multiple 
network with different security systems (see glossary). In a typical configuration, agents 
are networked over two MAS (flight controller) platforms, two OCA clients networked to 
the ISS, and the MirrorLAN staging machine for creating the mirrored file system. 
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Appendix	
  III. 	
  Information	
  and	
  Goal-­‐Oriented	
  Services	
  Provided	
  by	
  
Workflow	
  Agents	
  in	
  Field	
  Experiments	
  

This table lists the hardware and software components that were integrated in the 
indicated system configuration, followed by the workflow capabilities.  A plus (“+”) 
indicates that the component or capability was introduced for that configuration; an X 
indicates that it was included. 
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Hardware	
  Integration	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
EVA	
  Agent	
  Platform	
  (used	
  by	
  Astronaut)	
   +	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
Stanford	
  Biovest	
  medical	
  sensors	
   +	
   X	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
Boudreaux	
  (ERA)	
  Robot	
   +	
   X	
   X	
   X	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
Additional	
  Astronaut	
  Platforms	
  (2	
  laptops)	
   	
   +	
   X	
   X	
   X	
   	
  	
   	
   	
   X	
   	
   	
  
Habitat	
  Monitoring	
  &	
  Server	
  Platform	
   	
   +	
   X	
   X	
   X	
   X	
   X	
   	
   X	
   X	
   	
  
Digital	
  Camera(s)	
   	
   +	
   X	
   X	
   X	
   X	
   	
   X	
   X	
   	
   X	
  
Nonin	
  biosensors	
   	
   	
   +	
   X	
   X	
   X	
   	
   X	
   X	
   	
   	
  
Laptop	
  hardware	
  sensors	
   	
   	
   +	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
  
Thibodeaux	
  (ERA)	
  Robot	
   	
   	
   	
   +	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
Panoramic	
  Camera	
  (on	
  robot)	
   	
   	
   	
   +	
   X	
   	
  	
   	
   	
   X	
   	
   	
  
Video	
  Camera	
  (on	
  robot)	
   	
   	
   	
   +	
   X	
   	
  	
   	
   	
   	
  	
   	
   	
  
CAI	
  backpack	
  (JSC,	
  Glenn)	
   	
   	
   	
   	
   +	
   	
  	
   	
   	
   X	
   	
   	
  
Heads	
  Up	
  Display	
  (Hamilton	
  Sundstrand)	
   	
   	
   	
   	
   +	
   	
  	
   	
   	
   X	
   	
   	
  
SCOUT	
  Rover	
  (JSC)	
   	
   	
   	
   	
   +	
   	
  	
   	
   	
   X	
   	
   	
  
K9	
  Robot	
  (Ames/Fong	
  &	
  Pederson)	
   	
   	
   	
   	
   	
  	
   +	
   	
   	
   	
  	
   	
   	
  
Gromit	
  Robot	
  (Ames/Muscettola)	
   	
   	
   	
   	
   	
  	
   +	
   	
   	
   	
  	
   	
   	
  
Bluetooth	
  headsets	
  worn	
  by	
  habitat	
  crew	
   	
   	
   	
   	
   	
  	
   	
  	
   +	
   	
   	
  	
   	
   	
  
Electric	
  power	
  monitors	
  (OneMeter)	
   	
   	
   	
   	
   	
  	
   	
  	
   +	
   	
   	
  	
   	
   	
  
Solar	
  Electric	
  system	
   	
   	
   	
   	
   	
  	
   	
  	
   +	
   	
   	
  	
   	
   	
  
DC	
  Battery	
  system	
   	
   	
   	
   	
   	
  	
   	
  	
   +	
   	
   	
  	
   	
   	
  
Electric	
  DC-­‐AC	
  inverter	
  system	
   	
   	
   	
   	
   	
   	
   +	
   	
   	
   	
   	
  
Additional	
  Astronaut	
  Platforms	
  (4	
  laptops)	
   	
   	
   	
   	
   	
   	
   +	
   	
   	
   	
   	
  
Geophone	
  Deployment	
  Device	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   +	
   	
   	
  
Remote	
  monitoring	
  &	
  control	
  platform	
  
(ExPOC)	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   +	
   	
   	
  
Space	
  suit	
  audio	
  system	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   +	
   X	
   	
  
Suit	
  life	
  support	
  sensors	
  (e.g.,	
  consumables)	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   +	
   	
  
SCUBA	
  headset	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   +	
  
	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
Software	
  Integration	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
RIALIST	
  (voice	
  commanding)	
   +	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
  
Email	
  System	
   	
   +	
   X	
   X	
   X	
   X	
   	
   	
   X	
   	
   	
  
Compendium	
  Database	
   	
   	
   +	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
  
Science	
  Organizer	
  Web	
  Interface	
   	
   	
   +	
   X	
   X	
   X	
   	
   	
   X	
   	
   	
  
Europa	
  Planner	
  (Ames)	
   	
   	
   	
   	
   	
  	
   +	
   	
   	
   	
  	
   	
   	
  
Metabolic	
  Rate	
  Advisor	
  (Legaci	
  in	
  Excel/VBA)	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   +	
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Astronaut	
  Health	
  Monitoring	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
Log	
  Biosensors	
  (heart,	
  temp,	
  SPO2)	
   	
   +	
   X	
   X	
   X	
   X	
   	
   X	
   X	
   X	
   	
  
Log	
  biosensors	
  "every	
  N	
  seconds/minutes"	
   	
