
	

NASA/TP—2012–216040

Lunar Surface Systems Software
Architecture Study:
Interoperability

William J. Clancey
Ames Research Center, California
and Florida Institute for Human and Machine Cognition, Pensacola

Michael Lowry
Ames Research Center, California

 Click here: Press F1 key (Windows) or Help key (Mac) for help

August 2012

	

NASA STI Program ... in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA scientific and technical
information (STI) program plays a key part in
helping NASA maintain this important role.

The NASA STI program operates under the
auspices of the Agency Chief Information Officer.
It collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI
program provides access to the NASA
Aeronautics and Space Database and its public
interface, the NASA Technical Reports Server,
thus providing one of the largest collections of
aeronautical and space science STI in the world.
Results are published in both non-NASA channels
and by NASA in the NASA STI Report Series,
which includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant
phase of research that present the results of
NASA Programs and include extensive data
or theoretical analysis. Includes compila-
tions of significant scientific and technical
data and information deemed to be of
continuing reference value. NASA counter-
part of peer-reviewed formal professional
papers but has less stringent limitations on
manuscript length and extent of graphic
presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and
feeds, providing information desk and personal
search support, and enabling data exchange
services.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page

at http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Fax your question to the NASA STI
Information Desk at 443-757-5803

• Phone the NASA STI Information Desk at
443-757-5802

• Write to:
STI Information Desk
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320

This page is required and contains approved text that cannot be changed.

	

NASA/TP—2012–216040

Lunar Surface Systems Software
Architecture Study:
Interoperability

William J. Clancey
Ames Research Center, California
and Florida Institute for Human and Machine Cognition, Pensacola

Michael Lowry
Ames Research Center, California

 Click here: Press F1 key (Windows) or Help key (Mac) for help

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, CA 94035-1000

August 2012

	

Acknowledgments

This study was supported by the ETDP/Lunar Surface Systems Project in 2010.
Contributions and review were provided by Robert Nado and Maarten Sierhuis (ARC)
and Edwin Crues, Dan Dvorak, and Grailing Jones (JPL). Funding for the Mobile Agents
Project (2002-08) was provided by NASA’s Intelligent Systems, Moon and Mars
Analogue Mission Activities (MMAMA), and Exploration Technology and Research
Programs (ETDP). Scientists and engineers from three NASA centers contributed to
Mobile Agents, including Rick Alena, John Dowding, and the JSC Scout/ERA team
(especially Rob Hirsh, Jeff Graham, and Kim Shillcutt Tyree); we acknowledge also the
guidance of the geologists, Brent Garry and Abby Semple, who experimented with the
system doing field science at MDRS and other analog sites.

Thist

 Click here: Press F1 key (Windows) or Help key (Mac) for help

 Available from:

 Click here: Press F1 key (Windows) or Help key (Mac) for help

This report is also available in electronic form at

http://ti.arc.nasa.gov/publications/

TABLE	
 OF	
 CONTENTS	

1	
 EXECUTIVE	
 SUMMARY	
 ..	
 4	

2	
 INTRODUCTION	
 ...	
 6	

3	
 RELEVANCE	
 OF	
 INTEROPERABILITY	
 TO	
 LSS	
 ...	
 8	

3.1	
 TYPES	
 OF	
 INTEROPERABILITY	
 ...	
 8	

3.2	
 FIGURES	
 OF	
 MERIT	
 FOR	
 EVALUATING	
 INTEROPERABILITY	
 ..	
 10	

4	
 SCENARIO:	
 EMERGENCY	
 RETURN	
 TO	
 HABITAT	
 DURING	
 SURFACE	
 EVA	
 	
 13	

4.1	
 SCENARIO	
 OBJECTIVE	
 ..	
 13	

4.2	
 SCENARIO	
 ASSUMPTIONS	
 ..	
 13	

4.3	
 SCENARIO	
 NARRATIVE	
 ..	
 14	

4.4	
 WORKFLOW	
 CAPABILITIES	
 ILLUSTRATED	
 IN	
 THE	
 SCENARIO	
 ...	
 16	

4.5	
 INTEROPERABILITY	
 FUNCTIONAL	
 REQUIREMENTS	
 FOR	
 ACCOMPLISHING	
 WORKFLOW	

CAPABILITIES	
 ..	
 18	

4.6	
 DISCUSSION:	
 INTEROPERABILITY	
 AND	
 WORKFLOW	
 AUTOMATION	
 ...	
 20	

4.6.1	
 WORK	
 ...	
 20	

4.6.2	
 INFORMATION	
 ...	
 20	

4.6.3	
 INVESTIGATIVE	
 WORK	
 ..	
 21	

4.6.4	
 WORKFLOW	
 ...	
 21	

4.6.5	
 SUMMARY	
 AND	
 APPRAISAL	
 ..	
 22	

5	
 ARCHITECTURE	
 TRADES	
 FOR	
 IMPLEMENTATION	
 OF	
 INTEROPERABILITY	

FUNCTIONS	
 ..	
 22	

5.1	
 LOW-­‐LEVEL	
 INTEROPERABILITY:	
 NETWORK	
 CONNECTIVITY	
 AND	
 DATA	
 EXCHANGE	
 	
 23	

5.2	
 HIGHER-­‐LEVEL	
 INTEROPERABILITY:	
 AUTOMATING	
 INFORMATION	
 CREATION	
 AND	
 EXCHANGE
	
 23	

5.3	
 RELATION	
 TO	
 OPEN	
 ARCHITECTURE	
 ..	
 24	

5.4	
 RELATION	
 TO	
 MIDDLEWARE	
 ..	
 24	

5.5	
 PERSPECTIVE:	
 SHIFT	
 FROM	
 CONNECTING	
 COMPONENTS	
 TO	
 AN	
 OPERATIONS	
 FRAMEWORK	
 FOR	

INTEROPERABILITY	
 ..	
 25	

5.5.1	
 EXAMPLE:	
 WHAT’S	
 WRONG	
 WITH	
 TODAY’S	
 SMART	
 PHONES	
 ...	
 25	

5.5.2	
 REPLACING	
 PAIR-­‐WISE	
 INTEGRATION	
 OF	
 APPS	
 BY	
 A	
 FLEXIBLE	
 SYSTEMS	
 FRAMEWORK	
 FOR	

INTER-­‐OPERATION	
 ..	
 26	

5.6	
 COMBINING	
 DESIGN	
 MINDSETS:	
 INTEGRATING	
 HARDWARE	
 THAT	
 SUPPORTS	
 ACTIVITIES	
 	
 28	

5.6.1	
 VIEWING	
 A	
 SYSTEM	
 ARCHITECTURE	
 AS	
 BOTH	
 OBJECTS	
 AND	
 PROCESSES	
 ...	
 28	

5.6.2	
 CRITIQUE	
 OF	
 THE	
 “BUILDING	
 BLOCKS”	
 APPROACH	
 ...	
 29	

5.7	
 CANDIDATE	
 ARCHITECTURES	
 FOR	
 HIGHER-­‐LEVEL	
 INTEROPERABILITY	
 	
 31	

5.7.1	
 LAYERED	
 CONTROL	
 ARCHITECTURES	
 ..	
 31	

5.7.2	
 DISTRIBUTED	
 NETWORK	
 CONTROL	
 ARCHITECTURES	
 ..	
 33	

5.7.3	
 EXAMPLE	
 OF	
 DISTRIBUTED	
 CONTROL:	
 MULTIAGENT	
 WORKFLOW	
 SYSTEMS	
 	
 34	

5.8	
 SUMMARY:	
 TRADE	
 COMPARISON	
 RELATIVE	
 TO	
 FIGURES	
 OF	
 MERIT	
 ..	
 35	

6	
 RECOMMENDATIONS:	
 SOFTWARE	
 ARCHITECTURES	
 FOR	
 SYSTEM	
 OF	
 SYSTEMS	

INTER-­‐OPERABILITY	
 ...	
 36	

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 2

6.1	
 SUMMARY	
 OF	
 ANALYSIS	
 AND	
 CONCLUSIONS	
 ..	
 37	

6.2	
 INTEROPERABILITY	
 RECOMMENDATIONS	
 RELATIVE	
 TO	
 C3I	
 ARCHITECTURE	
 	
 39	

6.3	
 LEGACY	
 ISSUES	
 HINDERING	
 INTEROPERABILITY	
 —	
 WHY	
 NOT	
 A	
 CLEAN	
 SLATE?	
 	
 43	

6.4	
 ENDURING	
 CHALLENGES	
 FOR	
 INTEROPERABILITY	
 ..	
 43	

7	
 APPENDIX:	
 C3I	
 INTEROPERABILITY	
 OBJECTIVES	
 AND	
 METHODS	
 	
 45	

8	
 APPENDIX:	
 EXAMPLE	
 IMPLEMENTATION—MOBILE	
 AGENTS	
 ARCHITECTURE	
 	
 47	

8.1	
 LOGICAL	
 DESIGN	
 OF	
 A	
 WORKFLOW	
 SYSTEM	
 ...	
 49	

8.2	
 NATURAL	
 LANGUAGE	
 CONTRASTED	
 WITH	
 DATA	
 AND	
 COMMAND	
 DISPLAYS	
 	
 54	

8.3	
 ON-­‐DEMAND	
 WORKFLOW	
 AUTOMATION	
 CONTRASTED	
 WITH	
 COMMAND	
 SEQUENCING	
 	
 56	

8.4	
 ON-­‐DEMAND	
 WORKFLOW	
 AUTOMATION	
 CONTRASTED	
 WITH	
 CONVENTIONAL	
 OFFICE	

WORKFLOW	
 SYSTEMS	
 ..	
 57	

8.5	
 AGENT	
 COMMUNICATION	
 IN	
 THE	
 WORKFLOW	
 SYSTEM	
 ..	
 57	

9	
 BIBLIOGRAPHY	
 ...	
 61	

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 3

FIGURES	

Figure 5.1. “Telemedicine Systems Created from a Common Set of Architectural

Building Blocks,” (Warren et al. 1999). ... 29	

Figure 5.2. “Depiction of the general component interactions in the proposed

architecture,” (Warren et al. 1999). .. 30	

Figure 6.1. C3I Architecture interoperability layers and their mapping to the OSI

Reference Model, including Information Exchange (Workflow) Services layer.
Transport layer is elaborated to automate flow of information between element-
specific data systems, using data exchange services and transport/networked
communications; See Figure 8.2 for details and examples. (Figure adapted from CxP
70022-1, Figure 1.5-2; dashed red line represents scope of C3I Interoperability
Specifications). .. 40	

Figure 8.1. OCA Management System (OCAMS) basic architecture. OCAMS is a
workflow application implemented as agents in a service-oriented architecture that
acting together enable information exchange and subsystem interoperability. 48	

Figure 8.2. Logical Design of Typical Agent-Based Systems Integration Architecture,
relating scenarios of system behaviors to networked hardware and software systems.
Circles represent people and hardware/software components, with interaction made
possible for the people by a language and for the components through the
interactions of an associated API and “communication agent” (CA). See text for
further explanation and compare to Table 3 and Figure 8.3. 51	

Figure 8.3. Typical exploration system configuration (Figure 8.2) related to the generic
design layers (Table 3). The diagram illustrates the generality of the architecture:
Workflow agents integrate hardware and software subsystems. An “automated
subsystem” (VI) is itself an integrated system, and its subsystems can be controlled
through the workflow agents. Other distinguished subsystems are interfaces with
people, exemplified here by a speech system that provides language level, goal-
oriented access to information and system-wide control. ... 53	

Figure 8.4. MDRS 2003 Example of Distributed Communications Using Proxy Agents.
Initial design of MAA enabled agents to communicate with agents on another
platform by communicating with a local proxy for remote agents, e.g.,
Hab_AstroOnePxA located on the AstroOne platform was the proxy agent for the
HabCom Agent located on the HabCom platform. ... 58	

TABLES	

Table 1. Two ways of viewing a system architecture ... 28	

Table 2. Comparison of candidate software architectures relative to figures of merit

driving interoperability. .. 36	

Table 3. Exploration System Design Partitions in the Mobile Agents Architecture 49	

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 4

1 EXECUTIVE	
 SUMMARY	

Interoperability refers to “the ability for two or more systems to exchange information
and to use the information that has been exchanged.” This report focuses on
interoperability for surface exploration involving a diversity of hardware and software
systems that are dynamically interacting in a mobile, distributed environment.

This report is part of an overarching Lunar Surface Systems (LSS) Software Architecture
Trade Study that identifies candidate architectures for the key software that will be used
for each LSS Element (e.g., space suit, vehicle, robot, habitat). It elaborates a companion
report, LSS Software Open Architecture Study (Clancey et al. 2010b), which
systematically analyzed data from the Mobile Agents Project, part of NASA’s Intelligent
Systems and Human-Systems Integration Exploration Technology Development
Programs (2002-2006); the first report quantified the effort involved in extending and
reconfiguring components within an open architecture framework.

In practical terms, the purpose of this report is to begin to answer the question: What do
different vendors (including international partners) need to put into their systems to
realize interoperability for exploration systems? Or in more technical terms: What are
the functional requirements, independent of specific scenarios or workflow capabilities,
that will enable interoperability in commanding, data access, and security—for any
purpose, including science, medical, resources, operations, etc.—across a wide range of
component technologies, exploration system configurations, and settings?

This report explains what is meant by “workflow” and how it relates to interoperability.
Sophisticated workflow functions include the heuristic guidance of people, robotic
systems, and software agents to facilitate cooperative work (e.g., parceling tasks among
people and robotic systems and delegating information processing to software agents).
Such systems use available information to plan, alert, guide, record, and control the
ongoing flow of information and commanding to assist or directly orchestrate inter-
operation.

Model-based inference (aka “reasoning”) is the fundamental computational method
enabling workflow automation. Specifically, models of exploration systems are used by
programs, often called “intelligent systems,” to monitor, predict, interpret/explain,
control, diagnose, and plan inter-operation of subsystems. By implementing these
capabilities in a flexible way, exploration systems can increase efficiency through
automation, reliability through being adaptive, safety through monitoring and alerting,
and extensibility through co-operation among new and existing LSS elements.

Interoperability also enables distributed access to sensor and vehicle state interpretations,
as well as closed-loop command and control automation, with or without people in the
loop. Overall, the exploration system is more flexible by enabling a wide range of “point
of control” (PoC) configurations for LSS elements, facilitating crew situation awareness
and control. Furthermore, PoC migration and/or distribution enables dynamic
reconfiguration of system roles and oversight, including variable autonomy (Alena 2010).

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 5

In general, workflow automation involves associating, packaging, and communicating
both discrete and continuous data streams; the purpose may be archival or for ongoing
operations, by either people or automated systems. For example, EVA photographs are
more efficiently organized for later interpretation if the database automatically pulls
together data about location, time, camera source, and the context of the EVA activity.
This is accomplished by synchronizing and often reformulating data from diverse sources
at runtime, creating new information representations (e.g., web pages, text summaries).

This report begins with a short review of different perspectives on interoperability and its
relevance to exploration systems, expressed as figures of merit for evaluating
interoperability, largely derived from recent critical analyses of the ISS computing
architecture: safety, security, data management, incremental buildup, productivity, and
cost (Section 3). A detailed emergency EVA scenario illustrates advantages and methods
for state-of-the-art interoperability by automating workflow (Section 4). We conclude
from analyzing the EVA emergency scenario that a Lunar Surface System with workflow
automation would significantly improve safety and productivity by enabling a diversity
of distributed subsystems to interact flexibly (e.g., habitat, pressurized vehicle, spacesuit,
robot, instruments) (Section 4.5). These workflow functions include real-time, closed-
loop coordination of multiple subsystems; consolidating, filtering, and abstracting data;
creating and forwarding relevant information; and assembling data from multiple
subsystems to construct commands for devices/applications.

We then distinguish low and higher-level interoperability in the EVA scenario, clarifying
the limitations of a systems integration perspective that focuses on connectivity and
communications. The physical “building blocks” metaphor is contrasted with a process
metaphor of a distributed network architecture with control layers (Section 5). Candidate
software architectures for interoperability are compared relative to the figures of merit
(Table 2), with the distributed network control architecture found to be superior by all
metrics. The recommendations are then related to the present C3I Architecture (Figure
6.1) and enduring challenges are discussed. An appendix (Section 8) presents an example
of an agent-based implementation of workflow orchestration.

The trade study also highlights that multiple architectural perspectives are useful for
designing a complex integrated, distributed system, including networking, inter-process
communication, interfaces, and workflow. In practice, a distributed network architecture
will in some respects involve building blocks and functional layering. Analysis shows
that the distributed network perspective is more embracing by enabling multiple design
perspectives to be related into a reconfigurable and robust operational system of systems.

The comparative analysis of interoperability architectures presented here complements
the Real-Time Avionics Middleware Architecture Trade Study (Alena 2010) by clarifying
how certain interoperability functional requirements, including dynamic reconfiguration
and workflow automation, go beyond common middleware capabilities. In practical
implementations, middleware provides a medium for communicating data and commands
among devices and applications, while workflow agents orchestrate the flows. The kind

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 6

of interoperability required within a system of systems depends on whether and how
particular components interact:

 Low-Level Interoperability (Middleware)—for systems whose components
operate independently and/or interact only in fixed ways (e.g., functional
hierarchy) and tend to be of fixed types (e.g., plug-ins).

 Higher-Level Interoperability (Workflow Automation)—for systems whose
components are distributed, heterogeneous (i.e., not designed to a single
standard), and are intended to interact with other software and/or hardware (e.g., a
planner subsystem; a database; an Email program).

In summary, interoperability shifts the systems engineering notion of “integration” from
connectivity and forwarding telemetry and commands between subsystems to
orchestrating operations in a system of systems to create and manage information.
Interoperability is concerned with enabling higher-order processes to control and hence
coordinate actions of subsystems within the ongoing context of human tasks (work).

