Model Based Analysisand Test Generation for Flight Software

Corina S. Pasareanu, Johann Schumann, Peter Mehlitg Milvry Gabor Karsai, Harmon Nine, Sandeep Neema

NASA Ames Research Center ISIS, Vanderbilt University
Email: name@nasa.gov Email: {gaborhningsandeep@isis.vanderbilt.edu
Abstract languages with higher-level abstractions that are wedivkm

and convenient for domain engineers. Flight control soféwva
We describe a framework for model-based analysis andiave been developed for various vehicles using Matrx-X

test case generation in the context dieterogeneousiodel- and MathWorks’ Simulink/Stateflow, which supports models
based development paradigm that uses and combines Matbased on dataflow diagrams and hierarchical finite state
Works and UML 2.0 models and the associated code generanachines.
tion tools. This paradigm poses novel challenges to amalysi In spite of the popularity of model-based software engi-
and test case generation that, to the best of our knowledgeeering (in the style of the two leading products mentioned
have not been addressed before. The framework is based afove), the current approaches to the Verification and ¥alid
a common intermediate representation for different madeli tion of model-based software are still very limited (see,e.g
formalisms and leverages and extends model checking andathWorks’ DesignVerifier and Section 5). Furthermore, the
symbolic execution tools for model analysis and test casearticular characteristics of the model-based paradigmgus
generation, respectively. We discuss the application of ouheterogeneousnodels poses the additional challenges of
framework to software models for a NASA flight mission. handling the different semantics of the modeling formaism

while keeping the analysis tractable, and providing medns o
1. Introduction validating the model analysis results on the code that is gen

erated from the models. To the best of our knowledge, these

This paper reports on an on-going project at NASA Ames challenges are not addressed by any existing approaches or
whose goal is to develop automated techniques for errotools.
detection in the flight control software for the next manned In order to study integration issues between components
space missions. Such software needs to be highly reliablélescribed using different modeling formalisms, we have
The developers of the flight software chose an innovativéleveloped a framework that is based on a comrimer-
heterogeneoumodel-based paradigm that combines model-nediate representatiofor different models and that lever-
based design using MathWorksvith UML 2.0 statechart ages existing formal verification and test case generation
models, together with the associated code generation. tooléchnologies developed at Ames [6], [17]. The framework
The MathWorks tools are used to develop math-intensivéims to provideautomatedechniques for analysis and test
control software, while the UML-based tools are used for thecase generation for UML and Simulink/Stateflow models of
rest of the software, including flight, ground, and simulati Mission-critical systems and to provide seamless integrat
software. with model based development frameworks.

The flight software will be complex, where errors can We describe how we applied our framework to parts of
be caused by interactions among many components, whodéee flight control software that is being developed for a
dynamic behavior will be described using different model-NASA mission. Although we make our presentation in the
ing formalisms. The model-based approach not only procontext of a NASA project, we believe that our work should
vides leveraged generation of code for current and futurde relevant to other complex, safety critical model-based
platforms, but also enables early life-cycle (design stagesoftware that is built from heterogeneous components.
detection of errors because the software models are both The rest of the paper is organized as follows. In the next
formal and abstracted from some details of the target codesection we give some background on modeling languages

In the past two decades the avionics software communitand associated tools. We then describe the our model based
has increasingly applied model-based software engingerinanalysis and test case generation framework (Section 2),
where models are used to specify software designs, and oftdallowed by a detailed description of the framework com-
executable code is generated automatically from the modPonents: model transformation (Section 2.1), model aiglys
els. The models are expressed in domain-specific modelingSection 2.2) and test case generation (Section 3). We then

1. http://www.mathworks.com 2. http://www.matrixx.com

wous smigvon well defined, typed interfaces (encoding the services pro-

i vided/required by a component to/from its environment).
The common representation is equiped with a communica-
tions infrastructure to support component interactiona. A
extensible library of connectors captures the differepiety
of communication policies of interest in the target flight-
software systems.