   	
   +	
   X	
   X	
   X	
   	
   X	
   X	
   X	
   	
  
Voice	
  alerts	
  about	
  heart	
  rate,	
  temperature,	
  
SPO2	
   	
   	
   +	
   X	
   X	
   X	
   	
   X	
   X	
   X	
   	
  
Change	
  thresholds	
  for	
  SPO2	
  &	
  heart	
  rate	
  alerts	
   	
   	
   	
   +	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
Voice	
  queries	
  about	
  met	
  rate,	
  k-­‐cal	
  usage,	
  body	
  
heat	
  storage,	
  sweat	
  loss	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   +	
   	
  
Alerts	
  about	
  met	
  rate,	
  k-­‐cal,	
  heat,	
  sweat	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   +	
   	
  
	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
System	
  Health	
  Monitoring	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
Alert	
  for	
  Laptop	
  low	
  battery	
   	
   	
   +	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
  
Alerts	
  of	
  network	
  failures	
  affecting	
  command	
  
processing	
   	
   	
   +	
   X	
   X	
   X	
   X	
   	
   X	
   X	
   X	
  
Alert	
  for	
  Laptop	
  CPU	
  temperature	
  too	
  warm	
   	
   	
   	
   +	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
  
Habitat	
  Batteries	
  status	
  (voltage,	
  amps,	
  
charging),	
  e.g.,	
  "Are	
  the	
  batteries	
  charging?"	
   	
   	
   	
   	
   	
  	
   	
  	
   +	
   	
   	
  	
   	
   	
  
Generator	
  status	
  (voltage,	
  amps,	
  power	
  
allocation	
  to	
  habitat	
  and	
  batteries)	
   	
   	
   	
   	
   	
  	
   	
  	
   +	
   	
   	
  	
   	
   	
  
Solar	
  panel	
  power	
  generation	
  status	
  (amps)	
   	
   	
   	
   	
   	
  	
   	
  	
   +	
   	
   	
  	
   	
   	
  
Habitat	
  power	
  status	
  (voltage	
  and	
  amps	
  usage)	
  
{now	
  |	
  <at	
  time	
  in	
  past>}	
   	
   	
   	
   	
   	
  	
   	
  	
   +	
   	
   	
  	
   	
   	
  
Inverter	
  status	
  (Supplying	
  power,	
  source)	
   	
   	
   	
   	
   	
  	
   	
  	
   +	
   	
   	
  	
   	
   	
  
"When	
  did	
  the	
  generator	
  go	
  offline/online?"	
   	
   	
   	
   	
   	
  	
   	
  	
   +	
   	
   	
  	
   	
   	
  
"When	
  did	
  the	
  batteries	
  start	
  dis/charging?"	
   	
   	
   	
   	
   	
  	
   	
  	
   +	
   	
   	
  	
   	
   	
  
"What	
  did	
  the	
  generator/batteries'	
  status	
  
change?"	
   	
   	
   	
   	
   	
  	
   	
  	
  

	
  
+	
   	
   	
  	
   	
   	
  

Alert	
  when	
  generator	
  is	
  offline	
   	
   	
   	
   	
   	
  	
   	
  	
   +	
   	
   	
  	
   	
   	
  
Alert	
  when	
  habitat	
  amp	
  use	
  exceeds	
  nominal	
   	
   	
   	
   	
   	
  	
   	
  	
   +	
   	
   	
  	
   	
   	
  

"What	
  was	
  	
  the	
  {Max|Min|Avg|Value}	
  	
  
{voltage|power|	
  of	
  
{habitat|generator|batteries|solar}	
  
{since|during}	
  {time	
  in	
  past	
  |	
  period}?"	
   	
   	
   	
   	
   	
  	
   	
  	
   +	
   	
   	
  	
   	
   	
  
"How	
  many	
  hours	
  will	
  batteries	
  last	
  at	
  current	
  
draw?"	
   	
   	
   	
   	
   	
  	
   	
  	
   +	
   	
   	
  	
   	
   	
  
Automatic	
  display	
  of	
  repair	
  procedure	
  on	
  
system	
  error	
  alert	
   	
   	
   	
   	
   	
  	
   	
  	
   +	
   	
   	
  	
   	
   	
  
Ask	
  for	
  parameter	
  setting	
  (e.g.,	
  "What	
  is	
  low	
  
batter	
  cut	
  out	
  voltage?"	
   	
   	
   	
   	
   	
  	
   	
  	
   +	
   	
   	
  	
   	
   	
  
Ask	
  about	
  life	
  support	
  power	
  status	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   +	
   	
  
Ask	
  about	
  life	
  support	
  consumables	
  status	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   +	
   	
  
Ask	
  about	
  suit	
  02	
  leakage	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   +	
   	
  
Ask	
  about	
  life	
  support	
  scrubber,	
  feedwater,	
  
inlet	
  temperature	
  status	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   +	
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Alerts	
  about	
  life	
  support	
  scrubber,	
  feedwater,	
  
inlet	
  temperature	
  status	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   +	
   	
  
Alerts	
  about	
  power,	
  consumables,	
  suit	
  02	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   +	
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Location	
  Tracking	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
GPS	
  location	
  logging	
  of	
  astronaut	
  and	
  robot	
   +	
   X	
   X	
   X	
   X	
   X	
   	
   X	
   X	
   X	
   X	
  
"Where	
  am	
  I?"	
  (GPS	
  coordinates)	
   	