The legacy systems of the International Space Station provide a useful example for
considering to what extent a “clean slate” is desirable, rather than designing around
legacy systems. Why not simply replace them by redesigned hardware and a modern
software framework? Simply put, interoperability involves managing a diversity of
technologies in a complex, already functioning system. In part, diversity stems from
technological advances that make today’s state-of-the-art systems “legacies” in a few
years. Although we might say that incremental buildup is desirable because we cannot
afford to build everything at once, incremental buildup is also inevitable because we
cannot afford to replace everything at once when technology advances. We will always
need to deal with legacy systems that generate, represent, and store data in different
ways, as well as upgrades that seek to use existing data and control legacy systems in
new ways. Inevitably, operating systems and computational platforms will continue to
evolve. Rather than a “clean slate” approach, we recommend a framework that is
designed for reusability, extensibility, and scalability.

2 INTRODUCTION	

This report is part of an overarching Lunar Surface Systems (LSS) Software Architecture
Trade Study that identifies candidate architectures for the key software that will be used
for each LSS Element (e.g., space suit, vehicle, robot, habitat). The overarching trade
study examines three main areas: minimalist architecture, EVA workflow, and real-time
avionics and middleware. One goal is to estimate the level of effort and cost required for
software development relative to architectural features and system capabilities.

We assume that regardless of destination and mission complexity, lifecycle cost is
important, especially as it relates to facilitating international partnership, but initial costs
will likely dominate decision-making. Appropriate trades might justify an upfront
software investment, but the budget is necessarily bounded.

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 7

This report focuses on interoperability for surface exploration involving a diversity of
hardware and software systems that are dynamically interacting in a mobile, distributed
environment. This report elaborates a companion report, LSS Software Open
Architecture Study (Clancey et al. 2010b), which systematically analyzed data from the
Mobile Agents Project, part of NASA’s Intelligent Systems and Human-Systems
Integration Exploration Technology Development Programs (2002-2006); the first report
quantified the effort involved in extending and reconfiguring components within an open
architecture framework.

This report presents a surface EVA scenario based on state-of-the-art capabilities to show
how workflow automation drives functional requirements for interoperability. A basic
trade analysis of alternative well-known computing architectures shows the advantages of
distributed network control; Section 8 presents an example agent-based implementation.
The comparative analysis complements the Real-Time Avionics Middleware Architecture
Trade Study (Alena 2010) by clarifying how certain interoperability functional
requirements, including dynamic reconfiguration and workflow automation, go beyond
common middleware capabilities.

In practical terms, the purpose of this report is to begin to answer the question: What do
different vendors (including international partners) need to put into their systems to
realize interoperability for exploration systems? Or in more technical terms: What are
the functional requirements, independent of specific scenarios or workflow capabilities,
that will enable interoperability in commanding, data access, and security across a wide
range of component technologies, system configurations, and settings?

It is often also asked how the upfront cost of adopting an interoperability framework can
be justified. This report illustrates how state-of-the-art systems engineering architectures,
relying on advanced computational methods, enable a form of interoperability that
provides increased safety, extensibility, reusability, and productivity—yet with reduced
costs and effort required for constructing these more capable systems. That is, benefits
accrue and are also realized in every system constructed.

Interoperability can be viewed as occurring within a system conceived as a single
operating entity, such as a robotic system or life support system constructed from
multiple, interacting components. The analysis of architectures in this report is relevant to
a single entity, but our emphasis is on communications and coordination among multiple,
semi-autonomous “entities,” such as a habitat, pressurized rover, spacecraft, spacesuit,
etc. In this respect, with people distributed on Earth, on a planetary surface, and in space,
characterizing inter-operation necessarily focuses on what people are trying to
accomplish (their “work”) and how they do this by interacting with hardware and
software systems. In general, the work of mission operations constitutes a choreographed
sequence of operations of individual people, organizations, and mechanisms; the
exchange of data, information, and records in any form (documents, photographs, charts)
constitutes the flow of their work.

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 8

This report explains what is meant by “workflow” and how it relates to interoperability.
Some workflow capabilities relevant to surface EVAs include:

− automating data correlation, interpretation, and structured presentation;
− creating plans and monitoring plan execution;
− configuring routes and dynamic navigation guidance;
− diagnosing malfunctions and presenting repair procedures;
− transforming and executing higher-order commands by controlling subsystems;
− relaying data, alerts, commands, and plans, etc. among people, robots, and

software subsystems (e.g., databases).

Model-based inference (aka “reasoning”) is the fundamental computational method
enabling these capabilities. Specifically, models of exploration systems are used by
programs, often called “intelligent systems,” to monitor, predict, interpret/explain,
control, diagnose, and plan inter-operation of subsystems. By implementing these
capabilities in a flexible way, exploration systems can increase efficiency through
automation, reliability through being adaptive, safety through monitoring and alerting,
and extensibility through co-operation among new and existing LSS elements.

Interoperability also enables distributed access to sensor and vehicle state interpretations,
as well as closed-loop command and control automation, with or without people in the
loop. Overall, the exploration system is more flexible by enabling a wide range of “point
of control” (PoC) configurations for LSS elements, facilitating crew situation awareness
and control. Furthermore, PoC migration and/or distribution enables dynamic
reconfiguration of system roles and oversight, including variable autonomy (Alena 2010).

This report begins with a short review of different perspectives on interoperability and its
relevance to exploration systems, followed by a concrete scenario to illustrate advantages
and methods for state-of-the-art interoperability automating workflow. We then compare
low and higher-level interoperability, clarifying the limitations of systems integration
focusing on connectivity and communications. The physical “building blocks” metaphor
is contrasted with a process metaphor in a distributed network architecture with control
layers. Candidate architectures are compared relative to figures of merit largely derived
from recent critical analyses of the ISS computing architecture. Interoperability
recommendations are related to the present C3I Architecture and enduring challenges are
discussed. An appendix provides an overview of how workflow processes are
orchestrated in a multiagent software architecture.

3 Relevance	
 of	
 Interoperability	
 to	
 LSS	
 	
 	

3.1 Types	
 of	
 Interoperability	

Interoperability refers to “the ability for two or more systems to exchange information
and to use the information that has been exchanged” (CxP 70022-01, p. 7; Wikipedia
cites the IEEE Glossary). A more general definition of interoperability includes

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 9

organizations working together:

Interoperability is a property referring to the ability of diverse systems and
organizations to work together (inter-operate). The term is often used in a
technical systems engineering sense, or alternatively in a broad sense, taking into
account social, political, and organizational factors that impact system to system
performance.1

In effect, the technical and broader perspectives correspond to low-level (syntactic) and
high-level (semantic) interoperability.

If two or more systems are capable of communicating and exchanging data, they
are exhibiting syntactic interoperability. Specified data formats, communication
protocols and the like are fundamental. In general, XML or SQL standards
provide syntactic interoperability…. Syntactical interoperability is a necessary
condition for further interoperability.

Beyond the ability of two or more computer systems to exchange information,
semantic interoperability is the ability to automatically interpret the information
exchanged meaningfully and accurately in order to produce useful results as
defined by the end users of both systems.

In the context of LSS, the systems that might interoperate (also called elements or
components) are most obviously vehicles, space suits, habitat/modules, robots, and
associated power systems. These systems usually include and/or are controlled by
software applications and interfaces (including data systems and mission operations
systems) by which people and system components communicate goals and information.
We call this combination a surface exploration system.

It is sometimes supposed that semantic interoperability requires “a common information
exchange reference model,” in which “the content of the information exchange requests
are unambiguously defined: what is sent is the same as what is understood.”1 In
particular, Constellation Program documentation has suggested that a “common
information structure and language [is] necessary for systems to perform appropriate
command and control functions using the information exchanged” (CxP 70022-01, p. 7).

However, information exchange and mutual interpretation is only a functional
requirement of the overall system’s operation; it need not imply that every system
component must “speak the same language.” Instead, as explained in the companion
report, LSS Software Open Architecture Study (Clancey et al. 2010b), semantic
interoperability can be achieved by using a method of dual application programming

1 Interoperability. (2010, September 18). In Wikipedia, The Free Encyclopedia. Retrieved 16:34, October 8,
2010, from http://en.wikipedia.org/w/index.php?title=Interoperability&oldid=385488394

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 10

interfaces (APIs).2 That is, interoperability can be achieved through the interaction of
workflow processes that orchestrate application/subsystem inter-operation. These
workflow processes speak a common information structure and language, providing a
common mechanism for communicating between systems. This workflow architecture
makes it unnecessary for every component to literally use a single information structure
and language to perform command and control functions. Section 8 provides details
about how an agent-based architecture can be used to implement this dual API method of
information exchange.

Our concern in this report is with an open software architecture that promotes
interoperability for semantic interoperability, that is, with respect to goals, information,
and plans, including command sequences. Such communication is more abstract than
communication in terms of telemetry, status, measurements, and low-level commands,
though it may involve forwarding them. Semantic interoperability can be viewed as a
higher-level form of open architecture, enabling a co-operating “system of systems.”

3.2 Figures	
 of	
 Merit	
 for	
 Evaluating	
 Interoperability	

An architecture enabling interoperability is motivated by design criteria (“figures of
merit”) for exploration systems. More specifically, certain LSS design criteria (figures of
merit) are satisfied by workflow automation; automation in turn is enabled by certain
functional requirements on interoperability that can be provided by a service-oriented
architecture (Section 5.2):

Design Criteria for LSS Exploration Systems (e.g., crew self sufficiency)
 ↑

Workflow Automation Capabilities
↑

Interoperability Functional Requirements
↑

Service-Oriented Architecture

In particular, workflow automation can be used to satisfy design requirements among
LSS subsystems (e.g., databases, software applications) for security/privacy;
safety/accuracy and timeliness; data management; incremental buildup/extensibility and
scalability; operational efficiency/productivity; and cost of Design, Development,
Testing, and Engineering.

Examples of such LSS design requirements and their relation to system architecture
include:

2 In this scheme, a secondary, “communication” API translates from operations expressed in a higher-level,
task-oriented language to the language of a component API (which exposes the internal objects and
processes of a device/subsystem).

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 11

− Security/Privacy:
o Requirements for security derive in particular from an international

partnership, which requires some shared access to subsystems that must be
controlled (e.g., telemetry and commanding devices over networks).
Providing a capability for opportunistic reconfiguration including remote
commanding requires flexibility for reprogramming access and controls.

o Security concerns also derive from public access to mission progress and
(limited) science data.

o Medical data and crew personal records (e.g., email, photographs) and
communications are necessarily regulated, in some cases by privacy laws,
requiring even within NASA’s networks controlled access to computers
and archived data.

− Safety/Accuracy/Timeliness:
o Exploration is inherently difficult because we cannot precisely define

mission needs a priori. Flexibility and adaptability will often be required.
o Space medicine in particular has interoperability requirements for

electronic exchange of information among crew and ground support via a
potential diversity of devices, networks, and programs to improve the
safety of surface operations (HIMSS-EHRVA 2005).

o During a mission a great deal of human expertise is remote, with access to
more sophisticated instruments than available to the crew. In particular,
flight surgeons must use telemedicine technology to observe, diagnose,
and treat the crew.

o An analogous situation occurs with scientists on Earth who could program
a robotic laboratory that provide reconnaissance for EVAs or pursues
different or more detailed data after an EVA. Scientists provided with
sufficient information may be able to guide later activities during an EVA,
despite time delays.

− Data Management

o Different uses of data (medical, scientific, engineering) may require
transforming data, information, and models in different ways, and
communicating with different detail and urgency.

o Data from different devices must be integrated for interpretation (alerting,
diagnosis, maintenance), presentation, and storage. Multiple standards and
manual processing result in lack of time synchronization of recordings
from multiple devices and inaccuracies.

o Data may be unnecessarily detailed or excessive for transmission to Earth.
This problem already occurs for ISS for medical data and for planetary
robotics. Rather than bulk transmission over limited and expensive
bandwidth, automated culling of what’s worth analyzing can use human
expertise and networks more efficiently (e.g., MER software analyzed
photographs for dust devils and clouds, transmitting only likely
candidates). An analogous situation occurs for engineers in monitoring
and diagnosing remote systems (e.g., life support and tools/machinery).

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 12

− Incremental Buildup/Scalability/Extensibility:

o Requirements for extensibility derive especially from both national and
international development of assets and improved systems over time,
including increased complexity of automation.

o Interoperability enables a new system to be added to an existing collection
of space assets so that they can effectively operate together. For example,
a European habitat could be added to an existing US lunar base and be
able to interface and operate effectively.

o In some respects, the focus is on “local evolvability,” in which integrated
components have multiple uses and are reconfigured into a customized
“system of systems” for different missions and activities (e.g., EVAs)
during a mission.

− Operational Efficiency/Productivity:
o Interoperability enables workflow automation, which increases crew

productivity.
o Co-operation of systems can also enable gathering information efficiently

in what planetary missions call “coordinated science.” For example, an
EVA may involve sampling and/or drilling to refine a planetary geology
model. By combining a geochemical analysis of the samples with orbital
surveys enables relating the local data to regional patterns, perhaps
enabling an explanation of the broader geomorphology and its evolution,
reducing the number and complexity of future traverses in that region.

− DDT&E Cost:
o Designing for inter-operability at first requires more complicated

architectures and may require more effort, but it provides all of the above
advantages for meeting mission needs.

o Software development cost may also be reduced by using an architecture
promoting inter-operability by virtue of:

 Easy and well-defined connectivity and communication among
subsystems, including built-in support for a variety of protocols

 Efficient reuse of a library of services include data exchange,
information transformation, and methods for model-based
interpretation, monitoring, prediction, and control

 Ease of developing higher-level workflow automation that builds
on existing lower-level data processing and subtask automation

State-of-the-art software architectures enabling interoperability have been developed in
research and commercial settings, including particularly in NASA’s ETDP research. The
companion report, LSS Software Open Architecture Study (Clancey et al. 2010b),
analyzes data demonstrating advantages for safety, extensibility, productivity, and cost.

The following sections of this report explain in more detail how a workflow automation
approach can address the figures of merit for evaluating exploration systems, the

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 13

requirements workflow places on interoperability functions, and how these requirements
can be implemented in different architectures. Our approach is to begin with a concrete
scenario, which illustrates several of the operational advantages.

4 Scenario:	
 Emergency	
 Return	
 to	
 Habitat	
 During	
 Surface	
 EVA	

4.1 Scenario	
 Objective	

This surface EVA medical scenario combines an analysis of operations concepts and data
management for surface “medical conditions,”3 analysis of difficulties with current
medical computing onboard ISS4, and interoperability capabilities of state-of-the-art
exploration technology (Clancey, et al. 2005, 2006, 2007; Dowding et al. 2006; Hirsh et
al. 2006; Johnson et al. 2009; Johnson 2010). The scenario emphasizes how automated
workflow capabilities enhance crew self sufficiency in the context of a medical
emergency. Based on the automation specified in the scenario, we derive interoperability
functional requirements, and then work out trades on alternative
architectures/implementations.

4.2 Scenario	
 Assumptions	

The scenario involves a medical problem compounded by engineering failure during a
science EVA. We assume the following:

− At least two crewmembers are on a surface pedestrian EVA; four crewmembers
are in the habitat-spacecraft (Hab), including the physician.

− The planetary body is a small moon or NEO, at least 100 km in diameter.
− The crew is towing along a sample and equipment carrier, analogous to that used

on Apollo 12.
− A medium-large robotic science laboratory (MSL-class) is within 50 meters; it is

intended for permanent surface deployment.
− The terrain is hilly and complex, with some hazards and obstacles (e.g., ravines,

craters).
− The EVA is scheduled for four hours and has two hours remaining.
− The Hab is station-keeping near the surface.
− The two EVA astronauts have been laboring to reach outcrops and/or foray a bit

into craters to take measurements and samples.

3 NASA, Space Medicine Division and Space Life Sciences Directorate, Johnson Space Center. 2009.
“Exploration medical conditions concepts of operations.” Draft: Dated 9 October 2009.
4 NASA, Medical Informatics and Health Care Systems Division SD4, Johnson Space Center. 2010.
“International Space Station: Next generation Crew Healthcare System (CHeCS)—Common crew health
data management and communications system concept.” Draft presentation: Space Medicine CHeCS MEC-
to-Common Data Management & Communications Transition Plan Options.ppt.

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 14

4.3 Scenario	
 Narrative	

About halfway through the EVA a medical alert is broadcast by verbal warning and
visual alarm on the heads-up display (HUD) of one of the astronauts (EVA1), indicating
that his metabolic rate exceeds nominal.

Simultaneously, the IVA physician receives the same alarm through the loudspeaker in
the habitat. She and the other three crewmembers confer briefly. They have experienced
these alarms on about a third of their EVAs, so are familiar with the medical monitoring
intent. They review the EVA Log web page, which is being updated automatically during
the EVA to show plan, schedule, progress, and data collected. They also study the live
video feed from EVA1 and EVA2’s head cams. They decide that the overall plan and
situation appear nominal, and EVA1 can be trusted to adapt. One of the crewmembers
notices that there will be a more demanding hill to climb in the last third of the EVA; the
physician suggests to EVA1 to take it easy. (The alarm has also been transmitted to Earth
by Email to flight surgeon PDAs. It will not arrive for 35 minutes, meaning a response
would only arrive at best when the crew would be already returning to the Hab.)

Given the timing and location and goals, the EVA crew proceeds, though the astronaut
who received the warning attempts to slow down, allowing the other astronaut to do more
of the bending and carrying.

However within 15 minutes a second alarm is sounded, this one indicating that the
metabolic rate is still excessive and now the life support consumables are within 90% of
the minimum that will prevent completing the scheduled EVA. EVA1 notices now that he
is indeed tired and suggests a short rest in place, intending to take a drink and catch his
breath.

At this point a second anomaly develops. A combination of problems is known to be a
likely cause for serious emergencies. The second problem could pertain to power, life
support, a space suit’s integrity (such as a leak), or perhaps just something annoying and
difficult to resolve (such as a problem with the robotic laboratory) that is sufficient to
distract the crew. In this case, assume that the problem is a malfunction in the coolant
system of EVA2. Her suit quickly reaches 32C. She is perspiring and starting to breath
more heavily. EVA2’s personal agent (a program) informs her via a voice alert in her
headset, as well as a red visual message in her HUD about the problem and suggests
immediate return to the Hab. EVA1 also receives a message about the problem, and an
audio beep and visual alarm appear at the IVA console in the Hab, with a verbal message
broadcast on the loudspeakers.