As mentioned, the common representation is specially
tailored for analysis and it is tightly integrated into the

o T LA A5 AT O

Mudei T e T T e
ErTHEON: g0 2, : Eomponanss : AEys s #Td

' iy Moy H TRS[058 GATIEOOT
Cl Smulks | TrEns o Foon i O R
SEETon [T

H Moda H
| Tramaomamon |

analy s Emulation
dava FatnAndsr

umL

Teat ana ration
simbolie PatAndsr

Coda Gata@moT i — Cows Tasmrg

g i JPF verification tool-set?]. This enables us to leverage the
verification technologies of JPF to validate and check for
Figure 1. Model Based Analysis and Testing integration problems in heterogeneous models.

Properties to be checked with JPF are given in terms
) o) of assertions or safety monitors encoding software reguire
describe the application of our framework (Section4),tela ments, flight rules, etc. The error traces and the debugging

work (Section 5) and conclusions (Section 6). information reported by JPF are used by the developers to
correct the models.

2. Framework for Model Based Analysis and Once the developers have enough confidence in the mod-

Testing els, they can generate test cases (test vectors and test se-

quences) encoding the input values and the expected outputs
Figure 1 depicts our framework that takes models created he user can also specify the desired code coverage criterio
using different modeling environments and enables theito be achieved by the test cases (e.g., state, transitidm, pa
analysis (model checking?] and test-case generation) in coverage, or some other, user-specified coverage criteria)
a common, neutral environment. Our framework targetsAlso test cases for testing of user defined, domain-specific
Mathwork’s Simulink/Stateflow tool and Rhapsody’s UML properties can be generated.
modeler, because this heterogeneous combination of mod- Test cases can be fed back to model simulators (e.g.,
eling tools is used within our NASA project and it is Matlab’s simulator) or can be used to test the actual code
also a good representative of a heterogeneous modelingenerated from the models. The code does not need to
environment. We focus in this paper on the analysis andbe auto-generated, but we assume a close correspondence
test case generation of hierarchical state-machine modelsetween models and code.
(i.e. Simulink/Stateflow and UML), since they form some Test cases can be used for the following activities: test-
of the most complicated parts of the flight software that weing the code, validating the model transformation (e.g. by
analayzed (e.g. mode logic). running them against Matlab’s simulator), and validating
We note however that our framework also provides au-the code generators. The model based test cases can reveal
tomated support for translating, executing and analyzingproblems such as un-covered code, undesired discrepancies
Mathworks’Simulink data-flow models and Embedded Mat-between models and code, etc. We believe that such testing
lab (eML) code (out-of-scope for the current paper). should complement other analysis and testing activities at
The framework is based on aommon intermediate the code level.
representation(a safe subset of Java) for flight-software Model execution semantics are implemented in the
models produced using different modeling environmentsSt at eMachi ne class that is used for analysis or simu-
This representation is meant to bridge the gap between thiation. St at eMachi nes have to provide aun() method
semantics of different modeling formalisms via translgtin that implements a driver for the state machine, that usually
into a common format; this representation is executable antbops until appropriate end conditions are detected. The
amenable to simulation, visualization and analysis usinglriver maintains a set of active states and a set of enabling
existing powerful V&V and test-case generation technologyevents, and it systematically goes through the set of events
developed at NASA Ames. to advance the state machines to the next set of active
The framework usesnodel transformation techniqu¢p states, using thet ep method. One can obtain different
to translate models into the common representation, baseskecution semantics by customizing this driver. Off-the-
on meta-models built for Simulink/Stateflow and UML state- shelf, the framework includes two implementations. The firs
machines respectively. one is suitable for model checking, and is designed to keep
The analysis of heterogeneous models is driven by thenodel and program states as closely aligned as possible. The
software architecture that defines the system in terms ofecond implementation allows stand alone execution autsid
components and connectors. Components, modeled usiri’F, and can be used for - possibly interactive - simulation.
different formalisms, are running concurrently andhaveThe framework also has preliminary support for running