   +	
   X	
   X	
   X	
   X	
   	
   X	
   X	
   X	
   X	
  
"Where	
  is	
  <location>?"	
  (GPS	
  coordinates)	
   	
   +	
   X	
   X	
   X	
   X	
   	
   	
   X	
   	
   	
  
Location	
  information	
  sent	
  to	
  Remote	
  Science	
  
Team	
  (RST)	
  at	
  variable	
  intervals	
   	
   +	
   X	
   X	
   X	
   X	
   	
   	
   X	
   	
   	
  
Location	
  naming	
  by	
  astronaut	
  (waypoint	
  #	
  or	
  
from	
  predefined	
  list	
  of	
  nouns)	
   	
   +	
   X	
   X	
   X	
   X	
   	
   X	
   X	
   X	
   X	
  
GPS	
  location	
  logging	
  of	
  robots	
  on	
  demand	
   	
   	
   +	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
Alert	
  when	
  lose	
  GPS	
  tracking	
   	
   	
   +	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
Global	
  naming	
  management	
  to	
  avoid	
  duplicate	
  
definition	
   	
   	
   +	
   X	
   X	
   X	
   	
   X	
   X	
   X	
   X	
  
Location	
  names	
  include	
  predefined	
  map	
  
locations	
  (e.g.,	
  Lith	
  Canyon)	
   	
   	
   	
   +	
   X	
   X	
   	
   X	
   X	
   X	
   X	
  
Distinction	
  among	
  Workstation,	
  Worksite,	
  and	
  
Waypoints	
   	
   	
   	
   +	
   X	
   X	
   	
   X	
   X	
   X	
   X	
  
Query	
  relative	
  locations	
  of	
  astronauts,	
  robots,	
  
&	
  habitat	
  	
  for	
  navigation	
  assistance	
  (bearing	
  &	
  
distance)	
   	
   	
   	
   +	
   X	
   X	
   	
   X	
   X	
   X	
   X	
  
Allow	
  references	
  to	
  "here"	
  "X's	
  current	
  
location"	
   	
   	
   	
   +	
   X	
   X	
   	
   	
   X	
   	
   	
  
Dynamic	
  map	
  location	
  on	
  head-­‐up	
  display	
   	
   	
   	
   	
   +	
   X	
   	
   	
   X	
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Human-­‐Robot	
  Coordination	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
Ask	
  robot	
  to	
  follow/stop	
  following	
  you	
   	
   +	
   X	
   X	
   X	
   X	
   	
   	
   X	
   	
   	
  
Ask	
  robot	
  to	
  halt	
   	
   +	
   X	
   X	
   X	
   X	
   	
   	
   X	
   	
   	
  
"Take	
  a	
  picture	
  of	
  {me	
  |	
  <location	
  name>"	
   	
   +	
   X	
   X	
   X	
   X	
   	
   	
   X	
   	
   	
  
"<robot>	
  go	
  to	
  <location>"	
  (e.g.,	
  waypont	
  #,	
  
"come	
  here"	
  "return	
  to	
  habitat")	
   	
   +	
   X	
   X	
   X	
   X	
   	
   	
   X	
   	
   	
  
Ask	
  robot	
  to	
  go	
  to	
  waypoint	
  and	
  wait	
  N	
  
minutes	
   	
   +	
   X	
   X	
   X	
   X	
   	
   	
   X	
   	
   	
  
"Where	
  is	
  <robot>?"	
   	
   +	
   X	
   X	
   X	
   X	
   	
   	
   X	
   	
   	
  
"Take	
  a	
  panorama	
  image	
  {at	
  <location>}"	
   	
   	
   +	
   X	
   X	
   	
  	
   	
   	
   X	
   	
   	
  
Ask	
  robot	
  to	
  execute	
  a	
  movement	
  plan	
   	
   	
   +	
   X	
   X	
   X	
   	
   	
   X	
   	
   	
  
Ask	
  robot	
  to	
  watch	
  <astronaut>	
  (video	
  
camera)	
   	
   	
   +	
   X	
   X	
   X	
   	
   	
   X	
   	
   	
  
Ask	
  robot	
  to	
  send	
  its	
  traverse	
  map	
  to	
  HabCom	
   	
   	
   +	
   X	
   X	
   X	
   	
   	
   X	
   	
   	
  
Ask	
  robot	
  to	
  repeat	
  its	
  current	
  activity	
   	
   	
   +	
   X	
   X	
   X	
   	
   	
   X	
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Ask	
  robot	
  to	
  shift	
  to	
  its	
  next	
  activity	
   	
   	
   +	
   X	
   X	
   X	
   	
   	
   X	
   	
   	
  
Ask	
  robot	
  if	
  it	
  has	
  network	
  connectivity	
  {to	
  
<astronaut>	
  |	
  <robot>}	
   	
   	
   	
   +	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
Command	
  robot	
  to	
  enable/disable	
  network	
  
relay	
   	
   	
   	
   +	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
Ask	
  robot	
  to	
  enable/disable	
  voice	
  
commanding	
   	
   	
   	
   +	
   X	
   X	
   	
   	
   X	
   	
   	
  
Ask	
  robot	
  whom	
  it	
  is	
  following	
   	
   	
   	
   +	
   X	
   X	
   	
   	
   X	
   	
   	
  
Ask	
  robot	
  whom	
  it	
  is	
  watching	
   	
   	
   	