In an attempt to get more information, the physician and one of the engineers in the Hab
remotely command EVA2’s suit to adjust a coolant subsystem parameter. By protocol
this proposed change is automatically reported to EVA2 verbally by her personal agent,
and she verbally affirms the command.

The crew realizes that they need to abort the EVA and report to the Hab crew that they
will return to the spacecraft as soon as possible. EVA2 asks her personal agent for a walk

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 15

back plan. A crewmember onboard the Hab who is responsible for monitoring the EVA
most directly is verbally notified by his personal agent that a revised plan for the walk
back path is available and asks him to approve it.

The EVA planning program has taken into account the metabolic condition of the two
EVA astronauts, the status of their consumables, and status of their life support systems.
In particular, the plan seeks to minimize time to return and exertion. The tradeoff
requires a somewhat longer plan than a direct route, which would require walking up a
steep hill. A simulation, which was automatically triggered by the replanning tool, further
shows that the tool and sample carrier that the EVA crew is dragging along will not be
stable along the new route and will cause an estimated 25% delay in arrival. The plan is
represented on a map with a boxed alert that the crew should abandon the carrier in place
for later retrieval. The responsible crewmember glances over the predicted route and
safety statistics, which are displayed on a table computer, and approves the plan by
touching the soft-control on the screen. (The plan is transmitted by email to Earth ground
support.)

The EVA crew sees the planned route and warning on a computer tablet attached to
carrier itself. They acknowledge the plan and warning by touching the screen, and
simultaneously tell the habitat crew that they are beginning the walk back. (Alternatively,
one of the EVA crew could have approved the plan verbally through his/her agent. About
fifteen seconds have elapsed since EVA2 requested the walk back plan, most of which
time was spent by the crewmember reviewing the diagram and associated charts.)

The responsible crewmember verbally instructs the robotic laboratory to interrupt its
current science plan and to bring the tool and sample carrier back to the habitat. The
robotic system verbally asks the crewmember whether returning as quickly as possible is
important or should robotic battery power be conserved? The crewmember indicates
timing is not important. Furthermore, the robotic laboratory has been serving as an over
the horizon communication relay from the EVA crew to the Hab. Consequently, it must
adjust its route and timing to maintain that functionality while the crew is walking back
to the hab. To accomplish this goal, the robot’s personal agent requests the EVA agent
onboard the Hab for the EVA crew’s planned route and predictive contour of their
progress (where they are expected to be at each point of time during the traverse). The
robot submits the power and communication constraints to the route planner program,
which provides a navigation plan for the robotic laboratory.

EVA2 leads the walk back and receives an automated distance and bearing to the Hab
every 5 minutes (according to her pre-assigned preference). At a certain point, when the
habitat is out of sight, EVA2 asks her personal agent to increase the navigation feedback
to every minute. Both EVA crewmembers receive alerts if they deviate from the planned
path by more than 5 meters. They can verbally request directions to the Hab from any
location at anytime. (All location and alert/status information is continually updated in
the web pages logging the EVA on a server in the Hab; these pages are mirrored to Earth
support as they are updated.)

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 16

The robotic laboratory is dynamically maintaining its communication relay function,
adjusting its pace and replanning its route as necessary by monitoring the EVA crew’s
location.

Meanwhile, the physician onboard calls up current graphs of metabolic graphs and
consumables. (The suit is maintained as the same atmospheric pressure and mixture as
the Hab, so there will not be any recompression delay after doffing their suits.) The
physician readies her instruments for a routine medical checkup.

Meanwhile, another crewmember in the Hab responsible for EVA system life support has
a message waiting from an automated system describing the malfunction in EVA2’s suit
life support system with probable diagnoses based on past failure history of similar
systems and data from suit tests prior to the EVA. A repair procedure on the onboard
systems manual is referenced by a URL link in the message. The crewmember responds
to this email with the text “Acknowledged.” (A copy of the message with the
acknowledgement is forwarded to engineering support on Earth.)

The EVA crew returns to the Hab without further incident. The robot follows two hours
later, having automatically found the tool/sample carrier at the crew’s turnaround point,
coupled the carrier to itself, and followed a route plan suitable for its own efficiency
(different from the crew’s path).

4.4 Workflow	
 Capabilities	
 Illustrated	
 in	
 the	
 Scenario	
 	

− Detection of off-nominal metabolic rate
o Metabolic rate calculated by integrating biosensor data
o Continuous monitoring of metabolic rate, compared to expected value for

each crewmember based on prior EVAs
− Distributed alerting

o Alert to EVA crewmember (Audio beep, visual message, and verbal
message).

o Broadcast of alert in the Spacecraft/habitat (audio beep, visual message on
GUI, and broadcast)

o Transmission of alert as Email to Earth flight surgeon PDAs
− Dynamic construction of EVA log

o Automatically generated web pages on Hab computer, referencing an
automatically created database with EVA records

o Dynamic construction of a terrain map showing location of EVA crew and
remaining planned route with workstations and schedule

o Terrain map overlaid by predicted arrival times at waypoints, with
predicted metabolic rates and consumables remaining for each EVA
crewmember

o Mirroring of EVA log to Earth ground support
− Configurable video feeds from EVA head cams to multiple display devices
− Detection having reached 90% threshold of life support consumables required for

completing the EVA (with distributed alerts)

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 17

o Continuous prediction of consumables required given route and work plan
o Continuous monitoring of consumables, compared to flight rules

− Detection of malfunction in EVA suit coolant system (with distributed alerts)
o Continuous monitoring of life support system behavior, compared to

nominal performance
o Alerting modalities (voice and visual message) determined by severity of

problem and available methods (console in Hab vs. HUD)
− Remote commanding of EVA suit from Hab

o Execution of protocol seeks verbal affirmation from EVA crewmember
− EVA route/navigation planner program takes into account the metabolic condition

of the EVA astronauts, status of consumables and life support systems, and terrain
relating time, effort, consumables, and prognosis of suit malfunction.

o Subroutine automatically generates and compares alternative scenarios,
including abandoning sample/instrument carrier to decrease effort

o The plan charts predicted consumables and metabolic indicators (e.g.,
fatigue) during the EVA and percentages expected at time of return to
habitat

o The plan is presented on a GUI for the crewmember’s approval with a
verbal request and displayed message

o Planner program transmits recommended route map and alert to EVA
crew, displaying it on a tablet computer on the carrier

o Crew acknowledges the plan and warning either by touch to GUI or
verbally to agent

 Verbal response will release the displayed message
− Verbal commanding of robotic system to bring tool/sample carrier to habitat

o Interaction of robotic system with crew to determine task optimization
criteria

o Automated route planning, retrieval, navigation to habitat
 Planner must integrate multiple constraints (retain communication

relay function and minimize power)
 Requires dynamic adjustment of robotic movements and

replanning if crew route changes during the walk back
 Continuous monitoring of crew position through a

publish/subscribe mechanism
− Automated distance and bearing during walk back provided as verbal message to

crewmembers (optional setting of frequency and visual cues on HUD)
o Alert if deviation from planned route by threshold distance
o Dynamic request for current distance and bearing to habitat

− Generation of EVA crews’ current metabolic performance and consumables
graphs in habitat

− Automated diagnosis (by habitat computer system) of ongoing malfunction in
EVA suit life support system, with probable causes based on past failure history
of similar systems and data from suit tests prior to the EVA

o Reference to repair procedure in online manual
o Crew member acknowledges receipt

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 18

o Diagnosis, suggested repair, and acknowledgement forwarded to Earth
support engineers

4.5 Interoperability	
 Functional	
 Requirements	
 for	
 Accomplishing	
 Workflow	

Capabilities	
 	

The vast majority of the capabilities mentioned above have been prototyped in
experimental EVA systems, notably in NASA’s Mobile Agents Project (Clancey et al.
2005, 2006, 2010b). In some respects, the flow of data, commands, and information can
be anticipated and forms a kind of “workflow backbone.” In general terms, the backbone
can be outlined as follows:

{EVA Devices/Sensors/Instruments + Robotic Systems}
 commands & telemetry 

{Workflow Automation:
Data Exchange & Storage
+ Interpretation/Monitoring
+ Decision Support: Diagnosis, Planning}

  goals/constraints, commands, information requests, telemetry 
{Interactions with Crew:

 Visual Media: Augmented Reality GUIs, Lights
+ Auditory Media: Beeps/Alarms, Spoken dialogue}

 text/voice messages, video, databases, & web pages 
{Interactions with Remote Support Teams}

In effect, the crew communicates with EVA systems in task-oriented terms, referring to
plans, locations, and qualitative constraints (e.g., minimize power), but may also query
about specific quantitative values (e.g., consumables remaining) and directly command or
program subsystems (e.g., life support, robot). The workflow automation abstracts data
(e.g., detecting off-nominal trends), converts goals/constraints to command sequences,
and plans and dynamically controls subsystems in feedback relationships (e.g., a
communication relay for a moving EVA crew). Communications with the remote
support team are primarily summaries, but enabling on-demand “drill down” to
recordings, telemetry, and detailed subsystem histories.

In more general terms, the EVA scenario illustrates two fundamental workflow
capabilities whose absence in the International Space Station has been cited by NASA’s
space medicine specialists as reducing safety, accuracy, security, efficiency, and
extensibility, while increasing DDT&E cost (footnote 4 above):

1. Real-time data interpretation across subsystems. For example, making inferences
about the relations of bio-physiological data, suit consumables, life support
system functionality, the EVA plan, locations of crew, robot, and habitat. These
inferences usually involve abstracting data and comparing the current state to
models of planned, predicted, and off-nominal behavior that must take into
account the current context (e.g., as a simple example, is EVA1’s breathing rate

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 19

abnormally high given the terrain, what she is carrying, and her spacesuit’s
performance?)

2. Many-to-many communications among subsystems (no stove-piping). For

example, throughout the scenario it is usually irrelevant where computing is
occurring: an EVA Suit, Robotic Laboratory, or in the Hab. The workflow
backbone enables any subsystem to potentially communicate telemetry and
receive commands from any crewmember (through a variety of audio/visual
devices) or computer program. (Section 7 provides an example of how this is
accomplished.)

The operations of the robotic laboratory in the scenario particularly illustrate the kinds of
workflow capabilities that are desirable and are provided by semantic (high-level, task-
oriented) interoperability. The robot’s workflow capabilities include:

− Can co-operate with people and other systems independently of medium available
and/or chosen for communication

− Can receive new constraints, interrupt its current plan, and develop a new plan
(possibly through an external planning program)

− Can flexibly execute a plan using dynamic feedback from multiple constraints
− Can accomplish high-level subtasks by accessing and adapting a procedural

library (e.g., “retrieve sample/tool carrier”), which might be onboard the Hab
− Can derive additional information to create a plan by interpreting data from

external sources (e.g., the current location of sample/tool carrier; the terrain;
predicted location of crew during the next two hours to maintain its
communication relay function)

− Can interact with people to get more information (e.g., crew preference on timing
vs. power use)

The scenario also illustrates how safety and efficiency are enhanced by a system that the
crew can trust. Through the combination of the EVA and Hab crews’ situation awareness
(via alerts, configurable displays, and ability to request evaluations of subsystem
behavior) and the active monitoring and dynamic control of subsystems (e.g., life
support, robotic laboratory), the crew gains trust in the overall exploration system—they
know its current state, they can control it, and components are interacting automatically
according to goals and current conditions.

In terms of interoperability, the crew trusts the capability of the robot, planning system,
navigation assistant, life support monitor, etc. to “discover” the attributes of the situation
and then synthesize the sequences required to accomplish the ongoing plan. This
discovery process includes adapting plans according to changing goals (e.g., shift from
EVA science to walk back to Hab) and capabilities of components (e.g., a failing life
support system). The real-time data interpretation and many-to-many communications
enable the crew to verify operations at any time—a key aspect of improving confidence
in an autonomous system. They can relate plans to current states throughout the

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 20

exploration system, both globally and by drilling down to get specific values and settings
of any system through any convenient interface.

4.6 Discussion:	
 Interoperability	
 and	
 Workflow	
 Automation	

This section provides a broad introduction to the nature of workflow automation in terms
of what is meant by “work” and “information” in the context of exploration systems.

4.6.1 	
 Work	

In the context of LSS, work refers to the activities people and systems are performing on
the surface, for example, scientifically surveying a chain of craters or experimenting with
an ISRU. Work activities are oriented to the purpose of being at a particular location with
certain logistic support and tools. In particular, scientific work, which we are focusing on
in this report, goes beyond the life support, power, and mobility capabilities of the
exploration system to consider, for example, what data is being gathered for what
interpretative purposes. Although this may seem obvious, in large part exploration
system design and mission planning usually begins with and emphasizes logistic
requirements such as transportation, power, and life support, and then doesn’t relate them
to the functional requirements of interoperability for supporting the actual work.

4.6.2 	
 Information	

Part of the shift in mentality from thinking about engineering logistics to designing a
work system is understanding the nature of information and in particular how it relates to
data.

Data consist of actual subsystem measures, such as readings from sensors or other
instruments, status or state information (e.g., whether a device is enabled; the size of
available computer memory on a particular platform), or other “raw” formats, such as
photographs, video files, voice communications, etc.

Information consists of contextually relevant interpretations—both of the state of
exploration system and actions that are desirable—inferentially derived from data (e.g.,
the walk-back time from an astronaut’s current location and whether the consumables
will be sufficient at the astronaut’s current metabolic rate).

Generally speaking, information is a distinction that is relevant to an agent’s interests
and/or goals (what Gregory Bateson, the 20th century anthropologist-cyberneticist,
famously called, “a difference that makes a difference”). Here are some examples of
information:

− Data contextually relevant to a recipient now. For example, a mobile EVA tool could

superimpose a camera image with the names of craters. The selective display of data
stored in a database, when associated with a perceptible feature constitutes
information to the viewer.

− Abstraction of data by categorizing it (e.g., “high value”), an interpretation relative to
some context.

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 21

− An alert that a condition is now true (e.g., an EVA waypoint has been reached),
effectively relating time to goals, plans, resources, etc.

− Parameters for controlling a subsystem calculated by relating data (e.g., navigating to
a waypoint on a safe path).

4.6.3 	
 Investigative	
 Work	

Although mission planning today emphasizes meticulous scheduling of crew activities
and calculation of resources, some work by its very nature involves open-ended
investigation (aka “inquiry”). In particular, engineering maintenance and scientific
exploration are activities that inherently involve the possibility that observations will
affect the ongoing work by posing new tasks or suggesting alternative goals or priorities.

An investigation involves gathering data, assessing the situation, and deciding what
actions to take (e.g., deploy or reset an instrument, repair equipment) and moving on to
focus the investigation elsewhere. Investigative work often involves following procedures
and being focused, but it is not itself strictly procedural (i.e., rotely enacted in a
programmatic fashion). Investigations are inherently partly improvised, and so planning
must leave time for consideration, and indeed provide means for frequent replanning
(such as by recording why a step was included originally).

Frequently during an investigation, problems may be discovered, tasks may be better
understood, and future plans may develop. “Carrying out an investigation” is an example
of an activity (behavior in time): It is goal-directed, with a reactive observe-act loop.
Actions involve getting data whose interpretation leads to deciding what other actions to
take (e.g., getting more data, asking for assistance, deferring a problem, following a
task/procedure). In short, the nature of investigative work requires flexible use of tools
and inter-operation of hardware and software with people.

4.6.4 	
 Workflow	

Workflow involves processes of gathering, relating, translating, conveying, interpreting,
organizing, and storing data and information, often by controlling and deploying tools
(e.g., sensors or a robotic laboratory), within the context of particular traverses. Software
that supports workflow by proactively carrying out work processes is called a workflow
automation system. In practice workflow automation seeks to optimize a variety of
constraints including safety and security, while assisting people to be more productive in
accomplishing their work objectives. Note that human interaction and workflow are
independent notions—workflow interactions (e.g., to assemble and interpret data for
controlling subsystems) are still required when systems operation “autonomously.”

As the scenario in Section 4.3 illustrates, basic workflow processes we expect during a
surface EVA include:

1) Creating an organized database of the EVA activities, events that occurred, and
work products (e.g., photographs and samples indexed on a terrain map)

2) Alerting crew members and remote support about what is occurring (e.g., sending
an email to a remote science team; notifying biomedical support about a problem)

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 22

3) Commanding subsystems to change their behaviors in ways that promote the work
(e.g., commanding a robotic system to use a particular instrument to carry
something to a particular location; commanding a robotic system to inspect a
pressurized rover for damage).

4.6.5 	
 Summary	
 and	
 Appraisal	

The scenario demonstrates how a workflow analysis can drive requirements for inter-
operability, enabling diverse systems to work together. Put another way, architecture
requirements are based on the joint activities—the work that components/subsystems
and/or people are doing together and how the work flows among systems over time.

Workflow automation ranges from routine data transmission or information
communications (e.g., passing documents and messages from one organization/role to
another) to dynamically managed inter-operation of subsystems with feedback control.
Along this dimension, the purpose of workflow automation shifts from a role of simple
point-to-point relaying to more global orchestrating of co-operative interaction among
people and systems. Through a roughly hierarchical design, different workflow
processes can be assigned different roles that range from more narrow communication
and transformation of data and commands, to data correlation and assembling a single
command, to constructing sequences and controlling a feedback process.

This range of operations and orchestrating purview can be accomplished through
different methods, though the simplest approaches will not be convenient or adequate for
more complex co-operation among subsystems. Accordingly, some engineering
approaches are suitable for coordinated control, but are not capable of the higher-order
role of orchestrating co-operative work. In some respects, the problem of workflow
automation is to glue together subsystems built using simpler integration methods, which
are often physical and not reconfigurable. These subsystems may be moving in space
(e.g., a robot or vehicle), temporarily brought together for a particular task (such as an
EVA), and required to respond to unexpected combinations of events. Thus the problem
of workflow automation is most generally that of flexibility, namely finding ways to
adapt subsystems to: variable configurations and interfaces; communication methods,
protocols, and security regimes; and goals.