multiple (homogeneous and heterogeneous) state machinesThe models, as imported from Simulink/Stateflow, do
concurrently. not contain sufficient information for the translation. In
We are working on equipping the common representatiorparticular, data types of internal signals are missingype
environment with a communications infrastructure to sup-inference analyzecalculates this information. It starts from
port interactions between heterogeneous components- Intethe input 'ports’ of the toplevel model, which must be typed,
actions will take place through explicit, typed componentand propagates their type through the dataflow operators
interfaces. Specific communication policies governingéhe used in the Simulink model. Every elementary operator in
interactions will be captured by connectors that will imta the Simulink diagram is well-defined, so the output data
ate the generic communications infrastructure as requiyed type of the operator instance can be easily determined. By
a targeted application. Since connectors provide apjicat forward tracing the dataflow graph our algorithm computes
independent interaction mechanisms, we will equip thehe data type for each intermediate 'signal’.
framework with an extensible library of connectors that Threemodel translatorsfor Simulink, Stateflow and Em-
can be reused across applications. For example, we hadedded Matlab, respectively, translate the imported nsodel
already added support for connectors that model proceduri@to a language-independent executable format, SFC (a data
calls and event-based synchronization. We plan to extengtructure similar to Abstract Syntax Trees used in comgjler
the conncetor library towards domain-specific protocold an The first two of the generators were implemented using
standards, such as ARINC 653, an RTOS API Specificatiograph transformations, as discussed above. Finallyode
with support for space and time partitioning in an Integtate printer converts the SFC data structures into a safe subset
Modular Avionics architecture, that will be used in the of Java.
context of our NASA project. This work is in a preliminary ~ The translated Simulink/Stateflow models follow the se-
phase and it will be performed in close collaboration with mantics as specified in the language documentation from
the developers of the Flight software, since the definitmm f Mathworks.
component inter-communication is still under active debat We note here that the model transformation component
among the development project. can perform several preliminary analyses on the imported
models, which are complementary to the analyses performed
by JPF and SPF. Specifically, we validate that the models
follow the MAAB guidelines [13] that constrain the models
to make them suitable for generating safe and efficient em-
The model transformation component of our frameworkbedded code. We also analyze the call graph of the generated
is used to translate various models into a common Javgode and verify that there is no infinite recursion (which
representation that is suitable for analysis. Model transf would lead to unbounded stack growth during execution,
mation is based on Model-Integrated Computing (MIC) [11],thus a catastrophic failure). The analysis takes advarifige
a technology for building domain-specific software devel-the fact that recursive calls (if generated at all), are glwa
opment tools, which is supported by a tool suite [10] thatprotected with conditions. Other verification activitiere a
includes a metaprogrammable model editor GME, a modelso possible, as the tool chain is built using open integac
transformation tool GReAT, and a software infrastructure f and XML is used for interchanging information between the
integrating model-based software development tool chainslements of the toolchain.
called OTIF. For UML, we are working on defining new model trans-
We have used the MIC tool infrastructure to build a formations using the XML Metadata Interchange (XMI), an
translation tool chain whose main task is to bridge the gafDMG standard that is commonly used for UML models.
between the analysis tools and the source Simulink/Stateflo
models. The model translators have been implemented 2. Model Analysis with Java PathFinder
graph transformation programs, where the input models are
treated as typed, attributed graphs. The type system of the JPF is an explicit state software model checker for Java
graphs is defined by a metamodel, which is constructed alsytecode programs, and includes its own Java Virtual Ma-
a UML class diagram (for details see [10]). chine (JVM) implementation that supports state storing and
Our translation tool chain includes the following elements matching. Given the well known scalability problem of
an import translator converts Simulink/Stateflow models software model checking, JPF is focused on finding defects
into a format compatible with the MIC tools. This translator and producing and analyzing respective error traces. Bgefec
uses Matlab’s API to access all necessary details of thean refer to non-functional properties like deadlocks aaizhd
Simulink and Stateflow models, and transcribes them into amaces, or can be defined by user-provided, application or
equivalent model for the translation process. This apgroacdomain specific property modules.
avoids the necessity to develop a parser to directly read The primary design goal of JPF is its extensibility, es-
Mathwork’s own and ever changing internal format. pecially to achieve the required scalability. In additian t

2.1. Model Transformation

mechanisms like partial order reduction and heap sym Ascent
metry, JPF provides an array of extension mechanism
to define alternative search strategies, implement comple

x

properties, abstract standard libraries using the Mode Ja P et it -®
Interface (MJI), observe system-under-test executiofinee —— —
state space branches, and to implement different bytecoc siblgnition{)]
execution semantics. For details see, e.g., [6]. ,J; foltitude =2 12091 § | oowont
First abort (altitude) LAS
. . . Stage
3. Test Case Generation with Symbolic ‘
PathFinder Stag? N [altitude >= 1.25]
” Abort
For model-based test case generation we use Symbol C Stoge. abort() Hig:::;tivel—
PathFinder [17], a recent extension to JPF that combine |asJemsm‘lry—J
symbolic execution and constraint solving for automatec stage2Sep() ==
test case generation. Symbolic PathFinder implements a
symbolic execution framework for Java byte-code. It can _ o
handle mixed integer and real inputs, as well as multi- Fartnomit i

threading and input pre-conditions.