   +	
   X	
   X	
   	
   	
   X	
   	
   	
  
Ask	
  robot	
  to	
  power	
  on/off	
  <subsystem>	
  (e.g.,	
  
brakes,	
  headlights,	
  motors)	
   	
   	
   	
   +	
   X	
   	
  	
   	
   	
   X	
   	
   	
  
Answer	
  robot	
  by	
  "Yes/No,	
  <robot	
  name>"	
   	
   	
   	
   +	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
Robot	
  interprets	
  "there"	
  to	
  be	
  last	
  location	
  
reference	
   	
   	
   	
   +	
   X	
   X	
   	
   	
   X	
   	
   	
  
Robot	
  interprets	
  "to	
  <astronaut>"	
  to	
  mean	
  that	
  
person's	
  current	
  location	
   	
   	
   	
   +	
   X	
   X	
   	
   	
   X	
   	
   	
  
Tell	
  robot	
  to	
  define	
  its	
  current	
  location	
  as	
  
<waypoint	
  #>	
   	
   	
   	
   +	
   X	
   X	
   	
   	
   X	
   	
   	
  
Tell	
  robot	
  to	
  create	
  an	
  elevation/ground	
  track	
  
map	
   	
   	
   	
   +	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
Ask	
  robot	
  to	
  inspect	
  an	
  area/waypoint	
  {using	
  
<instrument>}	
   	
   	
   	
   	
   	
  	
   +	
   	
   	
   	
  	
   	
   	
  
Tell	
  robot	
  to	
  move	
  N	
  <units>	
  
forward/backward	
   	
   	
   	
   	
   	
  	
   +	
   	
   	
   X	
   	
   	
  
Tell	
  robot	
  to	
  turn	
  N	
  degrees	
  left/right	
   	
   	
   	
   	
   	
  	
   +	
   	
   	
   	
  	
   	
   	
  
Ask	
  robot	
  to	
  describe	
  its	
  status	
   	
   	
   	
   	
   	
  	
   +	
   	
   	
   	
  	
   	
   	
  
Ask	
  robot	
  to	
  plan	
  a	
  path	
  to	
  <location>	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   +	
   	
   	
  
Ask	
  robot	
  to	
  prepare	
  to	
  follow	
  astronaut	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   +	
   	
   	
  
Ask	
  robot	
  to	
  watch	
  <location>	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   +	
   	
   	
  
Ask	
  robot	
  to	
  execute	
  instrument	
  procedure	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   +	
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Plan	
  Management	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
Activity	
  tracking	
  (time	
  &	
  loc)	
   	
   +	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
  
Alert	
  for	
  deviation	
  from	
  planned	
  activity	
  
duration	
  	
   	
   +	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
  
Alert	
  for	
  deviations	
  from	
  planned	
  activity	
  	
  
location	
   	
   +	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
  
Alert	
  about	
  total	
  EVA	
  time	
  remaining	
   	
   +	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
Voice	
  command	
  to	
  start	
  selected/"next"	
  
activity	
   	
   +	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
  
Change	
  Activity	
  duration	
  or	
  distance	
  
thresholds	
   	
   +	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
  
"How	
  much	
  time	
  is	
  left	
  (for	
  current	
  activity)?"	
   	
   +	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
  
Start	
  selected	
  activity	
  at	
  <location	
  name>	
  {for	
  
<duration>}	
   	
   	
   +	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
  
"What	
  is	
  the	
  current	
  activity?"	
   	
   	
   +	
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Start	
  <selected	
  activity	
  from	
  plan>	
   	
   	
   +	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
  
"Start	
  first	
  activity"	
   	
   	
   	
   +	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
Plan	
  distribution	
  to	
  mobile	
  agents	
   	
   	
   	
   +	
   X	
   X	
   	
   X	
   X	
   X	
   	
  
Query	
  	
  activity	
  and	
  remaining	
  time	
  	
   	
   	
   	
   +	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
  
Allow	
  creating	
  new	
  activity	
  of	
  a	
  type	
  (e.g.,	
  
sample,	
  survey,	
  walk)	
  at	
  <location>	
   	
   	
   	
   +	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
  
"What	
  time	
  is	
  it?"	
   	
   	
   	
   +	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
  
Display	
  <procedure>	
   	
   	
   	
   	
   	
  	
   +	
   X	
   	
   	
  	
   	
   	
  
"Read	
  the	
  <Nth	
  step>	
  of	
  <procedure>"	
   	
   	
   	
   	
   	
  	
   +	
   X	
   	
   	
  	
   	
   	
  
"What	
  is	
  <astronaut>'s	
  current	
  activity?"	
   	
   	
   	
   	
   	
  	
   	
  	
   +	
   	
   X	
   	
   	
  
Display	
  {PowerPoint	
  |	
  JPG}	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   +	
   	
   	
  
Display	
  next/previous	
  page	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   +	
   	
   	
  
Zoom	
  in/out	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   +	
   	
   	
  
Pan	
  display	
  left/right	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   +	
   	
   	
  
Alert	
  about	
  walk	
  back	
  emergency	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   +	
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Science	
  Data	
  Logging	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
Create	
  and	
  number	
  sample	
  bags	
   +	
   X	
   X	
   X	
   X	
   X	
   	