The following section analyzes alternative systems engineering architectures for
implementing interoperability functional requirements we have discussed in the scenario.

5 Architecture	
 Trades	
 for	
 Implementation	
 of	
 Interoperability	
 Functions	

This section discusses the engineering challenges and tradeoffs of different software
architectures for implementing interoperability functions. We clarify that we are
focusing on higher-level interoperability and relate it to the concepts of an open
architecture and middleware. We discuss how the shift from low-level to higher-level
(workflow) interoperability involves shifts in mindset from pair-wise integration to
systemic inter-operation, which is also the shift from the goal of integrating hardware to

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 23

supporting work activities. Several candidate architectures are then discussed and
compared with respect to the figures of merit for interoperability.

5.1 Low-­‐level	
 Interoperability:	
 Network	
 Connectivity	
 and	
 Data	
 Exchange	

A conventional basic engineering approach to interoperability is to standardize how
devices/applications communicate, both in terms of connectivity and in data/commanding
transmission. For example, in a multiagent system one may encapsulate applications and
devices as “objects” that pass “messages.” Communicating information requires a
standard language for formulating and organizing electronic documents (e.g., “content
templates”) as well as an “envelope” that holds the content to be shared.

The global cell-phone network is an example of the failure to establish such standards:
Different communication standards for voice format and delivery – CDMA, TDMA,
GSM – are still used by regional carriers. The ability of callers to “interoperate” with
other cell phone users depends on which “envelope” the carriers use to hold the voice
data. Therefore, callers today from the US may need to purchase or bring a second phone
to Europe if their phone uses a different standard (HIMSS-EHRVA 2005).

Some of the problems with the phone network exist in Space Station operations because
of different security protocols and legacy systems requiring multiple networks, resulting
in stove-piping of applications (Section 4.5). Section 5.5 also explains how adopting a
“building-blocks” approach for ISS would fail to incorporate state-of-the-art technology
that would enhance safety, timeliness, efficiency, etc. because it only focuses on
connectivity and data exchange, not dynamic orchestration of operations.

5.2 Higher-­‐Level	
 Interoperability:	
 Automating	
 Information	
 Creation	
 and	
 Exchange	

Notice that the network phone example focuses on people interoperating with other
people. In effect, low-level interoperability frames the communication system as
communicating boxes that are exchanging data, that is, a phone system. Higher-level
interoperability considers the purpose of the conversation, as an activity of
communicating people who are creating and exchanging information for some
contextually dependent purpose, that is, a work system.

For example, when communicating by voice, people are often attempting to explain
something about their ongoing situation, which is facilitated by presenting something,
which provides a common frame of reference, such as an image, audio recording, or
graph (Kukla et al. 1992). Higher-level interoperability provides methods for people to
understand each other—it takes into account what information is being communicated,
the purpose, what triggered the communication, and other aspects of the context such as
urgency. For example, in presenting information via a smart phone a person might be
soliciting assistance to handle an urgent problem. The listener is oriented to determining
what he or she should do.

In summary, workflow automation requires much more than providing connectivity on a
network and a set of adapters for exchanging data between applications. Instead,

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 24

workflow automation requires higher-level interoperability, which includes proactive
processes that automate some aspects of how information is created and transmitted. For
example, plug and play capabilities may be based on communication standards as in a
publish-subscribe framework for automatically exchanging data between applications.
Service-oriented architectures provide multiple adapters and communication protocols
enabling applications to practically interact and be controlled by higher-level processes.
The automated alerting in the scenario (Section 4.3) illustrates the functionality provided
by a service-oriented architecture.

Higher-level interoperability may also include methods for components that are joined on
a network to automatically start working together. Such dynamic reconfiguration is
typically accomplished in a service-oriented architecture by a process of registering
services (available functions or capabilities). Some applications may assume the role of
an “executive” that actively monitors and invokes subsystems, a method used by model-
based automation (e.g., Muscettola et al. 1998). Distributed control (i.e., lack of a
centralized executive) is also possible if the architecture supports many-to-many
communications among subsystems (Section 4.5), as in a multiagent system (MAS;
Jennings, Sycara, & Wooldridge 1998; Wooldridge & Jennings 1995; Wooldridge 2002).

5.3 Relation	
 to	
 Open	
 Architecture	

Most architectures providing higher-level interoperability—including by definition those
enabling dynamic reconfiguration (i.e., without recompilation of the entire system)—are
de facto open architectures. That is, they provide methods for adding, upgrading and
swapping components. Viewed over the longer term, across multiple missions, such
flexibility satisfies the LSS “incremental buildup” objective by supporting upgrading and
incorporating new elements (e.g., vehicles, robots, habitat modules). This allows for new
forms of automation, migration and changing distribution of mission support functions,
as well as new and more complex simultaneous distributed operations (Rader, 2008).

If an operational interaction occurs between new and existing systems, then scalability
may become a problem with an open architecture. Performance may decrease, and if
adding new components requires changes to the interfaces of existing systems, the cost of
modifications will increase. Consequently, methods have been developed based on
standardized interfaces, involving layers of interaction, including how data and
commands are physically transmitted and how they are packaged, so inherently the
architecture enables any system to communicate with any other. This form of open
architecture is analyzed in detail in the companion report, LSS Software Open
Architecture Study.

5.4 Relation	
 to	
 Middleware	

There are good arguments for why an interoperability implementation should include
middleware, but this is not a necessity, and it is not definitional (though some may use
the term to encompass even a service-oriented architecture).

We view middleware as providing only capabilities for low-level interoperability, such as

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 25

the migration of point of control when a vehicle carrying an EVA crew becomes passive
after docking with a habitat. The middleware is simply the means for a rather direct
transfer of power and life support functions (Alena 2010).

Middleware per se is insufficient where a greater degree of flexibility is required during
an operation. For example, subsystems may be designed at different times for different
purposes, but they should be capable of goal-directed, adaptive co-operation. If a
situation arises requiring an operation somewhat different than the baseline (or in the
event of an off-nominal operation), the crew could trust the capability of the subsystems
to “discover” the attributes of each other, and then synthesize the sequences required to
accomplish the operation. The scenario in this report illustrates this capability in several
ways, such as the planning service provided to the robotic laboratory by a habitat
program. This kind of flexibility also enables high-level, goal-oriented commanding
(e.g., the crew’s directing the robotic laboratory to fetch the sample carrier, while still
satisfying its communication relay function.).

Typically an exploration system providing higher-level interoperability includes a
middleware framework. For example, some subsystems (e.g., ECLSS) might be
integrated by middleware, while ECLSS itself could be inter-operating with other
subsystems (e.g., a planning system) through other architectural methods, such as
workflow agents.

5.5 Perspective:	
 Shift	
 from	
 Connecting	
 Components	
 to	
 an	
 Operations	
 Framework	
 for	

Interoperability	

Although we have emphasized the design of exploration systems consisting of separate
physical units (e.g., habitat, rover, vehicle, instruments), the problem being addressed is
more fundamentally a problem with software. Most computer programs aren’t designed
for interoperating. This is because programmers typically think in terms of “hardwiring”
connections, rather than using a framework that enables the program’s operation to be
reconfigured by people at runtime. This mentality of connecting parts carries over into
how people conceive of integrating physical systems.

5.5.1 Example:	
 What’s	
 wrong	
 with	
 today’s	
 smart	
 phones	

A familiar example of preconceived connectivity is found in apps written for today’s
smart phones—most are designed as “stove-pipe” processes. Consequently, users often
find that they cannot access data or command from one app to another or integrate other
devices. For example, one phone app converts voice to text, and it is easy to email the
text. But to create a note, one must copy the text, shift to the note app, and then paste the
text. Similarly, another app logs a terrain profile, associating photographs and video on a
track overlaid on satellite images. This “trail recording” app uses APIs provided by the
phone’s operating system to enable interoperation of the GPS app, camera app, and
mapping app (which retrieves images from the Internet). However, there is no way to
record voice memos, even though the operating system includes such an app with an API.
The problem is that the trail-recording app is not itself implemented as an open
architecture (allowing a user to configure desired modules). More generally, the trail

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 26

recording app and most of the hundreds of thousands of “smart phone” apps now
available do not provide an API, so it is impossible to integrate them. The result is that
for all of the power provided by these “location aware” devices and the “augmented
reality” some provide, each app is closed to every other.

In part, the blame for the stove-piping of today’s smart phone apps lies with the operating
systems. Some may only provide a primitive form of multi-tasking (e.g., iOS4). But in
general they do not provide an interoperability programming framework that promotes
building apps that are dynamically reconfigurable and allow many-to-many
communications with other apps. Thus, except for the operations preconceived by the
designer, there is no interoperability and the user is continuously required to shift
between apps through a central menu and limited to copy-paste.

By contrast, in higher-order interoperability required for workflow automation, the
software architecture is open (enabling extensibility), and the operations of applications
are actively coordinated by computer programs (e.g., “workflow agents”) within the
context of what people and subsystems are doing. Rather than point-to-point
communications between applications/subsystems, higher-order processes can
dynamically invoke a variety of applications/subsystems, constructing automatically the
functional sequences required to control them by actively seeking data from other
applications/subsystems and transforming it.

5.5.2 	
 Replacing	
 Pair-­‐Wise	
 Integration	
 of	
 Apps	
 by	
 a	
 Flexible	
 Systems	
 Framework	
 for	

Inter-­‐Operation	

The analysis of smart phone apps illustrates what happens when systems engineers view
the problem of interoperability as preconceived, hardwired integration instead of
cooperative interactions dynamically configured by someone in the operational context.
The problem is that both the smart phone vendor who provides the operating system and
most application developers view themselves as providing apps, rather than a coherent
system in which the components know about each other and cooperate to help people
accomplish their work efficiently, safely, securely, etc. within variable operational
contexts.

When interoperability is not built-in, people must shift their attention from the work they
are trying to do to low-level technical subtasks. A workflow system keeps attention on
the high-level. For example, contrast the question, “How do I link my printer to my
computer?” with a request spoken into a smart phone in a hotel room, “Provide a paper
copy of this email.” The first utterance asks how to get objects to communicate; it is a
matter of pair-wise integration. The second, a request to accomplish a goal, commands
processes to actively cooperate (e.g., discover what printers are available nearby, whether
in the hotel or nearby store, and how to transmit the data and job order). The first asks
for help in manually putting systems together. The second directly specifies and
delegates the work the person wants accomplished.

In short, higher-level interoperability is not just about connectivity and communications,
it is about how we get subsystems to act cooperatively in the service of ongoing task

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 27

goals of the crew. In some cases, as in the printing example, these goals are explicitly
about workflow. In other cases, the goals are in the background, involving comfort and
health, conservation of resources, security, etc., such as the operation of ECLSS.

Consider the cooperation required for adaptively relating ECLSS operation and the
crew’s activity plan. The ECLSS could provide data to a planning system that monitors
and analyzes how crew activities affect the power usage and performance of the ECLSS.
The habitat’s ECLSS could then be adjusted according to the crew’s schedule and status,
for example, preparing the habitat for occupation as the crew is returning from an EVA.
In this respect, the habitat ECLSS would be acting cooperatively with the crew.
Similarly, the ECLSS could provide information that the planning system would use for
scheduling future activities.

From one perspective, the problem of higher-level interoperability is getting different
control systems to operate together, with common goals, plans, and schedules, that is, to
“co-operate.” Co-operation means in general that subsystems adapt to each other. The
shift from designing for coordination to designing for cooperation is a shift from
hardwired physical sensors, effectors, and control systems to supporting the joint activity
of people, hardware, and software systems. Most importantly, this joint activity must be
dynamically configured according to changing circumstances.

In general, if a system is physically distributed, then a (heterogeneous) control process
such as set of interacting workflow agents will be more appropriate than a centralized
“control processor.” A distributed control process is useful in any of the following
circumstances:

− components can carry out operations independently (e.g., a robotic assistant, a suit
life support system)

− subsystems can be dynamically configured (e.g., in preparation for or during
different EVAs)

− communications are unreliable (e.g., because of terrain obstacles blocking the
wireless network)

− operations of subsystems and people are not strictly synchronous and feedback
may be time-delayed by distances (e.g., cooperation among Earth and
interplanetary systems).

The problem of systems engineering for higher-level interoperability then becomes:

− How to connect subsystems dynamically, in order to support work activities
− Providing data access to a device dynamically, in order to create information

presentations by consolidating/categorizing/fusing/analyzing data from multiple
devices

− Providing commanding access to a device dynamically, in order to accomplish
task goals by closed-loop controlling of multiple subsystems

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 28

In general, a linear, pair-wise integration perspective would truncate each of the above
sentences before the word “dynamically”: Connect subsystems, provide data access, and
provide commanding access. In contrast, the higher-level interoperability perspective
considers all of the components, hardware and software, as a coherent system that
manipulates information and accomplishes work objectives. The next section more
specifically examines current ways of talking about systems engineering for the
International Space Station (ISS) from this critical perspective.

5.6 Combining	
 design	
 mindsets:	
 Integrating	
 Hardware	
 that	
 Supports	
 Activities	

Sometimes when designers adopt a systemic approach, they are still thinking in terms of
integrating hardware rather than supporting work. A “both-and” perspective is useful:
view “the system” as being both a physical system and a work system. To make this
clear, several familiar ways of describing systems architectures are compared and related
to the workflow perspective.

5.6.1 	
 Viewing	
 a	
 System	
 Architecture	
 as	
 Both	
 Objects	
 and	
 Processes	

In general, a physical perspective views a system as objects, which are described in terms
of how they are connected and what they contain inside. A work perspective views a
system as processes, which are described in terms of how they change over time, affect
each other, provide services, and satisfy goals. Table provides a summary of these
perspectives.

Table 1. Two ways of viewing a system architecture

OBJECTS PROCESSES
Components
(building blocks)

Flows
(cooperating processes)

System-Based
(applications/packages running on located
workstations)

Activity-Based
(on-demand services, available anywhere,
anytime)

Centralized Hardware Appliance
(e.g., Hub & Spoke, Bus)

Services
(Distributed Agents)

Connectivity
(Physical data & command transmission)

Proactive/Push Processing
(Logical/Semantic/Event-driven)

In a distributed process-oriented architecture, the processes are active and interact in a
network. This makes particular sense when the processes are running on platforms such
as vehicles, space suits, and robots, which are mobile, independently operating, and in
changing interactions, as noted above. Organizationally, this can be viewed as an
“enterprise of enterprises,” as promoted by the Network Centric Operations Industry
Consortium’s interoperability framework: “A network essentially is composed of acting
nodes linked by relationships” (NCOIC 2009). We would add that the relationships
might be dynamically changing.

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 29

The following subsections illustrate the object-oriented vs. process-oriented distinction in
terms of the current medical systems onboard the Space Station and proposals of how to
improve these systems.

5.6.2 	
 Critique	
 of	
 the	
 “Building	
 Blocks”	
 Approach	
 	

One common approach to systems engineering today is to adopt a common data
management and communications architecture for creating “building blocks” that are
configured to create multiple, interacting systems. This can be characterized, for
example, as “One set of building blocks, many components” (footnote 4 above). The
building blocks are components that are replicated and possibly combined differently for
building subsystems into an integrated system (Figure 5.1).

Figure 5.1. “Telemedicine Systems Created from a Common Set of Architectural
Building Blocks,” (Warren et al. 1999).

The building blocks in a telemedicine system might consist of communications, medical
devices, a user interface, Records, a backplane (for integration), etc. The object-oriented
perspective is continued at the next level to conceive of the telemedicine system in terms
of “workstations” customized for different roles (e.g., Patient, Caregiver), services (e.g.,
archive records, diagnosis), and tools (e.g., video conferencing, personal status monitor).

The building blocks diagram is useful, but raises fundamental interoperability questions,
such as: Is connectivity among building blocks and among stations/services/tools pair-
wise and predetermined, or is it dynamically reconfigurable? With what effort? Does the

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 30

system provide “anytime, anywhere” access to data and commanding, or does access
require being physically co-located with a specific workstation or interface device?

One proposed architecture, which NASA Space Medicine specialists have been
evaluating for adoption onboard ISS, does provide some dynamic “hot pluggable”
capabilities through the “self-identifying” capability of a component and the registry
function of the central Backplane of each subsystem (Figure 5.2).

Figure 5.2. “Depiction of the general component interactions in the proposed
architecture,” (Warren et al. 1999).

This example illustrates a kind of service-oriented architecture, in which a registered
component will transmit events (to a “coordinator”) and can execute procedures
(methods) on demand. The “Protocol” in this architecture is defined as the “resources,
connections, and events necessary to accomplish a medical task.” A resource can be any
computational process (e.g., medical device, data filter, GUI control), communication
connection, or another protocol.

The conception of a “backplane” (or bus) for communication raises questions about
flexibility, where control lies, and what automation is possible. In some respects, the
“coordinator” can be viewed as an “agent” that follows a protocol to control the
execution of methods (perhaps based on events specified in the protocol). Partly at issue
is whether the protocols are flexible enough to provide alternative ways of accomplishing
a task, such as when a component connected to the backplane is removed or disabled.

This example helps elucidate some of the requirements of workflow automation:

− Assembling, translating, and pushing data and commands according to service
availability

− Translating information and request semantics to the data & command
terminology of components

− Adapting behavior within task requirements to multiple, changing external
constraints (i.e., context sensitivity)

It should now be clear that rather than the physical hardware metaphor of a “backplane”
or “bus,” understanding higher-level interoperability requires a more process-oriented

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 31

metaphor. For example, rather than talking about connected boxes (the hexagons in the
example), we might talk about a network of “smart routers.” Rather than viewing the
problem as “integrating boxes,” we might view the problem as creating locally
independent subsystems that can act cooperatively by monitoring and proactively
contributing to an overarching task.