Symbolic execution [12] is a well-known program analy- _. i
sis that uses symbolic values instead of actual data assinpu't:Igure Z'f Model of :the Ascent and EarthOrbit flight
and symbolic expressions to represent the values of progral'?rIases ot a spacecra
variables. As a result, the outputs computed by a program
are expressed as a function of the symbolic inputs. The state

of a symbolically executed program includes the (symbolic:)Sequences (e, sequences of test vectors) that are geeuian

values of program variables, a path condition(), and a to cover states or transitions in the models (other coverage

program counter. The path condition is a boolean formuIaSUCh as condition, or user-defined are also possible). This

over the symbolic inputs, encoding the constraints whieh th works by instructing Symbolic PathFinder to generate and

inputs must satisfy in order for an execution to follow the explore all the possible test sequences up to some user pre-

particular associated path. These conditions can be solvesdJeCIerd depth (or until the desired coverage is achieved)

(using off-the-shelf constraint solvers) to generate S and to use symbolic, rather than concrete, values for the
; . .input parameters.

test input and expected output pairs) guaranteed to eseerci _ .

(P P put pairs) g We have also customized SPF to print the generated test

the analyzed code. . ; .
Symbolic PathFinder implements a non-standard interpregases in terms of test drivers (for testing the auto-geadrat

tor for byte-codes on top of JPF. The symbolic informationCOde) and_in terms_ of simulation scripts; SPFs output can
is stored in attributes associated with the program data anBe customized easily for such purposes.

it is propagated on demand, during symbolic execution. The 1he models that we need to analyze perform complex
analysis engine of JPF is used to systematically generdte aﬁnathemancal cqmputaﬂons. To ge_nerate test cases for them
explore the symbolic execution tree of the program. JPF i§ymbollc _PathF|_nder_ uses JI?Fﬁatlve peersmechgnlsms
also used to systematically analyze thread interleavings a 107 modeling native libraries, i.e., to capturat h library

any other forms of non-determinism that might be presen{s"’\‘us‘h"’m‘,j to send thgm tﬁ thdel cons_tramtsolverts;. ;’:eds_amhe
in the code; furthermore JPF is used to check properties dgechanism was used to handle native code embedded in the

the code during symbolic execution. Off-the-shelf coristra models.

solvers/decision procedurefioco andl ASol ver [3] are

used to solve mixed integer and real constraints. We handid.1. Example

loops by putting a bound on the model-checker search depth

and/or on the number of constraints in the path conditions. We illustrate model based test case generation using the

Furthermore we have extended Symbolic PathFinder tstate-machine model of thAscentand EarthOrbit flight

handle input arrays of fixed size (in addition to inputs of phases of a spacecraft (Figure 2), where transitions are

primitive type). labeled with both events and guards on event parameters.
By default, Symbolic PathFinder generates vectors ofThe model has an error: there is an ambiguous transition

test cases, each test case representing input-outputrvecgoing from stateFirst Stageon anabort event when the

pairs. In order to test looping, reactive systems, such asalue of thealtitude is exactlyl. 2e5. Exposing this error

the state-chart models in our model-based framework, weequires a test sequencablgnition(); abort(1.2e5)that

have extended Symbolic PathFinder to also generate tedepends on both event and parameter choice, i.e., it is not