   X	
   X	
   X	
   X	
  
Record	
  a	
  voice	
  note	
   +	
   X	
   X	
   X	
   X	
   X	
   	
   X	
   X	
   X	
   X	
  
Play	
  a	
  voice	
  note	
  assoc.	
  w/	
  location	
  or	
  sample	
   	
   +	
   X	
   X	
   X	
   X	
   	
   X	
   X	
   X	
   X	
  
Associate	
  sample	
  bag	
  or	
  voice	
  note	
  with	
  
location	
   	
   +	
   X	
   X	
   X	
   X	
   	
   X	
   X	
   X	
   X	
  
Photographs	
  logged	
  by	
  time	
  &	
  location	
   	
   +	
   X	
   X	
   X	
   X	
   	
   X	
   X	
   X	
   X	
  
Science	
  data	
  transmitted	
  to	
  Hab	
  and	
  stored	
  on	
  
habitat	
  agent	
  platform	
  (HabCom)	
   	
   +	
   X	
   X	
   X	
   X	
   	
   	
   X	
   	
   	
  
Science	
  data	
  emailed	
  to	
  RST	
  (enable/disable)	
   	
   +	
   X	
   X	
   X	
   X	
   X	
   	
   X	
   X	
   X	
  
Download	
  an/all	
  image(s)	
  from	
  camera	
   	
   +	
   X	
   X	
   X	
   X	
   	
   X	
   X	
   X	
   X	
  

Science	
  data	
  stored	
  in	
  hierarchical	
  database	
  
organized	
  by	
  EVA,	
  astronaut,	
  location,	
  time,	
  &	
  
data	
  type	
  on	
  web	
  pages	
  accessible	
  remotely	
  
during	
  EVA	
  (includes	
  voice	
  notes	
  &	
  images)	
   	
   	
   +	
   X	
   X	
   X	
   	
   	
   X	
   X	
   	
  
Define	
  pair-­‐wise	
  association	
  of	
  voice	
  notes,	
  
sample	
  bags,	
  &	
  images	
   	
   	
   +	
   X	
   X	
   X	
   	
   X	
   X	
   X	
   X	
  
Sample	
  bags,	
  voice	
  notes,	
  and	
  photographs	
  
auto-­‐associated	
  with	
  activity	
  of	
  EVA	
  plan	
   	
   	
   +	
   X	
   X	
   X	
   	
   X	
   X	
   X	
   X	
  
Name	
  the	
  last	
  image	
  or	
  collection	
   	
   	
   +	
   X	
   X	
   X	
   	
   X	
   X	
   X	
   X	
  
Replay	
  voice	
  note	
  <number>	
   	
   	
   +	
   X	
   X	
   X	
   	
   X	
   X	
   X	
   X	
  
Name	
  sample	
  bags	
  by	
  pattern	
  LL/DD/DD	
  
(allowing	
  use	
  of	
  ICA	
  alphabet)	
   	
   	
   +	
   X	
   X	
   X	
   	
   X	
   X	
   X	
   X	
  
Allow	
  references	
  to	
  "last	
  image"	
  and	
  "last	
  voice	
  
note"	
   	
   	
   +	
   X	
   X	
   X	
   	
   X	
   X	
   X	
   X	
  
Automated	
  printing	
  of	
  sample	
  bag	
  label	
   	
   	
   	
   +	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
Reference	
  image	
  collections	
  by	
  number	
  or	
  
location/bag	
  association	
   	
   	
   	
   +	
   X	
   X	
   	
   X	
   X	
   X	
   X	
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Allow	
  references	
  to	
  "image	
  of	
  
<bag>|<location>"	
   	
   	
   	
   +	
   X	
   X	
   	
   X	
   X	
   X	
   X	
  
Reference	
  panoramic	
  images	
  by	
  number,	
  
location,	
  or	
  "last"	
   	
   	
   	
   +	
   X	
   	
  	
   	
   	
   X	
   	
   	
  
List	
  locations,	
  sample	
  bags,	
  images,	
  voice	
  
notes,	
  collections,	
  panoramic	
  images	
  {near	
  
<location>}	
  on	
  demand	
   	
   	
   	
   +	
   X	
   X	
   	
   X	
   X	
   X	
   X	
  
Science	
  data	
  accessed	
  from	
  dynamic	
  EVA	
  map	
  
(TerraServer)	
   	
   	
   	
   	
   +	
   X	
   	
   	
   X	
   	
   	
  
Enable/Disable	
  automatic	
  data	
  associations	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   +	
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Voice	
  Mail	
  	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
"Tell	
  <astronaut>	
  …	
  <any	
  speech>	
  {at	
  <time>}	
   	
   	
   	
   	
   	
  	
   	
  	
   +	
   	
   	
  	
   	
   	
  
"Play	
  voice	
  message	
  from	
  <astronaut>"	
   	
   	
   	
   	
   	
  	
   	
  	
   +	
   	
   	
  	
   	
   	
  
"Continue	
  last	
  voice	
  note"	
   	
   	
   	
   	
   	
  	
   	
  	
   +	
   X	
   X	
   X	
   X	
  
"Send	
  <voice	
  note>	
  to	
  <person>"	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   +	
   	
   	
  
	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
Alert	
  Management	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
Enable/Disable	
  all	
  alerts	
   	
   +	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
  
Enable/Disable	
  last	
  alert	
   	
   +	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
  
Enable/Disable	
  selected	
  alert	
  for	
  <astronaut>	
   	
   	
   +	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
  
Enable/Disable	
  all	
  alerts	
  of	
  type	
  X	
  	
   	
   	
   +	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
  
Enable/Disable	
  explicit	
  confirmation	
  of	
  
command	
  interpretation	
   	
   	
   	
   +	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
  
Enable/Disable	
  conditional	
  alerts	
  (e.g.,	
  "Tell	
  
me/<person>/everyone	
  when	
  the	
  generator	
  
comes	
  online.")	
   	