From one perspective, the required shift is to provide more than a “common data and
communication middleware” solution (footnote 4 above). A dedicated, hub-spoke box
can provide telemetry and commanding to multiple devices that are co-located, as
onboard ISS or in a surface habitat or vehicle. But referring to the scenario narrative
(Section 4.3), what enables the robotic laboratory, habitat planning system, suit life
support, etc. to act cooperatively with the crew? How do we make the medical devices,
for example, aware of the crew’s activities? How do we make people aware of the
performance of these systems? This process view moves the architectural concept from a
notion of centralized integration of physically connected systems to distributed systems—
achieving interoperability through non-co-located resources and processes. Rather than a
plug and socket type of registration to a controlling backbone, the services provided need
to be more broadly available in a many-to-many mapping among applications and
physical systems.

The following section presents and compares some candidate architectures for higher-
level interoperability.

5.7 Candidate	
 architectures	
 for	
 higher-­‐level	
 interoperability	

In many respect, alternative interoperability architectures are based on different ways of
viewing how computation is decomposed into subprocesses and how the output of these
subprocesses are recomposed at runtime. One can view the progression of architectural
concepts over the past 40 years as shifting the design perspective from structuring output
(e.g., levels of abstraction), to structuring processes (e.g., layers of processes), to
structuring flows (e.g., process networks). These are briefly described here as layered
control architectures, service-oriented architectures, and workflow architectures. (See
Moses [2010a] for a cogent summary of layered, tree, and network architectures relating
organizational and computer system design.)

5.7.1 	
 Layered	
 Control	
 Architectures	

In the 1980s, artificial intelligence programming methods provided alternative methods
for controlling multiple, asynchronous processes. Although the topic was sometimes
called “distributed artificial intelligence,” the processes were often located on one
computer because of limited capability for process communication over networks at the
time. The emphasis was writing complex computer programs as independent parts, rather
than as one monolithic system. Two successful methods for dynamically orchestrating
interactions between subprograms are described here: the Blackboard Architecture and
the Multi-Tiered Architecture.

5.7.1.1 Blackboard	
 Architecture	

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 32

In a blackboard architecture (Nii 1986a, b), the overall computational product is a
symbolic model of some situation or process in the world. In a typical application, the
model might be an interpretation of a spoken utterance. The blackboard5 was usually
designed to have heterogeneous levels, corresponding for example to different model
perspective (e.g., the grammatical parse of an utterance vs. its meaning). Subprograms,
often called “knowledge sources,” would asynchronously read what was posted on the
blackboard and make contributions to the evolving model (e.g., using
phonemic/morpheme information to construct words). They were often specialized by
only reading and modifying particular parts of the model. An essential aspect of
blackboard control structures is that posted information in the model might be uncertain
and represent alternative interpretations. Frequently, the blackboard is a hybrid of a
hierarchy (tree) and layered structure, such that related alternatives are compared and
incorporated at a higher level, then becoming a hypothesized piece for the next layer
above. Blackboard architectures are therefore useful for integrating sensor data; an early
military application was to identify and track submarines in the Pacific Ocean by relating
data from different sensors over time (Nii 1986a,b).

In summary, blackboard architectures are useful for assembling and relating information
in a centralized place so it can be shared and improved by different processes that are
assembling a global model with a layered structure. These processes interoperate in the
sense that various combinations of processes are able to read and incorporate other
processes’ output.

5.7.1.2 Multi-­‐Tiered	
 Architecture	

In a blackboard architecture the layers are structured objects constituting the output; in a
multi-tiered architecture the layers correspond to processes that create these structured
objects.

In software engineering, multi-tier architecture (often referred to as n-tier
architecture) is a client–server architecture in which the presentation, the
application processing, and the data management are logically separate processes.
For example, an application that uses middleware to service data requests between
a user and a database employs multi-tier architecture. The most widespread use of
multi-tier architecture is the three-tier architecture.6

In one formulation, the top tier corresponds to the presentation (display) level, the middle
tier is the application or “business-logic” layer, and the lowest tier consists of data
servers. Malin (1999) adopted the three-tier approach at NASA for developing a life
support control system called 3T, consisting of a planner managing resources and life
support products; a sequencer, a discrete event-driven controller; and a skill manager,
which interfaces with hardware and continuous-control systems.

5 The name “blackboard” is derived from a wall-mounted black slate board, used in American schools from
about 1801 until about the 1970s, on which one wrote and drew with tube-shaped pieces of white chalk
(gypsum).
6 http://en.wikipedia.org/wiki/Multitier_architecture (1 Oct 2010).

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 33

The multi-tier perspective implicitly incorporates the blackboard architecture perspective
that higher-level interoperability requires abstracting low-level data and commands into
dynamically selected and composed sequences, which are planned and/or follow
protocols. The multi-tier perspective is more general by not requiring a centrally posted
model of the world and the output of subprocesses, and is thus amenable to a distributed-
network implementation.

5.7.2 	
 Distributed	
 Network	
 Control	
 Architectures	

In the layered control approach, the overall architecture conforms to the structure of the
output (as a central blackboard or through layers of n-tier processing). In distributed
network control architectures, control is not localized. In effect, the designer gives up the
notion of controlling the overall system, but rather focuses on how people and systems
co-operate dynamically when the configuration of subsystems is not necessarily known at
design time or even fixed during operations. A combination of procedural and event-
driven operation is therefore desirable. The emphasis is on enabling runtime
reconfiguration of components with perhaps multiple methods for accomplishing work
functions.

Such architectural flexibility is more appropriate for coordinating multiple semi-
autonomous entities (people, organizations, and mechanisms), rather than for operating
highly constrained components interacting in fixed ways (e.g., a scientific instrument).
However, as once simple devices such as cameras and telephones become computer-
controlled with multiple subsystems, are miniaturized and combined into pocket or
wearable devices, it is becoming apparent that the methods described here are potentially
applicable to any system; though again our emphasis in this report remains on work
systems involving people and a wide range of automated systems and devices.

Today a networked control regime is most often called a service-oriented architecture
(SOA):

Service-orientation requires loose coupling of services with operating systems,
and other technologies that underlie applications. SOA separates functions into
distinct units, or services, which developers make accessible over a network in
order to allow users to combine and reuse them in the production of applications.
These services and their corresponding consumers communicate with each other
by passing data in a well-defined, shared format, or by coordinating an activity
between two or more services.7

A related definition is:

A Service Oriented Architecture (SOA) is a software model in which the concept of
a ‘service’ is an abstraction of a function used by an application. SOA logically
decouples the service requester from the service provider by isolating the service

7 http://en.wikipedia.org/wiki/Service-oriented_architecture (1 October 2010).

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 34

definition from a service implementation. (Freund & Niblett 2002)

The logical decoupling of service requester and provider in principle enables people
using the system to configure components, rather than software engineers pre-
determining what functions are available and how they invoke each other. An
infrastructure or framework is provided that uses a form of mediation that acts as a kind
of “match-maker.” In effect, the location of services can be hidden, communication
protocols may differ (e.g., “one-way, request/response, asynchronous, synchronous, and
publish/subscribe type interactions”), and the message format or interface may differ (see
for example, Freund & Niblett 2002). Conceptually, the designer shifts from thinking of
standardizing and connecting processes to developing software routers that convert and
transform communications so available subsystems can interoperate. Historically, the
distribution of applications via the Internet drove the SOA concept, and the services are
sometimes called “web services.”

5.7.3 	
 Example	
 of	
 Distributed	
 Control:	
 Multiagent	
 Workflow	
 Systems	
 	

A multiagent workflow system is a particular kind of service-oriented architecture, in
which mediating processes, called workflow agents, embody the “business logic.”
Because the agents communicate, it is amenable to a physically distributed network
implementation. For example, in the EVA scenario (Section 4), workflow agents can be
used to orchestrate the flow of data, information, and commands among
sensors/instruments, audio/visual devices, automated subsystems (e.g., life support
system, robotic laboratory), and web services (e.g., a remote database, a planner). The
“logic” here is similar to the layers in the multi-tiered architecture, by logically relating
data, information, and control through processes of abstraction and model-based
inference.

Software agents (or “actors”) usually operate asynchronously, but communicate with
each other and subsystems to carry out delegated actions. Such a framework of
interacting agents is called a “multiagent system” (MAS) (Wooldridge, 2002). Workflow
automation fundamentally changes how system interactions occur by shifting the problem
from how systems interface with each other (usually at the data and functional level in
the language of each system) to how systems interface with workflow agents, which
mediate among applications to accomplish task-oriented goals. In effect, what are usually
conceived as “pipes” are now pro-active processes (agents) that transform and direct how
data, commands, control, and information flow through the system.

In a multiagent workflow system, the agents are akin to “knowledge sources” in the
Blackboard architecture, and more generally can be viewed as evolved from the
knowledge-based programming approach. The agents are usually functional experts that
invoke each other as required to handle subproblems, which themselves have designated
specialists to handle them. Each agent encapsulates what is colloquially called the
“knowledge” of how to process a request (incoming data or control command) to make it
able to be processed by other agents or subsystems (e.g., restructuring information into a
message that an email system can process). More strictly, this “knowledge” involves
creating and/or manipulating models of the world situation and processes the workflow

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 35

system implements. Furthermore, each agent manages the I/O relations required for its
own functionality and any agent can invoke any other as it requires, allowing it to be used
for multiple purposes in different configurations. Programmers can in turn modify their
agent’s abilities to process data/commands as new capabilities are introduced (e.g., a
navigation agent, rather than merely specifying a heading and distance, is modified to
invoke a planning system that evaluates alternative routes based on cost/benefit
tradeoffs). Internally the agents are structured as “case statements” (switches) so new
capabilities do not interfere with existing ones.

Section 8 provides a particular implementation of a multiagent workflow system. A
comparison of multiagent systems appears in Clancey et al. (2008). For another
perspective on multiagent software engineering methods, addressing software product
lines, but not interoperability, see Peña et al. (2006).

5.8 Summary:	
 Trade	
 comparison	
 relative	
 to	
 figures	
 of	
 merit	

Table 2 compares the candidate software architectures we have discussed for
interoperability, relative to the figures of merit (Section 3.2). Alternatives are scored on a
relative scale of 1 (worst) to 10 (best). The values are relative, attempting to discriminate
inherent characteristics from the effort required to achieve the figure of merit
requirement. For example, ratings for Distributed Network Control below 10 reflect that
quality will depend on the programming of the relevant agents. In particular, security
could be impaired by network vulnerabilities that are common to the other architectures
(while timeliness might be much easier to reliably provide). Data management is more
tractable through the agent’s functional design, but agents might become overloaded by
simultaneous requests and high volumes—these aspects must be considered and designed
into the overall system as for other architectures. Similarly, crew efficiency is by design
enhanced by an agent system, but prototypes must be used experimentally to discover
what people will need and want to do. Incremental buildup and DDT&E were rated 10
because these are inherent in the architecture.

The evaluation of current ISS systems is adapted from the recent NASA space medicine
evaluations of the current hardware and software infrastructure (footnote 4 above).

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 36

Table 2. Comparison of candidate software architectures relative to figures of merit
driving interoperability.

Figures of
Merit

Candidate

Architecture

Security &
Safety
(accuracy,
timeliness)

Data
Management
(volume &
integration)

Incremental
Buildup
(scalability,
extensibility)

Operational
Efficiency/
Productivity
(crew time)

DDT&E
Cost

∑

Stove-piped
Systems
(e.g., ISS in
2010)

2
(lacks
automation;
impairs safety:
can’t support
entire crew
simultaneously)

2
(lacks
automation;
not time-
synchronized;
limited data
reduction)

1
(limited multi-
device
connectivity;
lack of data
exchange
methods;
difficult to
automate)

1
(manual work,
cognitive
burden;
inefficient air-
to-ground
bandwidth)

1
(redundant,
proprietary,
and mixed
technologies)

7

Layered
Control
(e.g., 3T)

3
(monolithic, not
amenable to
international
access)

7
(designed for
model-based
control)

5
(hardwired
services; no
exchanges)

5
(designed for
automation)

4
(ad hoc data
exchange)

24

Building
Blocks (e.g.,
next
generation
CHeCS8)

8
(customized
workstations,
variable security
possible)

5
(requires
standards)

8
(designed for
reuse)

7
(designed for
work
activities)

5
(must revise
existing apps
for standards)

33

Distributed
Network
Control
(e.g.,
Multiagent
Workflow)

8
(designed for
adaptability;
optimal for
time-delayed
communication
& multiple
network
topologies)

8
(designed for
creating &
distributing
information)

10
(designed for
extensibility,
plug & play;
mobile
systems)

9
(adaptively
optimizes
workflow;
maintains
crew focus on
task)

10
(maximizes
code reuse,
multiple
uses)

45

6 Recommendations:	
 Software	
 Architectures	
 for	
 System	
 of	
 Systems	

Inter-­‐Operability	

This section summarizes the analysis and conclusions and relates the interoperability
recommendations to the proposed Constellation C3I systems architecture. The possibility
of a “clean slate” approach is discussed, as well as enduring challenges for
interoperability.

8 Proposed next generation crew health care system (CHeCS) for ISS space medicine operations with
“Dedicated Communications Gateway/Hub & Archival Storage Server.”

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 37

6.1 Summary	
 of	
 Analysis	
 and	
 Conclusions	

This report has reviewed the nature of software interoperability, distinguishing low-level
and higher-level capabilities, and compared broad, well-known approaches (layered
control, building blocks, and distributed network control) to exploration systems figures
of merit (safety, security, data management, incremental buildup, productivity, and cost).
Distributed network control was found to be the best approach by all measures. In
particular, a multiagent implementation, which facilitates workflow automation, was
recommended.

Different perspectives are useful for designing a complex integrated, distributed system,
including networking, inter-process communication, interfaces, and workflow. In
practice, a distributed network architecture will in some respects involve building blocks
and functional layering. The distributed network perspective is more embracing by
showing how multiple design perspectives can be related into a reconfigurable and robust
operational system of systems.

The workflow perspective brings together two design perspectives for building a complex
system:

1) Human-Centered Design: Systems exist for human purposes and inevitably
involve human interaction. In particular, people are the “endpoints,” that is, they
are being served by the system components. Although, for example, habitat
system monitoring may be automated, eventually people will be interested to
know that the habitat system is functioning correctly, as well as that the
monitoring is working correctly, and they will need to respond to anomalies.

2) Task-Oriented Design: Interoperability of sensors/devices and automated
processes involves model-based abstraction and inference to support both human
decision making and enable automated processing. For example, working safely
on EVA requires relating consumables, metabolic performance, and workload—
whether this is done by a person or assisted by a system.

In general, workflow automation involves associating, packaging, and communicating
both discrete and continuous data streams; the purpose may be archival or for ongoing
operations, by either people or automated systems. For example, EVA photographs are
more efficiently organized for later interpretation if the database automatically pulls
together data about location, time, camera source, and the context of the EVA activity.
This is accomplished by synchronizing and often reformulating data from diverse sources
at runtime, creating new information representations (e.g., web pages, text summaries).

Interoperability shifts the systems engineering notion of “integration” from connectivity
and forwarding telemetry and commands between subsystems to orchestrating
operations in a system of systems to create and manage information. Interoperability is
concerned with enabling higher-order processes to control and hence coordinate actions
while allowing incremental buildup of subsystems within the ongoing context of human
tasks (work).

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 38

Workflow generally involves an interactive, ongoing communication of requests to act
and to provide information. In general, communications among subsystems are many-to-
many, with each component receiving and giving requests and information from several
other components. For example, during an EVA subsystems for data and commanding of
life support, navigation and planning, and science data collection often need to
dynamically coordinate their behaviors. In general, these systems are distributed,
communicating without direct, wired connections, and in general some of the
components are mobile. In practical implementations, middleware provides a medium for
communicating data and commands among devices and applications, while workflow
agents orchestrate the flows.

The kind of interoperability required within a system of systems depends on whether and
how particular components interact:

 Low-Level Interoperability (Middleware)—for systems whose components
operate independently and/or interact only in fixed ways (e.g., functional
hierarchy) and tend to be of fixed types (e.g., plug-ins).

• Applicable to self-contained subsystems & frameworks (e.g., ECLSS, a
PC OS, web-browser), which nevertheless may be open architectures by
virtue of enabling addin-applications to run within their closed framework.

• Typically, added functionality is independently accessed (e.g., new menu)
or independently used (e.g., new GUI, software tool).

 Higher-Level Interoperability (Workflow Automation)—for systems whose
components are distributed, heterogeneous (i.e., not designed to a single
standard), and are intended to interact with other software and/or hardware (e.g., a
planner subsystem; a database; an Email program; a printer).

• Components are typically added with the intent that they will be able to
interact with other components.

• The Mobile Agents Architecture provides a framework for building such
systems

We concluded from analyzing the EVA emergency scenario that a Lunar Surface System
with workflow automation (Section 4.5) would significantly improve safety and
productivity by enabling a diversity of distributed subsystems to interact flexibly (e.g.,
habitat, pressurized vehicle, spacesuit, robot, instruments). These workflow functions
include real-time, closed-loop coordination of multiple subsystems; consolidating,
filtering, and abstracting data; creating and forwarding relevant information; and
assembling data from multiple subsystems to construct commands for
devices/applications.

Besides making inferences and constructing command sequences, workflow agents may
present information to people, expressing it in verbal speech or an audible tone,
representing and storing information in dynamically constructed web pages, and/or
transmitting information by email. Some information may consist of goals suggested to

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 39

the astronauts (e.g. “Begin walking back to the habitat now”) or conveyed to
“autonomous systems” (e.g., “Scout, go to Astronaut 2”). Such inferences require that
agents have access to and/or maintain models of the current exploration system (e.g., the
location of Astronaut 2; what Astronaut 1 is doing) and the plans and procedures by
which the work is being carried out.

In summary, sophisticated workflow functions include the heuristic guidance of people,
robotic systems, and software agents to facilitate cooperative work (e.g., parceling tasks
among people and robotic systems and delegating information processing to software
agents). Such systems use available information to plan, alert, guide, record, control the
ongoing flow of information and commanding to assist or directly orchestrate inter-
operation.