Table 1. Generated test cases for model in Figure 3

[y

il Coverage VALin | RCin | dmin | nmin | badin | omout | badout
/ CHEGK! N Tr 12 VALI=1 0 0 0 0 0 0 1
Tr 2 1 RC!=0 0 1 0 0 0 0 0
Tri1 0 0 0 0 0 0 1
Tr12 0 0 0 0 0 0 1
o [RC=sgp o i— [VAL=TJigm=nmj} Tr11 1 0 0 0 0 0 0
7 ¢ St CHECK?2 0 0 0 0 0 0 1
[Tr2 0 1 0 0 0 0 0
jlRE=SSonT-m} [VAL~=1{om=dm;bad=Had+1:}
L } ot {
boolean T af guardl = falao;
if (af jumct® DWork.is active cl af junct2 == 0j {
af junct2 DWork.is-active cl sf junctd = 1U;
af junct2 DWork.is-cl af junct? = {aintf T}af jumct2 IN CHECK;
Figure 3. Stateflow example }oalas
af guardi = falsn;
if (af_junct? U.Inl == 0.0 {
if (af Jupctd D.In2 == 1.0) {
amenable to simulation testing (that would fix the the event of Juncts Doom = af juncil Potoastantd valus;
T . .. } else if (af junct2 U.Ia2 = 1.0) {
sequence apriori), to random testing, or to purely explicit R A T e R R R D S A AT
state model checking techniques (that can not “guess” the af_junct2 Bbad (Wintls £j(ef juncts S.bad s 13
L
exact value of the abort parameter that leads to error). ’&“;m_w
However, the combination of explicit state model checking e
} olae {

(to systematically explore all the methods sequences up
to a given depth) with symbolic execution (to discover)

the right partitions on input values) allows us to discover T

such sequences automatically. We believe that the analysis A SRR R 0SB

of every realistically complex, reactive model with a data 8f_junctd B.om = Wf_juncts p.fonstanc2 valusi
acquisition part requires such combined analysis tools. 3 ;

'
¥

af guardl = truo;

4. Case Study
Figure 4. Measuring coverage on generated code
In this section, we will present some results of a case
study, which applied our framework on safety-critical mod-
els for NASA flight software.

models. For example, JPF runs out of memory on this small
4.1. Analysis of a Sampling Port example, the reason being that variabtel is unbounded,
since it is being incremented without ever being reset. Thus
We illustrate some of the features of our framework with eventually an integer overflow error can occur. Interedying
a simple Stateflow example (see Figure 3). This model is @everal other models that we have analyzed exhibited simila
simplified version of one of the flight software componentsproblems of missing resets.
that we have analyzed. This _dlagram |mplements_a sampling We also used SPF to generate test cases for this model.
port. At each cycle of execution, the component first CheCkSI'abIe 1 shows the test cases that are ted t hi
. . generated to achieve
to see if a new messagdR(C == 0) is present. If not, branch coverage
the output ém) is set to a default messagén{) and the '
component waits for the next cycle. If a new message is In order to run the test cases from Table 1, we used
present and it is valid, the output is set to the new messagRealTime Workshop to generate code and used a simple test
data pm = mnm). If the new message is not valid, we harness. Code coverage was measured gy , which is
increment variabléad (representing the port status) and seta part of the GNU C compiler. While running these test cases
the output to the default message. on the code did not reveal any discrepancies between code
Although very simple, this example illustrates some of theand model in terms of expected output, we did discover some
problems discovered during the analysis of the real flightcode statements that were not covered (Figure 4: unreaehabl
software component. We used JPF to perform simulationstatement is highlighted). Such examples of unreachable
of the model and to check for properties, extracted from thecode in general poses a big problem in the development
informal documentation provided by the developers of theof flight code, as no dead code is allowed.

X| t_negtrace_clean/Negative Trace *

4.2. Analysis of Flight Software

File Edit ‘iew Simulation Formal Tools Help

el iff..d

leif (u3 > ul)

We have applied our framework to several flight soft ’
components written in Matlab’s Simulink/Stateflow. T % | "=
models were built for the Launch Abort System (LAS) - ”(Bi
of the most important safety features of the new Orion
capsule and the ARES rocket. In particular, we ane N 2
the Guidance, Navigation, and Control (GN&C) part o I
software that will be flight tested in the near future. ,|Fm e 3] o G

The entire GN&C software has been modeled using Az T i
work’s Simulink/Stateflow system, and large portions ¢ '
flight code are automatically generated using Mathv
RealTime Workshop. This model has a highly hierarc
structure and contains Stateflow diagrams, Simulink t
for continuous calculations and signal routing, as w:
some embedded Matlab scripts. The entire system con
roughly 25,000 Simulink blocks, 100 Stateflow diagrar
various sizes and complexity and more than 200 embeuucu
Matlab scripts. Figure 5. Simulink Model