   	
   	
   	
   	
  	
   	
  	
   +	
   	
   	
  	
   	
   	
  
Acknowledge	
  command	
  acceptance	
  via	
  beep	
   	
   	
   	
   	
   	
  	
   	
  	
   +	
   X	
   X	
   X	
   X	
  
	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
Voice	
  Command	
  Controls	
   	
   	
   	
   	
   	
  	
   	
  	
   	
   	
   	
  	
   	
   	
  
Increase/Decrease	
  Volume	
   	
   	
   	
   +	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
  
"Say	
  that	
  again"/"Repeat	
  that"	
   	
   	
   	
   +	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
  
"Stop	
  talking"	
   	
   	
   	
   +	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
  
"Are	
  you	
  listening?"	
   	
   	
   	
   +	
   X	
   X	
   X	
   X	
   X	
   X	
   X	
  
"Start/Stop	
  Listening"	
   	
   	
   	
   	
   	
  	
   	
  	
   +	
   X	
   X	
   X	
   X	
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Appendix	
  IV. Organization	
  of	
  Data	
  Analysis	
  Table	
  

The following table provides an overview of the data available and what was calculated 
for evaluating the agent-based open architecture. 
 
(Key: KSLOC = Thousand Source Lines of Code; Workflow Agents are written in the 
Brahms programming language, sending messages to each other and to Communication 
Agents (CA), which are written in Java and usually call external APIs written in Java, 
C++, etc. “Packaged” refers to the entire system configuration, which includes multiple 
instances of an agent type.) 
 
 
PERSONNEL CONTRIBUTION 
ARC Co-Investigators Project Lead, Scenarios, Field Coordinator 
 Project Manager, Scenarios, Integration 
Brahms Modelers Workflow & CA Agents  
ARC Programmer ScienceOrganizer   
    
ARC MEX Team MEX & GPS, Nonin sensor 
  
    
ARC Programmer Voice Commanding (RIALIST) 
Audio Manager CAIPack HUD, & Suit Audio 
    
Student Intern  Stanford Biovest 
    
JSC ERA Team ERA(s) & SCOUT Integration  
    
ARC IRG Team K9 Rover, Gromit, EUROPA 
    
JSC/HRP Scientist MRA EXCEL & Suit integration 
    
Project Time Data  PROGRAMMING FTE DURING PERIOD  
 Project Development Start Date 
 Project Completion Date 
 Elapsed DDT&E Days 
Effort Data Annualized PROJECT FTE 
 FISCAL YEAR 
 Dialog Agent Programmer FTE 
 Workflow Team FTE 
 FY FTE (Workflow Agent Team) 
 # Programmers 
 FY FTE (all projects) 
Software Data  Workflow Agent Types Count 
 Number of NEW WF Agent Types 
 Number of Modified WF Agent Types 
 Number NEW + Modified WF Agent Types 
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 New WF Agents KSLOC 
 Unchanged WF Agents KSLOC 
 Modified WF Agents KSLOC 
 Eliminated WF Agents KSLOC 
 Modified WF Agents Carried Over KSLOC 
 Modified WF Agents KSLOC ADDED 
 (Verify KSLOC Calculations = Total) 
 All Workflow Agents KSLOC 
 % New WF Agents KSLOC 
 % Unchanged WF  Agents KSLOC 
 % Modified WF Agents KSLOC 
 (Verify % Calculations = 100%) 
 % WF  Agent KSLOC  New or Modified 
 Workflow Agents Packaged Count 
  Workflow Agents KSLOC Packaged  

 
 Communication (Integration) Agent Types 

Count  
 Number of NEW Comm Agent Types 
 Number of Modified Comm Agent Types 
 Number NEW + Modified Comm Agent Types 
 New Comm Agents KSLOC 
 Unchanged Comm Agents KSLOC 
 Modified Comm Agents KSLOC TOTAL 
 Eliminated Comm Agents KSLOC 
 Modified CA Carried Over KSLOC 
 Modified CA KSLOC ADDED 
 Dialog CA KSLOC 
 Added KSLOC to Previous Dialog CA 

 
Added KSLOC to Carried over (modified) Comm 

Agents excluding Dialog CA additions 
 (Verify KSLOC Calculations = Total) 
 All Comm Agents KSLOC 
 % New CA KSLOC 
 % Unchanged CA KSLOC 
 % Modified CA KSLOC 
 (Verify % Calculations = 100%) 
 % CA  KSLOC New or Modified 

 
% Modified CA KSLOC attributed to Dialog Agent 

Modifications 
 Communication Agents Packaged Count 
 CA KSLOC Packaged 
   
 Number of All Agent Types (Workflow + CA) 
 Change in number of all Agent types 
  TOTAL All Agent Types KSLOC 
 TOTAL Configuration Package KSLOC 
 Change in all Agent Types KSLOC 
  CHANGE IN TOTAL PACKAGED KSLOC 
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Productivity Data PRODUCT LINE INHERITANCE 
 Number New Capabilities 
 Number of Peripheral Systems Added 
 Number of  Requests/Alerts Added 
 Number of Request/Alert Capabilities 
 Capabilities added/FY FTE 