Such higher-order services, when provided by a “workflow backbone,” are not device or
subsystem dependent. Because they operate at the task level of EVAs, they are inherently
extendible and may be repurposed for very different exploration system configurations
(e.g., see the companion report, LSS Software Open Architecture Study). Such an
architecture is particularly amenable to incremental buildup—including
substituting/upgrading or adding subsystems and enhancing workflow capabilities.

6.2 Interoperability	
 Recommendations	
 Relative	
 to	
 C3I	
 Architecture	

A key claim of this report is that the proposed Constellation C3I architecture should be
elaborated to include information exchange services in the form of workflow automation
to facilitate and proactively initiate interactions between “element-specific data systems”
(Figure 6.1).

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 40

Figure 6.1. C3I Architecture interoperability layers and their mapping to the OSI
Reference Model, including Information Exchange (Workflow) Services layer.
Transport layer is elaborated to automate flow of information between element-specific
data systems, using data exchange services and transport/networked communications; See
Figure 8.2 for details and examples. (Figure adapted from CxP 70022-1, Figure 1.5-2;
dashed red line represents scope of C3I Interoperability Specifications).

Information exchange services are logically part of the Transport layer in the Open
System Interconnection (OSI) Reference Model9 that C3I adapts.10

In terms of the C3I Architecture and its specifications for interoperability, this report
makes the following recommendations (refer to Section 8 for details):

1) The C3I Architecture “data exchange mechanisms” should include active,
information exchange services to enable goal-oriented automation within the
exploration system (Figure 6.1).

9 For example, see http://en.wikipedia.org/wiki/OSI_model.
10 One might also depict the Workflow region above the Applications. It is placed below because the C3I
architecture is described as enabling applications to communicate. We suggest having that communication
go through an information creation/exchange layer, not directly from app to app. In particular, depicting the
WF backbone below the apps eliminates the interpretation that apps are communicating directly through
the data exchange layer.

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 41

o In the specific architecture described here, these information exchange
services constitute a workflow system, which consists of software agents
that mediate between “element-specific data systems” to gather data,
create information, and initiate feedback relationships that accomplish
work tasks.

o Alternatively, this recommended elaboration may be viewed as inserting
an Information Exchange Services layer as a distinct part of the Transport
layer of the C3I Architecture, or as constituting a kind of integration
framework that is part of the Application layer.

2) The data exchange layer of C3I should specify information exchange services

(e.g., secondary APIs called “communication agents”) that mediate between the
model-based language of the task domain, and the functional methods and data
objects of the application programming interfaces (APIs) provided by “element-
specific data systems.”

o The language of the task domain includes the names and properties of

objects (e.g., instruments, vehicles, robots), locations (both geographic
names and targets, e.g., “waypoint 5”), human participants, work products
(e.g., photographs, samples), and the work plan (e.g., an activity’s
purpose, location, duration, participants, equipment).

o Communication agents, specialized for each integrated hardware and

software component, translate from the language of the task domain to the
component’s exposed application methods and data objects, effectively
making components into agents that provide task-oriented services. That
is, components can provide information and not just data, and they can be
configured to carry out task-oriented goals that dynamically relate to other
components in the exploration system versus carrying out isolated
commands.

3) Preferably, people should be able to make requests for information and actions to

occur in natural language (i.e., as speech acts) using voice commanding.

o However, other media such as visual display text and menus can be used
to formulate requests in the language of the task domain, and other
interfaces (e.g., tones and buttons) can be used for communicating
information and commands that are formally translated to and from speech
acts by software agents.

It is important to remember that with respect to LSS, what the C3I Architecture labels as
“element-specific data systems” includes devices (instruments, tools), robots, and
vehicles that include software for externally controlling their operation and/or providing
access to internal data (e.g., status, measurements). For example, a camera that can be
configured and operated, as well as provide access to stored photographs, via a cable or
wireless connection is an example of an “application” in this context.

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 42

The distinction between data and information (Section 4.6.2) provides another way of
understanding the importance of information exchange services. Workflow automation
focuses on information exchange and therefore directly exercises the objective that C3I
interoperability is intended to address (see also definitions in Section 3.1):11

Central to the ARCHITECTURE is the use of a framework or data exchange
services mechanism that uses publish and subscribe communications over an
information bus. The framework allows individual application components to
“plug-n-play” by supporting interface standards and facilitating the interactions
with the system and between applications. (CxP 70022-1, p. 12).

In this respect, the term “data system” is not general enough to cover the computational
systems typically included in an exploration system. Alternatively, one could interpret
the original C3I Architecture as relating specifically to software, and imagine a layer
above of physical systems in which the software is operating (e.g., a robot, life support
system, scientific instrument). Therefore, “applications” include operating systems for
controlling complex machines (e.g., VxWorks used on MER).

A key problem in designing for application interactions is to develop a limited number of
interfaces and preferably a common way of exchanging data and information. The notion
of a “common way” or standard often suggests that all components can communicate in a
single language, but this is both technically unnecessary and makes incremental buildup
with international partners much more difficult (if not impossible). Nevertheless,
managing information and real-time control requires some efficient way for
communications to occur without continuous translation back and forth through different
standards.

In the suggested agent-based workflow architecture, this efficiency is attained by a
backbone of workflow agents, providing basic services, which remain relatively
consistent among system configurations. The agents all speak the same language and then
communicate with subsystems through customized translators called Communication
Agents. For a complete discussion of a workflow backbone and communication agents,
see Section 8.

11 The dashed line in CxP 70022-1 Figure 1.5-2 appears to exclude application interactions and so it might
be argued that information exchange, and in particular workflow automation, exists a level above the
diagram. However, CxP 70022-1 defines interoperability as concerning exchange and use of information
between systems, so we have placed information exchange within the transport layer, but straddling the
applications, as data exchange services were shown in the original diagram. From another perspective,
information exchange services constitute a framework for communication between applications, and so
might be represented within the Application layer. However, in Mishkin’s presentation in Rader (2008)
“framework” refers to a publish and subscribe model that includes a toolkit of building blocks and shared
components for developing applications. The agent-based interoperability framework described here is a
method for integrating components, rather than consisting of parts from which new applications are
constructed.

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 43

6.3 Legacy	
 Issues	
 Hindering	
 Interoperability	
 —	
 Why	
 not	
 a	
 Clean	
 Slate?	

The legacy systems of the International Space Station provide a useful example for
considering to what extent a “clean slate” is desirable, rather than designing around
legacy systems. For example, most onboard medical devices lack wireless connectivity,
onboard storage, and/or adequate APIs—why not simply replace them by redesigned
hardware? The simple answer is that this is extremely expensive and has few short or
long-term advantages—several well-understood integration technologies are already in
practice, all handling legacy systems through some form of middleware (Table 2).

Another argument is that there will always be “legacy” systems that are incompatible
with technology advances, particularly if components are supplied by international
vendors, which is already common. Just as ISS space medicine technology was provided
by different vendors using different technology over several decades, it is unrealistic to
assume that even with a clean slate approach, a single standard for interoperability
adopted today could be entirely suitable when astronauts are exploring the surface of an
asteroid or Mars.

Rather than consider a clean slate, a more useful question is whether the kinds of
problems faced by space medicine systems integrators today are solved in a better way by
adopting a software interoperability architecture providing distributed network control?

As noted in the discussion of Table 2, a distributed network “process” framework would
be more useful for future automation. CHeCS is based on a building-blocks approach,
perhaps because the integration focus is on co-located, stationary hardware systems (e.g.,
treadmills, sensors, computer networks). We argued (Section 5.6) that designing the
higher-level interoperability of workflow automation involves shifting from focusing on
the physical system to focusing on the activities of the people. Analysis of both routine
and problem scenarios can help shift focus from the basic logistics of accessing data and
remote commanding, to developing a concept of operations for facilitating cooperation
among people and machines. This design methodology is described in Section 8.

6.4 Enduring	
 Challenges	
 for	
 Interoperability	

In conclusion, many of the broad operational requirements addressed by interoperability
are likely to persist in future exploration systems:

− Performance for real-time systems (including response to human actions)
− Adaptive response for plug and play operation (e.g., dealing with loss of assets

such as loss of a robot during ongoing work)
− Flexible levels of subsystem commanding (e.g., robot API providing access to its

sensors and effectors)
− Security across diverse network/transport protocols
− Semantic interoperability (relating different ontologies)
− Scalability, particularly to dozens or hundreds of subsystems

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 44

Simply put, interoperability involves managing a diversity of technologies in a complex,
already functioning system. In part, diversity stems from technological advances that
make today’s state-of-the-art systems “legacies” in a few years. Although we might say
that incremental buildup is desirable because we cannot afford to build everything at
once, it is also inevitable because we cannot afford to replace everything at once when
technology advances. We will always need to deal with legacy systems that generate,
represent, and store data in different ways, as well as upgrades that seek to use existing
data and control legacy systems in new ways. Inevitably, operating systems and
computational platforms will continue to evolve. Rather than a “clean slate” approach, we
recommend a framework that is designed for reusability, extensibility, and scalability.

But besides the inevitable existence of legacy systems, diversity stems from the diverse
origins of hardware and software. The separation of people into functional organizations
imposes further challenges for interoperability.

For example, some of the difficulties faced by biomedical engineers arise because
mission operations and space medicine are funded independently, and so they develop
systems independently. They naturally adopt different standards as well because
operations and medicine have different criticality and security constraints, leading to the
use of multiple networks and communication protocols. For example, in ISS operations
today ground security prevents the human factors support team, which provides regular
news and entertainment files to the ISS crew, from accessing mission operations servers
to store the files they want to upload to the ISS. Thus stove-piping these organizations’
responsibilities obstructs the workflow—a problem resolved in Mission Control by using
a distributed network control framework (Clancey et al. 2008).

Mission requirements aside, managing large groups of people and designing complex
systems both lead to a hierarchical structure, which then is reflected in functional stove-
piping of requirements and designs. For example, during FY10 consideration of new
technologies, a “Human Health, Life Support and Habitation” sub-team developed a
hierarchy of four “subsystems” in a Human Research Program roadmap: ECLSS and
Habitation Systems; EVA Systems; Human Health and Performance; and Environmental
Monitoring and Safety. How do we investigate these topics without breaking them into
parts? But how can we design for interoperability of the sort exemplified in an EVA
emergency scenario (Section 4), if we view the Hab ECLSS, EVA life support, and Crew
Health as inherently independent? The recommended approach is to adopt a
programming framework that facilitates designing exploration systems from multiple
perspectives—layered and networked, building blocks and services, physical systems and
human activities (Moses, 2010a).

The “coherent system” perspective, particularly in the context of a complex system of
systems operating in a hazardous space environment, raises issues of standards and
governance in an ecology of inter-operating subsystems In this respect, the figures of
merit (Section 3.2) organize the requirements that must be satisfied systematically and
drive the architectural support for ensuring that the subsystems respect standards for
security, safety, timeliness, extensibility, efficiency, and cost.

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 45

How a community would verify and legislate standards for communicating and
interacting is on the fore-front of today’s smart phone operating system technology.
Leading providers are taking opposite approaches—Apple’s iOS “sandboxing” strictly
limits interoperability outside the Apple-provided services; Google Android’s inter-
process framework enables customized networks of apps. Methods for preventing
deadlock, runaway applications, malicious commanding, and so on will begin with how
these matters are resolved by conventional computer operating systems.

Moreover, for designed and for the most part closed systems like LSS, the inter-operating
components will be selected and their services certified before mission operations. Our
concern will then shift to validating overall system usefulness in inherently unknown
environments where subsystem failures will occur. Accordingly, in healthcare and air
traffic management where people and automation share responsibility for operations
safety, a key research topic is designing resilience, such as checks and balances to cope
with failure; NASA’s exploration enterprise will do well to follow and contribute to these
research communities in the coming decades.

7 Appendix:	
 C3I	
 Interoperability	
 Objectives	
 and	
 Methods	

This section quotes excerpts from “Constellation Program Command, Control,
Communication, and Information (C3I) Interoperability Standards Book, Volume 1:
Interoperability Specification” (CxP 70022-01) relevant to the definition and
requirements for an LSS open architecture and interoperability. Excerpts are sequential
with page numbers from CxP 70022-01.

Interoperability is defined (based on IEEE 90) as the ability for two or more
SYSTEMS to exchange information and to use the information that has been
exchanged. For Constellation, C3I interoperability includes the common mechanisms
for communicating between SYSTEMS, as well as the common information structure
and language necessary for SYSTEMS to perform appropriate COMMAND and
control functions using the information exchanged. (CxP 70022-01, p. 7)

The Constellation Program consists of multiple SYSTEMS. The SYSTEMS used by
the crew consist of the CEV, the Lunar Surface Access Module (LSAM), the Suit
Systems (EVA) and Flight Crew Equipment. In the future, the Mars Transfer Vehicle
(MTV) and the Mars Descent Ascent Vehicle (DAV) will be added to the active
program. The launch vehicles include the Crew Launch Vehicle (CLV) and the Cargo
Launch Vehicle (CaLV). The common support SYSTEMS consist of the Mission
Operations and Ground Operations SYSTEMS. Finally the destination surface
SYSTEMS consist of the habitat, surface mobility, power systems, robotic
SYSTEMS and resource utilization. Significant external interfaces to the Program
include the Communication and Tracking (C&T) Networks and the International
Space Station (ISS).

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 46

This specification is applicable to all Constellation SYSTEMS. However, not all
SYSTEMS require the same functionality due to their role in the larger Constellation
ARCHITECTURE. For this reason, the specification is organized such that functional
interfaces are applied consistently across many different SYSTEMS. This approach
allows Constellation to 1) minimize unique interface definition / implementation and
2) maximize the potential for interoperability. (CxP 70022-01, p. 7)

The C3I ARCHITECTURE is based on common communications links and
protocols, common COMMAND and TELEMETRY formats, interoperable voice and
motion imagery protocols, and common information definitions. The C3I
ARCHITECTURE leverages industry advances in network and data systems to
address key challenges of the Constellation Program including simultaneous
COMMAND and control of multiple systems, use of diverse communications
environments, AUTONOMOUS operations support, cost constraints, and
configurations and operations concepts which will continue to change over a period
of many years. To address these challenges, the C3I ARCHITECTURE defines a
loosely coupled, interoperable SYSTEM-of- SYSTEMS ARCHITECTURE based on
the use of open, standards-based interfaces and switched/routed end-to-end
communications networks. (CxP 70022-01, p. 11)

Layering is used both to isolate functionality and to aggregate commonly-used
functions. Each layer provides a set of services to the layer above it by using
protocols to exchange information with its peer layer as well as services from the
layer below. So long as the interfaces to the layers above and below are maintained,
the technology and protocols used to implement the services at a particular layer can
be changed with minimal disruption and at relatively low cost. This will allow the
Constellation C3I ARCHITECTURE to grow and evolve gracefully as technology
changes. (CxP 70022-01, p. 11)

Central to the ARCHITECTURE is the use of a framework or data exchange services
mechanism that uses publish and subscribe communications over an information bus.
The framework allows individual application components to “plug-n-play” by
supporting interface standards and facilitating the interactions with the system and
between applications. Above the network protocols are the data exchange protocols
necessary for command and control, including COMMANDS, TELEMETRY, time
synchronization, voice, MOTION IMAGERY, and file transfer. (CxP 70022-01, p. 12)

The Data Exchange Layer defines a set of common data exchange mechanisms which
can be used to simplify application development and testing, and improve application
performance and interoperability. These “mechanisms” provide Constellation
SYSTEMS a standard approach to share COMMAND, control and end-user
information with one or more other systems. (CxP 70022-01, p. 14)

This section covers near-term requirements for the protocols necessary to exchange
data between SYSTEMS. Specifically, this section discusses IP-based protocols for
routine voice exchange, motion imagery transfer, data exchange messages for
command and telemetry, file transfer and time exchange. Additional data exchange

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 47

mechanisms and data types include static host table updates, SNMP traffic, key
management messages, and traffic management control files. (CxP 70022-01, p. 57)

Constellation SYSTEMS shall use a common data exchange message format as
defined in Appendix C of CxP 70022 Constellation COMMAND, Control,
Communication, and Information (C3I) Interoperability Standards Book, Volume 5:
Data Exchange Protocol Specification. [C3I-135]
Rationale: Common data exchange message formatting supports interoperability
between SYSTEMS. (CxP 70022-01, p. 61)

8 Appendix:	
 Example	
 Implementation—Mobile	
 Agents	
 Architecture	

This section describes the Mobile Agent Architecture, focusing on the nature of
workflow interoperability. DDT&E statistics using MAA for developing exploration
systems are provided in the companion report, LSS Software Open Architecture Study
(Clancey et al. 2010b), summarized in (Clancey et al. 2011).

The MAA provides an interoperability programming framework by the use of a common
messaging scheme, allowing any hardware or software component to communicate with
any other. Interoperability is enabled by proactive computer programs called “agents,”
which manipulate data and commands among components. They execute on-demand or
through scheduled or event-driven procedures. MAA agents run on distributed, usually
mobile computer platforms that get data from and control subsystems via APIs provided
by each component.

To clarify some of the terminology, the MAA essentially provides an agent language,
messaging representation and handling scheme. In the dual-API architecture, a distinction
is drawn between the workflow agents that communicate in the language of the task (e.g.,
using terminology and actions of an EVA plan) and the communication agents that
translate the task language to the implementation language used by the APIs of
subsystems. Data exchange, transmission, etc. is handled by a middleware framework
called the Collaborative Infrastructure (Clancey et al. 2010a; Alena 2010). It includes a
distributed directory service, support for point-to-point message passing (transport
service), and publish/subscribe method of message passing (data distribution service).
There is currently no persistence of messages (store and forward), nor does it currently
support streaming.

As an example instantiation, consider the general architecture of OCAMS shown in
Figure 8.1. Five software systems (the NOMAD email system, Electronic Flight Note
system, SWRDFSH (an FTP program between ground and ISS computers), and
Microsoft Word and Excel are shown with their API. These APIs are “wrapped” by
dedicated communication agents (Comm Agent) implemented within the Collaborative
Infrastructure SOA, thus through this “dual-API” scheme in which the Comm Agents
serve as a secondary API for the application, the five applications become "services.”
The workflow agents are services, too, in this framework. Notice that the apps don’t
communicate directly, but interoperate through their comm agents.