Since none of the tools (inhouse and commercial) could
handle the entire system at once, we selected a numb -~
of representative subsystems for this case study. The
examples included pure Simulink parts (to analyze the $ool
capabilities for handling continuous and hybrid parts age s
nal flow), Stateflow diagrams (Statecharts), and subsystel Sar':,m%ﬂion
with embedded Mathscript. The extraction of the subsyster
under consideration proved to be far from trivial, becaus

-
—®u3 else

Find AL23456
N1234567 R1234

diaglfoo

123456 R1234
at fon(2,2)

Mergel

Action Port

Port

validate()

newcmd

CmdStatus

Rejectcmd

rejectcmd

data types and signal dimensions were not encoded with Validate NewCommand
signals of the model; rather they were automatically iréerr) o)
by the Simulink system. In total, we applied our analysis and Figure 6. Synchronizing SF diagrams

test case generation tools to 6 selected small subsystems

(Simulink, Stateflow, embedded Mathscript) and two larger _

subsystems, which mainly consisted of mode logic modeled FOr these models, we analyzed properties encoded as
by several Stateflow statecharts. For each of the models, wSSertions; these assertions were derived from the informa

generated test vectors and test sequences (where apg)icapin®del documentation (e.g., “On entry to st&erachute
with the goal of obtaining state, transition, and path cever2SSert that the Reaction Control System (RCS) control is
age. disabled”). In addition to the problems related to integer

Figure 5 shows one of the analyzed Simulink mode|soverflow and unreachable code described above, our anal-

which encodes some mathematical operations on quaternio¥§iS revealed several errors in the models (e.g. assertion
with 5 inputs and 4 outputs. Besides various mathematicayiolation for the above property due to underconstrained

operations (e.g., inverse, square root), this model costai €nvironment). _ _

several if-then-else and merge blocks. With a range restric It still remains for us to study the interaction between het-

tion on the inputs of—50, ..., 50], our tool generated 11 ©rogeneous models and we are working with the developers

testcases (and in several cases our constraint solver ga@éthe code to define such interactions. However, we believe

warnings that it could not find solutions). that our framework will provide good support for this study.
When executing these testcases on the corresponding

generated code, only a code coverage of appr. 95% waR. Related Work

obtained (analysis of the coverage revealed un-reachable

code). The work related to this paper is vast and for brevity, we
We analyzed several Simulink/Stateflow diagrams, rangenly highlight here some of the most relevant one.

ing from the simple model in the previous section to two The automatic generation of test cases from

large SF diagrams, which contain embedded Matlab cod&imulink/Stateflow is the subject of several approaches.

and which synchronize by recursive calls (Figure 6) as wellln particular, we have performed some experiments to

as other advanced Simulink/Stateflow features, like buses.investigate the applicability of two commercial tools,

T-VEC and Design Verifier, in the context of our case of various safety-critical parts of the flight code for NASA
study. The tool T-VEE is a commercial tool for testcase Orion. Our analyses and test cases revealed various deficien
generation based on Simulink/Stateflow diagrams; it usesies in the models (e.g., ambiguity in statechart trans#jo
constraint solving technology. potential integer overflows) as well as problems in the code
We had been able to run the submodels from our casgeneration phase (e.g., dead code).
study through T-VEC. Although T-VEC supports a large Although this tool chain is currently used for Simulink/-
subset of Simulink blocks and Stateflow, the translatorStateflow and UML models, the underlying framework for
has problems with processing large diagrams and complettanslation and analysis is very flexible and could be cus-
statecharts, and unlike our framework, it does not supportomized to handle other formalisms (e.g., multiple stageth
embedded Matlab. Furthermore, in order to produce tessemantics).
sequences, T-VEC has to work with multiple copies of the In the future, we plan to make the framework more robust
diagram, thus severely limiting its scalability. and to apply it further to the analysis of heterogeneous
Design Verifier is a tool by Mathworks, which is even models.
closer integrated with the Simulink/Stateflow system. $al
translates the models into a logic representation and thReferences
uses the Prover technology for analysis and generation of
t?St c.ases. The current version ha.ls a relatlvgly limited:-fun [1] J. M. Atlee and J. Gannon. State-based model checking of
tlc_)nallty, as It cannot hand_le npnllnear fu_nctlons (e-QfLS event-driven systems requirementslEEE Transactions on
trigonometric functions), Simulink bus objects, or redues Software Engineeringl9(1):24—40, 1993.
functions. However, both T-VEC and Design Verifier are
under active development, so it is expected that the abovig] Kennedy Carter. http://www.kc.com
limitations will be soon overcome.
Another commercial tool, Reactiss a toolset for model-
based testing and validation of Simulink/Stateflow models.
It uses random and heuristic search to exercise the behavip] c. Colby, P. Lee, G. C. Necula, F. Blau, M. Plesko, and
of the models to reach a certain coverage. K. Cline. A certifying compiler for Java. liProc. PLDI 2000
None of the above tools attempt to address the analysis PP 95-107, 2000. ACM Press.