 
New + Added Workflow Agent KSLOC/Workflow 

Team FTE 
 New + Added CA KSLOC/All Teams FTE 
 New + Added All Agents KSLOC 
 New + Added KSLOC Grouped by Projects 

 
New + Added KSLOC/All Teams FTE, excluding 

Dialog CA Programmer 

 
New + Added All Agents KSLOC/All Teams 

FTE 

 
New + Added All Agents for Grouped 

Projects/All Teams FTE  

 
New + Added All Agents Grouped 

Projects/# Programmers 
 Change in CA Packaged SLOC/FY FTE 
 Change in all Agent Types SLOC/FY FTE 
 Change in Package KSLOC /FY FTE 
Cost Data Estimated Software Budget ($000) 
 Cost ($000)/Total Agent Types KSLOC 
 Cost ($000)/Total Packaged KSLOC 
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Appendix	
  V. Completing	
  the	
  Picture:	
  System	
  Specification	
  through	
  a	
  Goal-­‐
Oriented	
  Control	
  Framework	
  

The lunar surface system capabilities envisioned will almost certainly be realized as a 
system-of-systems developed by a multinational, multi-agency set of partners. The open 
architecture described thus far addresses many of the most salient features of such 
systems, as well as the challenges associated with the planning, developing and 
integrating of an incrementally-delivered, distributed system.  The open architecture 
provides an infrastructure for “plug-and-play” interoperability, scalability and 
maintainability.   
 
While an open architecture provides an important set of features, delivering and operating 
this lunar surface system-of-systems has a residual number of challenges that can be met 
through adoption of a complementary set of architectural principles and approaches; the 
principles of Goal-Oriented Control coupled with model-based systems engineering 
practices. 
 
A real-time, distributed, safety-critical system with heterogeneous components (which in 
many cases have been developed by multiple teams) is a sure recipe for complexity.  This 
situation warrants an architectural framework which explicitly maps well-stated 
properties of interest to the design elements responsible for satisfying them.  This 
framework needs to be rich enough to cover the concepts of the domain of interest while 
ideally facilitating systems engineering best practices (in particular specification and 
knowledge capture, analysis, verification and validation). Goal-oriented Control is such a 
framework. 
 
Goal-Oriented Control   
Goal-oriented control is an architectural framework for specifying a system based on 
explicit statement of desired system behavior (which is defined as constraints on states of 
the system of interest) and progressively defining the elements to best realize the 
aforementioned specifications.  Along with a conceptual model, the framework affords a 
set of techniques and software tools.   
 
The goal-oriented control approach parallels the systems engineering best practice of 
grounding design in well-stated, verifiable and traceable requirements.  Goals are defined 
as requirements that specify a constraint on a state variable of interest.  These state 
variables are values that can change over time, and must be controlled in order to meet 
system objectives.  Goals are progressively elaborated into supporting goals until they are 
atomic statements that can be controlled or measured by a single element and readily 
verified. 
 
As part of specifying our goals, we also specify the attendant control system to achieve 
the goals.  This approach is a close analogue to the practice of classic control theory 
where a plant description (what you want to control) is coupled with a set of sensors, 
actuators and estimators to realize a desired set of global system properties.  Designers 
start by specifying what properties the system as a whole must exhibit, then they look at 
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the system which must be controlled along with the appropriate influences of the 
environment affecting the plant while determining the necessary control system (sensors, 
actuators, estimators) to deliver the desired system performance. 
 

 
 
Figure 22. Identifying the system under control and how it fits in the operating 
environment. 
 
The figure above illustrates the basic analytic process of identifying what is the system 
under control and how does it fit in the operating environment. Once identified, the 
practitioner has a firm basis to begin the requirements process; defining goals as states of 
interest with necessary constraints. 
 
The system under control is ultimately the system hardware operating in the operational 
environment.  The control system (schedulers, estimators, controllers, sensors) is 
comprised of networked distributed software agents.  The open architecture described 
previously provides the infrastructure for these distributed agents to work together to 
achieve the specified system goals.  
 
Models, along with measurements and command histories, provide the control system 
with the state knowledge it needs to act appropriately in all operational contexts.  The 
models used to specify the system in requirements elicitation and system development are 
carried over into operations for use in running the actual system, reducing the gaps 
between concept, design and operations.     
 
The Benefits of Goal-Oriented Control  
The benefits of the Goal-Oriented framework fall under two related though distinct 
categories, technical and process.  The technical benefits describe the intrinsic quality 
premiums of the realized systems, while the process benefits cover the advantages of the 
method for addressing project cost, technical and schedule risks. 
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Technical Benefits 
Goal-oriented control systems allow the user to specify system behavior as explicit and 
verifiable constraints of defined states.  As a result, systems have a run-time guarantee of 
“correct” (in accordance with specification) behavior.  In contrast with a more traditional 
procedural implementation, the goal-oriented system “keeps track” of system states and 
acts in a closed-loop manner to issue the appropriate commands in to satisfy the operator-
provided goals.  As a related benefit, the system also uses its models and measurements 
to project states into the future to determine if planned goals can be met based on what 
has happened so far.  This facilitates a much more nuanced, robust way of specifying 
system behavior.  This also results in a more integrated and transparent fault protection; 
fault protection is rightfully integrated as part of overall behavior management. 
 