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 48

Figure 8.1. OCA Management System (OCAMS) basic architecture. OCAMS is
a workflow application implemented as agents in a service-oriented architecture that
acting together enable information exchange and subsystem interoperability.

Applications of the MAA have involved a set of exploration systems that enabled
interoperability of robots, instruments (biosensors, cameras, geophone device), databases,
and software (metabolic rate interpretation, Email, Microsoft Office). The “interface”
consisted of natural language spoken alerts through headphones and loudspeakers, beeps
(e.g., to confirm commands), visual alerts on a standard computer GUI, a web-browser
science database integrating plans and data (called ScienceOrganizer), and commanding
through either GUI buttons or natural language voice commands through headphones or
computer microphones.

Because of the variety of interfaces, the ability to get and receive information or give
commands has to be decoupled from the processes that provide and process crew
requests. In effect this means that workflow capabilities must inter-operate with multiple
interfaces. In particular, every new component (e.g., a temperature probe) must at least
indirectly interoperate with auditory, visual, and spoken interfaces. Consequently, the
command functionality is not associated with the interface, but rather the agent
architecture provides a mapping of multiple interfaces to multiple programs that respond
to requests. Very simply, each interface has a dedicated Communication Agent, which
forwards requests to the appropriate Workflow Agents for processing. This functionality
with examples of interoperability required is illustrated by the EVA scenario (Section 4).

More specifically, for the case of voice commanding, processing occurs in three major
steps:

1) translating to and from natural language speech (i.e., a speech processing
application);

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 49

2) breaking down or reassembling the information/commanding request by
reformulating it in structured objects and relations that represent the data and
commanding functions provided by different subsystems (or other workflow
agents);

3) translating the request to the language of the subsystem APIs (comm agents).

By comparison, a conventional GUI more directly maps data and commands to the
visible menus and displays, usually through code associated with the interface itself.
Subsequent sections provide details of how MAA is applied to create exploration systems
with interoperating components.

8.1 Logical	
 Design	
 of	
 a	
 Workflow	
 System	

Table 3 provides a systems design perspective of the MAA, showing how planned EVA
scenarios (level I) are formalized as capabilities people have for getting information and
controlling systems through a command language (level II), which in turn is processed by
workflow agents interact with each other to convey, transform, and assemble messages
(level III), which when suitably packaged are conveyed as structured objects to special
communication agents that translate the request into the parameterized language of an
external system API (level IV), which then further processes the system function to
retrieve data and/or control an external hardware or software system (level V), which
then looks up stored data and/or takes an action modifying its state according to the
command (level VI).

Table 3. Exploration System Design Partitions in the Mobile Agents Architecture

Level System Layer MAA Constructs Representational

Units
I Scenario EVA Plan: Activity

Schedule & Route
World model shared
by agents

II Human-System Interactive
Functional Capabilities, including
I/F and Services

Command Language Grammar with
Variables and
Constants

III Workflow Brahms Workflow
Agents

Tell/Ask Message
Exchange

IV Workflow Interface Communication
Agents

Mapping: Structured
Objects <–>
Functions

V Component Interface API Functional I/F
VI Component Subsystems External System Bus-level Control &

OS

This layer representation is logical in the sense that it conceptually relates different
aspects of a system’s design. In particular, a scenario of course is not a component; in
practice, MA field scenarios consisted of: 1) network configurations for hardware and
software included in a prototype exploration system (e.g., robot, email, camera,

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 50

databases), 2) A “script” describing EVA goals and plans including routes with
waypoints and scheduled activities to be performed at different sites using certain
equipment, and 3) Desired workflow functions (e.g., schedule alerts, automatic creation
of science database and web pages, email notifications to remote scientists). System
design and development was strongly organized by the EVA script, however voice
commanding functions enabled modifying the plan during the EVA, effectively using the
pre-formalized plan as a menu of activities that could be skipped, reordered, carried out at
different locations, and extended in time. In the runtime system, the scenario is
formalized internally as an EVA Plan, referenced by the workflow agents.

The logical layer description also glosses the design of the workflow system itself:

− The workflow agents were physically distributed on multiple computer platforms
communicating wirelessly. Each platform consisted of a network of agents,
communicating with one or more component subsystems connected to that
platform with cables or using Bluetooth.

− The agents themselves organized into groups in the Brahms language, so for
example the “personal assistant” agent of each astronaut inherits common
properties and behaviors from the “personal assistant” group; thus, AstroOnePA
and AstroTwoPA are members of the AstronautPA group, with different
configuration files causing AstroOnePA to be instantiated (created) in Astronaut
1’s computer and AstroTwoPA to be created on Astronaut 2’s computer.

− The method of interacting between an API and a CA is not fixed, but varies

according to the constraints imposed by different components. For example, the
RIALIST voice commanding component (Dowding et al. 2006), which is
implemented in Prolog, uses the Prolog-based OAA (Open Agent Architecture by
SRI) and provides a Java API; consequently, the RIALIST CA12 (which straddles
RIALIST and Brahms workflow agents) uses programming libraries from both
the OAA and Brahms Java. In contrast, the ERA CA uses CORBA to interact
with the ERA API, which is written in C++.

Figure 8.2 shows how parts of the exploration system logically interact as a software
architecture, visualizing the different levels shown in Table 3 as they might occur in a
typical configuration involving a robotic system. Circles represent hardware or software,
except for the central circle which represents a network of workflow agent systems
running on multiple platforms. Workflow agents serve as the backbone connecting
subsystems. Connectivity is shown as an overlap of circles, in which two programs
interact: On the agent side “communication agents” (CA) receive TELL/ASK requests
from workflow agents; they then translate and transform these requests into suitable
parameterized functions provided by the APIs of external systems. These API functions
retrieve data from or control their associated systems (e.g., download images from a
camera).

12 This is called the Dialog Agent in the code, but RIALIST CA is used here to make explicit association
with RIALIST.

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 51

The workflow agents communicate in terms of “speech acts” that express goals—what
applications are supposed to do or the information they are requested to provide—in
terms of the objects, locations, and tasks of the work domain (e.g., “Tell me when my
metabolic rate is abnormally high given the work I am doing”; “Boudreau (robot), take a
picture of Astronaut 2.”). Speech acts are of two types: Conveying information (Inform)
and Requesting information or an action (Request). These speech acts may also be
referred to as “Tell” and “Ask.” For example, an agent may subscribe to another agent’s
services by a Request; an agent might publish a service by communicating it using an
Inform act.

A special agent associated with each hardware and software system being integrated (the
Communication Agent) mediates between the language of the work domain in which
speech acts are expressed, and the functional/data language of the component system
(i.e., its internal methods and data objects). Thus for example, an astronaut can give the
command “Scout, follow me” and the Scout rover’s operating system will begin using
data provided by a location device worn by the astronaut to control the rover’s motion—
effectively sustaining a dynamic goal-directed feedback interaction between the rover and
the moving astronaut (or more precisely, for example, the GPS device worn by the
astronaut).

Figure 8.2. Logical Design of Typical Agent-Based Systems Integration
Architecture, relating scenarios of system behaviors to networked hardware and
software systems. Circles represent people and hardware/software components, with
interaction made possible for the people by a language and for the components through
the interactions of an associated API and “communication agent” (CA). See text for
further explanation and compare to Table 3 and Figure 8.3.

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 52

Some external systems, such as robots, pass on commands to their own peripheral
systems (e.g., cameras, instruments) through internal APIs (e.g., in this manner SCOUT
configures and commands its camera to take a picture). Software subsystems can also
interact with both workflow agents and robotic systems. For example, in the
Collaborative Decision Systems (CDS) configuration (Pederesen et al. 2006), a goal-
directed planning system operated by people in the simulated surface habitat controls a
robotic system. Workflow agents can also access the planning system (e.g., to provide
data to the human operator which is useful for planning & controlling the robot’s
actions).

Conceptually, an overall system configuration is designed from the EVA scenario
requirements (level I), from which a voice commanding language is derived (level II),
which is in fact part of the speech processing program, itself just another external
software subsystem. (Note that the language used for voice commanding could also be
used for a visual, text-based interface or buttons on the spacesuit representing the
commands.) During the EVA, astronauts’ voice commands are relayed by the speech
system to the workflow agents, which consolidates, transforms, and translates required
data through other agents. Similarly coming from the other direction, any external system
can provide data that workflow agents transform into expressions for the speech system
to say over loudspeakers or to the individual astronauts, for example, to answer an
astronaut’s question directed at a particular robot, “ERA1, who are you following?”

Typically an agent designed to monitor and provide alerts about either desired or
anomalous conditions (e.g., a life support resource is low) will receive data regularly
from an external software system (through the API/CA interfaces) or will poll external
devices or other data processing systems. When the agent detects the condition of interest
(e.g., an exceeded threshold configured for a particular EVA), the agent will construct an
appropriate expression to be uttered by the speech processing system. This design has
been used for providing alerts about astronaut health, system health, and managing the
EVA plan (e.g., “Five minutes remain at this workstation”).

Figure 8.3 shows the same typical configuration, with the level numbers from Table 3.
Starting from the “outside,” all connected software and hardware systems are designated
as level VI, represented as shaded circles. (In the diagram the speech software system
and automated subsystem(s) are distinguished by name because they play special roles in
the logical design of the exploration system, explained further subsequently.) The
“external” hardware and software systems each have an API (level V), which interacts
with a communication agent (level IV). This is represented in the diagram as an overlap
between the external system and the workflow agent network.

Let’s return to the distinguished external subsystems, the speech and automated systems.
The astronauts are interacting with the speech system (which could be a natural language
text system on a visual display or in highly restricted form, a device with buttons
corresponding to commands). In the logical design, the astronauts’ behaviors (during an
EVA or while working in a habitat or spacecraft) correspond to the scenarios that

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 53

represent the desired and expected work processes. In practice, the scenarios are
formalized as plans on a timeline with location information (e.g., an EVA route and
schedule of activities) and available to one or more workflow agents.

In Figure 8.3 the robotic system has been generalized to be any “automated system,” by
which is mean a system that itself controls one or more subsystems. An example is a life
support system in a pressurized suit in the POGO 2007 configuration. In practice, an
operating system in the automated system translates and reconfigures commands coming
through the API in order to appropriately control its subsystems (e.g., to control the
motors of SCOUT so it moves to a designated waypoint). In this manner, the overall
exploration system design is hierarchical, though coordination originates through the
commands of people and goal-oriented subsystems (if any). As shown in the figure, these
commands may be conveyed indirectly through workflow agents (level III) or directly
through software interacting with automated systems.

Figure 8.3. Typical exploration system configuration (Figure 8.2) related to the
generic design layers (Table 3). The diagram illustrates the generality of the
architecture: Workflow agents integrate hardware and software subsystems. An
“automated subsystem” (VI) is itself an integrated system, and its subsystems can be
controlled through the workflow agents. Other distinguished subsystems are interfaces
with people, exemplified here by a speech system that provides language level, goal-
oriented access to information and system-wide control.

The management of automation to adhere to flight system rules lies outside the scope of
the agent-based systems integration architecture; the architecture provides a means for
interaction and communication among all subsystems by which control protocols may be
implemented. However, it must be stressed that all of the prototype configurations, from
which this architecture was derived, the scenarios (level I), language (level II), and
workflow agents (level III) were designed such that the overall system would operate
deterministically, always under human control. Specifically, voice commands were

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 54

designed to facilitate accomplishment of the work plan, directly control all external
systems, including configuring and disable/enabling every automated system (e.g.,
modify alerts, tell a robot to stop, change the EVA plan).

One of the MAA configurations (CDS05; Clancey et al. 2010b; 2011) enabled an
astronaut to control a rover through a goal-oriented planning system. In certain respects,
from the perspective of the astronaut natural language commanding is goal-oriented: An
astronaut requests information required for making decisions necessary for carrying out
his or her tasks. For example, appraising the capabilities and progress of automated
systems and remaining resources enables choosing among alternative methods for
carrying out a task. Voice commanding is also used to directly instruct devices and
robots, etc., to carry out subtasks or to assist. For example “download photographs”
means not just to transfer them from the camera to a drive but to send them to a database
agent and properly log the associated location, time, and contextual data, deploying
devices, carrying tools. The agents must interact among themselves to gather and
represent the necessary data. An important research opportunity is to experiment further
with goal-oriented planning systems that interact directly with automated systems and
indirectly with other components of the exploration system through workflow agents.

8.2 Natural	
 Language	
 Contrasted	
 with	
 Data	
 and	
 Command	
 Displays	
 	

In exploration systems developed with MAA, people use natural language to make
requests for information and give commands that require agents to pull data from
multiple sources and transform it (e.g., “What has been the maximum amp load in the
habitat this morning?” “Scout, take a picture of this site.”) In using voice commanding
(as opposed to standard computer displays) the system designers were able to focus on
what astronauts on EVA or in a habitat actually wanted to know or do at given moments.
That is, the system was designed to integrate data and provide information rather than
simply display pieces that people would be required to find in different windows and put
together themselves.

It referring to the modality of an interface, we might list the alternatives as visual,
auditory, tactile, and gestural. However, although voice commanding uses auditory
signals, it refers to a representational level, not just a sensory modality. In this respect,
we should be wary of calling voice commanding an “interface” as if it may be directly
compared to visual displays. Rather the most direct comparison is to NL text input and
presentations on a display. The display is the modality; NL is the representational
expression of the interface.

Natural language is a unique way of specifying what you want to know or have
accomplished:

− NL interactions are expressed in terms of information and action; most visual
displays are simply unorganized collections of words that people must assemble
to get answers or issue commands.

− Voice commanding integrates data to answer questions useful for understanding
situations, decision making, and controlling systems.

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 55

− Easily made available anywhere anytime (except extremely noisy environments)
via wireless headset—minimal local apparatus, no visible displays, keyboards, or
even touch screens required.

The MAA provides this functionality by enabling arbitrary system integration through
software agents that transmit, translate, and assemble data on demand for storage,
alerting, and control. For example, to execute “Scout follow me” agents continuously
retrieve and transform location parameters for commanding the robot so it tracks the
astronaut.

The design constraints imposed by NL voice commanding have several advantages for
surface systems architecture research: 1) Ensures that the functionalities developed are
those that are useful in (simulated) mission contexts (vs. asking, what is all of the data
available and how can we organize it on the screen), and 2) Leads to exploring in
different scientific and practical contexts the advantages of voice commanding, that is,
getting information and giving commands without having to manipulate an interface.

Natural language is of course how people normally communicate with each other. A
hypothesis of this research is that NL would be preferred for communicating with
software and hardware systems. NL is not necessarily the only method of interaction we
want to use; however, the advantages listed above made it an obvious candidate for
managing workflow during EVAs.

The most salient examples of EVA “workflow” are task-oriented, focusing on specific
flow of data, commands, and work products (e.g., a route plan); these tasks are part of an
activity in performing an ongoing role (e.g., being the navigator in a pressurized vehicle).
However, not all workflow (and perhaps not most) involves a frequent or continuous flow
of data/commands/work products to and from people. Information may be provided as an
alert to astronauts when an anomaly occurs, requested by people to troubleshoot an
apparent problem (e.g., “Boudreau, who are you following?”), requested as a periodic
status check (e.g., “What is astronaut-2’s current activity?”), occur at stages through the
work process (e.g., “call this waypoint 4”), and may involve changes to the ongoing work
plan (e.g., “extend the current activity by 10 minutes”).

By virtue of the nature of voice commanding during activity, interpretation and proper
response often requires context-sensitive integration of information and/or construction
of appropriate commands. For example, the automated biomedical monitoring system
(POGO 2007) prompts astronauts to adjust their EVA plan according to ongoing
measurements of metabolic rate and resources, which are directly affected by their task-
oriented behaviors. That is, context sensitivity is an inherent requirement in order to be
responsive to every astronaut request for information or command. Additional flexibility
is gained by allowing indexical constructs that reference time, location, and object, such
as “since 11 am,” “here,” “your location,” “the last voice note.” Resolving the meaning of
such utterances often require the agents to request and relate data from different
subsystems (e.g., location records, activity plan, science database). In effect, astronaut
requests are broken down and passed along to other agents as messages, eventually

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 56

arriving at an API of a hardware or software system that can provide the data or carry out
the request.

8.3 On-­‐Demand	
 Workflow	
 Automation	
 Contrasted	
 with	
 Command	
 Sequencing	
 	

It is worth noting how voice commanding relates to spacecraft command sequences. In
fully automated “command sequences” uplinked to programmed robotic systems (such as
the Mars Exploration Rovers), consideration of timing and system interactions are
critical, such as managing power and device-specific operating constraints (e.g., warming
up an instrument before it is used). For systems like MER, these individual and overall
system constraints are anticipated and managed during the operations planning and
uplink preparation process on Earth. By contrast in surface exploration scenarios, voice
commands are on-demand requests that may occur at any time, rather than a batch
uplinked and executed in the future (though of course any voice command may specify a
future time).

Moses (2010b) summarized this distinction between control required by a device with
components whose individual operation is mutually constrained and a system of multiple,
semi-autonomous entities as follows: “Networks can be even more flexible than layered
system and certainly tree-structured ones, but are often not easily controlled…. The
[network] approach emphasizes cooperation in organizations through lateral alignment of
groups at the same layer.” This lateral alignment in MAA is represented by the workflow
backbone.

So for example, with respect to MER, an astronaut could be standing near MER (or in a
pressurized rover or habitat) telling the robotic system what to do (e.g., to take a
microphotograph, do spectral imaging, go to a waypoint), and receive the data back in
due course through the agent network. (Indeed, the measurement might have been
programmed by an agent to answer a more abstract question posed by the astronaut, and
the resulting data would be interpreted accordingly.). In this case, MER’s communication
agent (at level IV) would be responsible for managing simultaneous operations, very
likely invoking planning and sequence testing systems (similar to those used for
programming MER uplinks) that would be real-time, computational services available as
agents in the exploration system on the surface.