of heterogeneous models. N
Th hes f icall .. . [5] E. Denney and S. Trac. A software safety certificationl too
ere are many approaches for automatically verifying for automatically generated guidance, navigation androbnt

model-based specifications (e.g., [8]). The most closely code. INIEEE Aerospace2008. IEEE.
related to ours are the ones targeting multi-formalisms

template semantics and analysis tools (e.g., [1], [18]wHo [6] Java Path Finder.

ever, such approaches target only multiple state machine NttP:/javapathfinder.sourceforge.org.

representations. In the future, we plan to investigate th%] G. Hamon and J. Rushby. An operational semantics for

applicability of the template semantics in the context of ou ™ giatefiow. InProc. 7th FASE vol 2984 LNCS pp 229243
SC framework. 2004. Springer.

Model based generated test cases can be used to ensure

that the translation (code generation) from the model td8] D. Harel and A. Naamad. The Statemate Semantics of
the code is working properly, as automatic code generators StatechartsACM TOSEM 5(4):293-333, 1996.

or manual implementation is not necessarily error free.[g] R. Heckel. Graph transformation in a nutshell. In
Many approaches address the problem of making code” | anguage Engineering for Model-Driven Software Develop-
generators and/or compilers trustworthy. Such approaches ment number 04101 in Dagstuhl Seminar Proceedings, 2005.
range from verifying model transformations [16] and ver- http:/drops.dagstuhl.de/opus/volltexte/2005/16.

ifying compilers/proof-carrying code [4] to instance-bds
verification, e.g., the AutoCert system [5].

[3] Choco Constraint Solver.
http://choco.sourceforge.net.

[10] G. Karsai, A. Ledeczi, S. Neema, and J. Sztipanovits.
The model-integrated computing toolsuite: Metaprograilima
tools for embedded control system design. 2606 IEEE

6. Conclusion International Symposium on Computer-Aided Control System

Design pp 50-55, 2006.

We described a framework for _moo_lel based analysis an 1] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. délo
test case generation based on Simulink/Stateflow and UML “jntegrated development of embedded softwareProceedings
representations. We applied our framework to the analysis of the IEEE volume 91, pp 145-164, 2003.

3. http://www.t-vec.com [12] J. C. King. Symbolic execution and program testirgom-
4. http://lwww.reactive-systems.com mun. ACM 19(7):385-394, 1976.

[13] Control algorithm modeling guidelines using Matlab,
Simulink, and Stateflow - Version 2.0. Mathworks Automotive
Advisory Board.
http://www.mathworks.com/industries/auto/maab.html.

[14] P. Mehlitz. Trust your model - verifying aerospace syst
models with Java pathfinder. Proc IEEE Aerospace2008.

[15] Guidelines for the use of the C language in critical sys-
tems. The Motor Industry Software Reliability Association
http://www.misra.org.uk/.

[16] A. Narayanan and G. Karsai. Using semantic anchoring to
verify behavior preservation in graph transformatiorislec-
tronic Communications of the EASST: Graph and Model Trans-
formation 2006 4, 2006.

[17] C. S. Pasareanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-
Burlet, M. Lowry, S. Person, and M. Pape. Combining unit-
level symbolic execution and system-level concrete execut
for testing NASA software. InProc. ISSTA'08 (to appear)
2008.

[18] M. Pezzé and M. Young. Constructing multi-formalistate-
space analysis tools. Rroc. ICSE pp 239-249. ACM Press,
1997.