The goal-oriented control approach also scales nicely to arbitrarily complex numbers of 
distributed elements.  As long as the user can state goals as constraints on any time-
varying property, a system and its behavior can be specified by using the small set of 
concepts, relationship and patterns of the goal-oriented framework. 
The simplicity of the framework also allows flexibility of implementation with regards to 
the level of autonomy.  While the control system has a running model of the system 
under control which it updates through measurements, it is up to the designer to 
determine what commands (if any) the system can issue.  For instance, the control system 
can use its model information in an advisory role to a human actor, suggesting commands 
while the human provides the ultimate authority to proceed.     
 
Process Benefits 
As mentioned previously, the lunar surface system-of-systems will feature a set of 
elements developed by a number of different teams and delivered in an incremental 
fashion.  Well-formed, unambiguous, system specification through models is becoming 
an indispensible tool in the systems engineering and architecture of such systems.  
Models help by providing developers, testers and users a common understanding of what 
the system should do, how and why.  By using a common representation, the program 
fielding the system has a lingua franca to discuss and work system issues.  Goal-oriented 
control, with its innate emphasis on modeling, capitalizes on these benefits.  Not only do 
the models inform the design process, aiding in the discovery and analysis of 
requirements,  the models also serve as the “smarts” for the fielded system, providing the 
capability for true closed-loop, cognizant control.   
 
Documentation of the system knowledge as models provides a “living record” of issues, 
concerns and decisions and ties these artifacts into the actual flight code.  The benefits to 
maintenance and upgrades over the life cycle of such a comprehensive record are 
manifest.  Developers and stakeholders have a more unambiguous means for specifying 
the system, testers have better requirements to test and operators have a more natural, 
powerful language for specification of behaviors for robust execution.  
 
Goal-oriented models also enable developers and testers to employ powerful analytic 
means (both simulation and static “theorem provers”) for analyzing and verifying 
designs.  Model-checking applications are seeing significant use in checking mission-
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critical systems in many domains, both improving system safety and reducing 
development costs.  The well-specified goals of the goal-oriented approach and the well-
defined elements and relations of the framework are key to implementing these 
techniques.  Formal system verification though models allows testers to check a range of 
design properties for multiple operational contexts economically.  
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Appendix	
  VI. Glossary	
  

activity An extended behavior of some agent 
occurring in some time-space context, e.g., 
“living on the lunar surface.” Oriented by 
motives, which often include goals with 
tasks to accomplish.  See Clancey (2002). 

agent Located, proactive software program with 
models of work and local situation; 
communicates messages with other agents 

autonomous  A mode of automated operation in which a 
system is programmatically controlled to 
pursue (and possibly reformulate) goals 
without additional human guidance. 

API Application Programming Interface 

Brahms Work Practice Modeling and 
Simulation System 

Multi-agent discrete event simulation 
system designed for simulating human 
work practices (situated activities), 
represented as chronological, located 
behaviors with interactions among people 
and automated systems and tools.  

Collaborative Infrastructure Environment for hosting distributed 
software applications and components 
providing services that can be used to 
simplify management, status monitoring, 
network transport, messaging, data 
distribution and translation; CI generalizes 
the CORBA/Speech Act method of 
information exchange developed for the 
Mobile Agents exploration systems. 
Currently used in OCAMS for ISS file 
management (Figure 21). 

Communication Agent JAVA program that translates between the 
programming language objects and 
methods of a component API and Speech 
Acts, represented in the language of the 
task domain. 

component Hardware or software system 
interoperating with other components in the 
exploration system. 

domain model Structured representation for some purpose 
of some system and/or processes, e.g., a 
geographic model of a lunar region; a 
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model of an EVA traverse; a model of an 
exploration system configuration  

EVA Robotic Assistant (ERA) Rover designed for science support (Hirsh, 
et al. 2006) 

exploration system configuration Particular set of integrated hardware and 
software that provides support to crew for 
some purpose (e.g., science, survival, 
mobility, general inquiry of some region) 

FIPA The Foundation for Intelligent Physical 
Agents (FIPA) developed computer 
software standards for heterogeneous and 
interacting agents in agent-based systems. 
Replaced by IEEE Standards Committee in 
2005.  

information Interpreted data; more specifically: 
Perception of some condition or 
conceptual/inferential interpretation of the 
meaning of perceived data; e.g., the 
meaning of a spoken utterance. 

Information Exchange Service Functional capability in a software 
architecture that constructs and/or conveys 
information by gathering, transforming, 
interpreting, packaging, etc. data, 
information, and/or commands  

RIALIST Software program capability of recognizing 
and generating spoken utterances; uses a 
grammar of valid utterances and their 
Speech Act interpretation; related to 
NUANCE commercial products. 

Speech Act Broadly, the implicit meaning of an 
utterance, viewed as a performance by the 
speaker, e.g., promise, command, warning. 
Voice commands are implemented by 
workflow agents to satisfy the intention 
agreed by the crew and exploration system 
developers, e.g., “Boudreau, Stop!” means 
“stop immediately, don’t ask for 
confirmation.” Thus, the “stop” utterance is 
a different kind of speech act than the “go 
to waypoint N” utterance, which requires 
confirmation. 

task A functional unit that describes goal-
oriented action; contrasted with “activity.” 
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workflow system In the context of the space program, an 
exploration system designed to automate 
the creation, storage, and communication 
of information among system components, 
which may be operating “autonomously”; 
usually by interacting with astronauts 
and/or remote support teams. 

 
 
 