In the MAA system configurations developed to date the various components are either
operating independently (e.g., GPS, biosensors, web recorder) or only activated by direct
control (e.g., a camera). Conflicting controls are possible (e.g., an astronaut is driving a
vehicle when someone else commands it to go to a waypoint automatically); these must
be anticipated and modes or override protocols provided.

In general workflow backbone agents are acting mechanically to forward, translate, etc.
data and command requests. Relevant control issues include efficiency (e.g., an agent
that becomes a bottleneck) and scale (e.g., bandwidth available is exceeded forcing
queues that result in processing delays). Agents generating alerts require more careful
design and some degree of situation awareness to be relevant (e.g., not repeating the same
alarm in a distracting manner) and to avoid interference (e.g., interrupting people while

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 57

they are speaking to each other). Such operational pragmatics are discovered through
experiments with prototype systems in authentic work situations, such as those conducted
in the Mobile Agents project at MDRS (2002-06).

8.4 On-­‐Demand	
 Workflow	
 Automation	
 Contrasted	
 with	
 Conventional	
 Office	

Workflow	
 Systems	
 	

The term “workflow automation” has been chosen to characterize the overall
computational service provided by the MAA. This term was chosen because some
aspects of the communications among agents and applications are similar to COTS
workflow automation/management systems (for examples and characterization see
Clancey et al. 2008). These tools focus primarily on tracking the execution of tasks by
people and automated systems with respect to a relatively fixed workflow process
structure, such as processing a customer’s purchase order. One can map out in advance
all of the players, subsystems, and process steps including conditional flows (e.g.,
handling backorders).

Certain aspects of designing an MAA system have a fixed, well-defined nature like
workflow tools, but the overall nature of the work system being created through agent-
based integration and the services provided to people are different. Indeed, the MAA
could be applied in office environments to improve an employee’s situation awareness
and capability to manage work, exemplified by OCAMS’s orchestrating file transfer
between the ISS crew and ground support (Clancey et al. 2008).

Here is a summary of what MAA workflow automation accomplishes and how it
provides services different from conventional office workflow tools:

• Services adapt to the changing context in which a human is working (e.g., in a
habitat vs. walking on EVA)

• Agents are designed to cope with missing or additional services according to the
current configuration

• Information is not merely transmitted in pipes connecting applications, but rather
actively interpreted, assembled, transformed, packaged, etc.—in this respect the
automation is not merely in flowing work from one subsystem to another as in
conventional office systems, but in doing aspects of the work.

• The communication agents provide a way to integrate arbitrary hardware and
software systems so they are “agentified,” speaking the same language; most
office workflow tools focus on software integration and are conventionally
designed to interact with the subsystem APIs directly, rather than bringing them
to a common level of communication.

• Voice commanding replaces the vast majority of conventional typing and
interface manipulations that office systems require.

8.5 Agent	
 Communication	
 in	
 the	
 Workflow	
 System	

The ability to communicate data and commands among components lies at the heart of
the agent-based workflow approach. The method for achieving this communication using

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 58

the Mobile Agents Architecture evolved through experience, usually to make integration
with existing systems easier and more robust. Different methods continued to be used,
according to the constraints imposed by different components.

In particular, the integration of the speech recognition and generation system (i.e.,
RIALIST, a research version of the now commercially available NUANCE system,
Dragon Naturally Speaking) with the Brahms agents demonstrates how the MAA
accommodates integration with other open architectures using agents. This appendix
briefly describes how the method for inter-agent communications was improved over
time and specifically how SpeechActs were used.

Originally, in Desert-RATS 2002 agents were running on only one platform, so
distributed communications were not necessary. Simulated EVAs at the Mars Desert
Research Station (MDRS) in Utah in 2003 involved three platforms (two astronaut
computers and the habitat communicator’s computer, HabCom); “proxy agents” were
introduced for communicating with an agent on another platform (Figure 8.4). The proxy
agent would be configured with the network address of the corresponding agent.

This method proved awkward, requiring a proliferation of proxy agents with fixed
configurations, and was replaced at MDRS 2004 by a centralized directory service using
KaOS and a program called the Location Manager. KAoS initially used CORBA as its
transport layer; that is, Brahms workflow agents on different platforms communicated
over CORBA. In later versions of KAoS this transport layer was replaced with TCP/IP.
In the CI, which replaced KAoS in the MAA for the OCAMS implementation, CORBA
data structures are used for ComActs, but TCP/IP is used for remote agent
communications.

Figure 8.4. MDRS 2003 Example of Distributed Communications Using Proxy
Agents. Initial design of MAA enabled agents to communicate with agents on another

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 59

platform by communicating with a local proxy for remote agents, e.g.,
Hab_AstroOnePxA located on the AstroOne platform was the proxy agent for the
HabCom Agent located on the HabCom platform.

In this example shown in Figure 8.4, Astronaut One informs his personal agent
(AstroOnePA) that he is ready to start sampling a particular area, referring to a named
activity in the EVA plan. This statement is formalized as a SpeechAct13 communicated
from RIALIST (via the copy of the RIALIST CA running on Astronaut One’s computer,
called the AstroOneDA) to AstroOnePA. The AstroOnePA agent communicates this
information to the HabComPA (via the proxy, Hab_AstroOnePxA), which sends an email
to the remote science team to inform them that this activity has begun (keep in mind that
the point of every MA field prototype was to demonstrate capabilities, not to advocate
particular EVA or support protocols). HabCom then creates a new SpeechAct to inform
the Astronaut that the information had been appropriately logged and conveyed. This
SpeechAct follows a reverse path to the AstroOnePA via the AstroOne_HabPxA proxy,
which upon receiving such a communication, the AstroOnePA is designed to transmit the
SpeechAct to the RIALIST CA, causing a computer-generated voice to utter the
statement through the astronaut’s headphone. Simultaneously, the HabComPA has
communicated the same utterance to Astronaut Two, so she would be informed as well
that their common activity had begun (in this EVA the astronauts are by agreement
working together; in other field tests the astronauts performed different tasks within a
common EVA plan). Finally, notice that by design the AstroPA kept Astronaut One
informed while it was waiting for a response for HabCom; again, the existence and
frequency of these reminders are part of the workflow system’s design, not the MAA
itself, and were changed through experience, with the preference being to allow each
astronaut to configure, enable, and disable each kind of alert.

In this example, on receiving the voice command from RIALIST, the AstroOneDA
created the following SpeechAct:

SpeechAct(
 sender: AstroOne
 receiver: HabCom
 messageType: "request"
 messageAction: "StartActivity"
 messageSubject: "SampleFossilArea"
 replyTo: AstroOneDA)

HabCom transmitted the following SpeechAct in response to AstroOnePA:

13 The format shown here was actually introduced in MDRS 2004. For Desert-RATS 2002 and MDRS
2003, speech acts were represented in the Brahms language as an attribute “speechact” that pointed to a
Brahms object whose “beliefs” represented the content of the speech act (Sierhuis, 2001). Starting with
MDRS 2004, SpeechActs were introduced into the Brahms language itself, as shown in this example.
Consequently, the syntax of the MDRS 2003 implementation was more complicated than is shown here,
but represented the same information.

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 60

 SpeechAct(
 sender: HabCom
 receiver: AstroOnePA
 messageType: "inform"
 messageAction: "StartActivity"
 messageSubject: " SampleFossilArea "
 responseTo: <Request SpeechAct>)

Here the <Request SpeechAct> identifies this as a response to the initial request, and
enables the AstroOnePA to detect that the request has been processed. Accordingly the
AstroOnePA passes the speech act on to the RIALIST CA:

 SpeechAct(
 sender: HabCom
 receiver: AstroOneDA
 messageType: "inform"
 messageAction: "StartActivity"
 messageSubject: " SampleFossilArea "
 responseSpeech: "Activity SampleFossilArea started"
 responseTo: <Request SpeechAct>)

Starting in the MDRS 2005 configuration, tracking open requests was handled by the
Plan Assistant group, which had an agent instance running on each platform (e.g.,
AstroOnePlanAssistant). On receiving a request (of the type that required tracking), a
personal agent would convey the SpeechAct to the corresponding Plan Assistant agent,
which would create a “task” object and schedule the task on the Task Queue. This
enabled astronauts and components to asynchronously create multiple requests (that is,
not waiting for a request to be processed before making another request). The Plan
Assistant processed the queue using simple FIFO ordering, conveying the request to the
appropriate agent specified in the SpeechAct. In particular, communications from
AstroOnePA to HabCom would go through the Plan Assistant, which the HabCom would
pass on to its own Plan Assistant. This design enabled the primary workflow agents
(astronaut personal assistants and HabCom) to be very responsive in receiving and
acknowledging requests, while processing them sequentially as time allowed. The design
also allowed the overall workflow system to proceed robustly, enabling wireless
communications to be degrade or be temporarily lost, and for agents to use processing
time required to carry out a task.

As mentioned, the RIALIST speech system is implemented using the OAA framework
and doesn’t use CORBA. More typically, MA components such as the Scout rover used
CORBA. For example, here is the speech act requesting Scout to follow an astronaut,
created in response to “Scout, follow me” (or another named astronaut).

SpeechAct(
 sender: AstroOne
 receiver: ScoutPA

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 61

 messageType: "request"
 messageAction: "FollowMe"
 messageSubject: "AstroOne"
 replyTo: AstroOneDA)

The ScoutPA conveys this speech act to the ScoutCA, which calls a CORBA method
provided by Scout’s API. This method is essentially a CORBA object that calls a C++
method in Scout software to perform the intended action. The CORBA object includes a
CallBack method for Scout’s API to return the answer (status X = ok; X is turned on,
etc). The ScoutCA then creates a reply SpeechAct and sends it back to the ScoutPA,
which returns it to the AstroPA, which returns it to the RIALIST CA with the utterance,
“Scout started following Astronaut One.” The personal agents accordingly tell their Plan
Assistant agents that the task is complete.
The examples given here extend directly to all of the functionalities demonstrated in the
MA field experiments, including logging science data, naming locations, downloading
photographs from a camera, taking panoramas, and modifying the EVA plan.

9 Bibliography	

Alena, R. 2010. LSS Software Architecture Study: Real-time Avionics Middleware

Architecture (Phase 2 Trade Study). NASA Ames Research Center.
Clancey, W. J., Sierhuis, M., Alena, R., Berrios, D., Dowding, J., Graham, J.S., Tyree,

K.S., Hirsh, R. L., Garry, W.B., Semple, A., Buckingham Shum, S.J., Shadbolt, N. and
Rupert, S. 2005. Automating CapCom using Mobile Agents and robotic assistants.
American Institute of Aeronautics and Astronautics 1st Space Exploration Conference,
31 Jan-1 Feb, 2005, Orlando, FL. NASA Technical Publication 2007–214554.

Clancey, W. J., Sierhuis, M., Alena, R., Dowding, J., Scott, M., van Hoof, R. 2006.
Power system agents: The Mobile Agents 2006 field test at MDRS. Mars Society
Annual Convention. Available:

 http://homepage.mac.com/wjclancey/%7EWJClancey/ClanceyMarsSoc2006.pdf
Clancey, W. J., Sierhuis, M., Dowding, J., Berrios, D., Scott, M., van Hoof, R., Delgado,

F., Tourney, S., & Kosmo, J. 2007. Mobile Agents Integrate Astronauts, Rover, And
Mission Support In Desert-Rats Mission Simulation. Mars Society Annual Convention
(abstract). Los Angeles.

Clancey, W.J., Sierhuis, M., Seah, C., Buckley, C., Reynolds, F., Hall, T., & Scott, M.
2008. Multiagent simulation to implementation: a practical engineering methodology
for designing space flight operations. In Engineering Societies in the Agents’ World
VIII. Lecture Notes in Artificial Intelligence (Artikis, A., O’Hare, G., Stathis, K., &
Vouros, G., Eds.), Vol. 4995, pp. 108–123. Heidelberg: Springer.

Clancey, W.J., Sierhuis, M., Nado, R., van Hoof, R. 2010a. Collaborative Infrastructure
Conceptual Overview. TM10-0001 NASA Ames Research Center, unpublished.

Clancey, W.J., Sierhuis, M., Nado, R., van Hoof, R., Lowry, M., Jones, G., & Dvorak, D.
2010b. Lunar Surface Systems Software Open Architecture Study. NASA Technical
Publication 2007–216041.

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 62

Clancey, W. J., Lowry, M., Nado, R., Sierhuis, M. 2011. Software Productivity of Field
Experiments Using the Mobile Agents Open Architecture with Workflow
Interoperability, IEEE Space Mission Challenges for Information Technology (SMC-
IT), August 2011, Palo Alto, pp. 85-92.

CxP 70022-01, 2006. Constellation Program Command, Control, Communication, and
Information (C3I) Interoperability Standards Book, Volume 1: Interoperability
Specification. NASA Baseline Report, 18 December.

Dowding, J., Alena, R., Clancey, W. J., Graham, J., and Sierhuis, M. 2006. Are you
talking to Me? Dialogue systems supporting mixed teams of humans and robots. AAAI
Fall Symposium 2006: Aurally Informed Performance: Integrating Machine Listening
and Auditory Presentation in Robotic Systems, October, Washington, DC.

Freund, T. & Niblett, P. 2008. Enterprise Service Bus (ESB) Interoperability Standards.
IBM. Available: http://www.ibm.com/developerworks/library/specification/ws-esb-
interop/index.html

HIMSS-Electronic Health Record Vendors Association (EHRVA). 2005. White paper on
interoperability. Available: http://www.himssehra.org/docs/
EHRVAExpandedPositionStatementfinal042905.pdf.

Hirsh, R., Graham, J., Tyree, K., Sierhuis, M., Clancey, W. J. 2006. Intelligence for
human-assistant planetary surface robots. In A. M. Howard and E. W. Tunstel (Eds.)
Intelligence for Space Robotics, pp. 261-279. Albuquerque: TSI Press.

Jennings, N. R., Sycara, K., and Wooldridge, M., “A Roadmap of Agent Research and
Development,” Autonomous Agents and Multiagent Systems, Vol. 1, 1998, pp. 7-38.

Johnson, A. W., Newman, D. J., Waldie, J. M., Hoffman, J. A., “An EVA Mission
Planning Tool based on Metabolic Cost Optimization”, SAE 2009-01-2562, 39th
International Conference on Environmental Systems, Savannah, GA, 12-16 July 2009.

Johnson, A. W. 2010. An Integrated EVA Mission Planner for Future Planetary
Exploration, M.S. thesis, Dept. of Aeronautics and Astronautics, Massachusetts
Institute of Technology. Available: http://dspace.mit.edu/handle/1721.1/59560

Kukla, C. D., Clemens, E. A., Morse, R. S., and Cash, D. 1992. “Designing effective
systems: A tool approach.” In P.S. Adler and T.A. Winograd (eds.), Usability: Turning
Technologies into Tools, Oxford University Press, New York, pp. 41-65.

Malin, J. 1999. Using Hybrid Modeling for Testing Intelligent Software for Lunar-Mars
Closed Life Support. Journal of Modeling and Simulation-e 9, Available:
http://www.tms.org/pubs/journals/JOM/9909/Malin/Malin-9909.html

Moses, J. 2010a. “Architecting engineering systems.” In Ibo van de Poel and David E.
Goldberg, (Eds.) Philosophy and Engineering: An Emerging Agenda, Philosophy of
Engineering and Technology Series, Vol. 2, 1st Edition, pp. 275-284. New York:
Springer.

Moses, J. 2010b. “Complexity, Flexibility and Layered Architectures,” NECSI and MIT
ESD Seminar Series, MIT, December 17.

Muscettola, N., Nayak, P. P., Pell, B., & Williams, B. C. 1998. Remote Agent: to boldly
go where no AI system has gone before. Artificial Intelligence 103 (1-2) 5:47.

Network Centric Operations Industry Consortium (NCOIC). 2009. NIFTM Solution
Description Reference Manual (NSD-RM), version 2.1, November. Available:
https://www.ncoic.org/technology/deliverables/nif/

Nii, H.P. 1986a. Blackboard systems. AI Magazine 7(2), 38–53.
Nii, H.P. 1986b. Blackboard systems. AI Magazine 7(3), 82–106.

Clancey & Lowry: LSS Software Architecture Study: Interoperability

	
 63

Pedersen, L., Clancey, W. J., Sierhuis, M., Muscettola, N., Smith, D.E., Lees, D., Rajan,
K., Ramakrishnan, S., Tompkins, P., Vera, A., Dayton, T. 2006. Field demonstration
of surface human-robotic exploration activity. AAAI-06 Spring Symposium: Where no
human-robot team has gone before.

Peña, J., Hinchey, M. G., Ruiz-Cortés, A., and Trinidad, P. 2007. Building the Core
Architecture of a NASA Multiagent System Product Line. In Lin Padgham and Franco
Zambonelli (Eds.) Agent-Oriented Software Engineering VII, 7th International
Workshop, AOSE 2006, Hakodate, Japan, May 2006. Berlin: Springer, Lecture Notes
in Computer Science, Volume 4405, pp. 208-224.

Rader, S. 2008. Constellation’s Command, Control, Communications, and Information
Architecture (C3I) Overview. Software & Avionics Integration Office (SAVIO)
PowerPoint presentation, December 11.

Warren, S., Craft, R. L., Parks, R. C., Gallagher, L. K., Garcia, R. J., & Funkhouser, D.
R. 1999. A proposed information architecture for telehealth system interoperability.
Proceedings of the First Joint BMES/EMBS Conference. Sandia National Labs,
Albuquerque, NM. Available:

 http://www.osti.gov/bridge/product.biblio.jsp?osti_id=5692
Wooldridge, M. 2002. An Introduction to MultiAgent Systems. Chichester, UK: John

Wiley & Sons Ltd.
Wooldridge, M., and Jennings, N. R. 1995. "Intelligent Agents: Theory and Practice."

Knowledge Engineering Review, 10(2), 115-152.

