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Abstract—This paper describes an application of data mining
technology called Distributed Fleet Monitoring (DFM) to Flight
Operational Quality Assurance (FOQA) data collected from a
fleet of commercial aircraft. DFM transforms the data into a
list of abnormaly performing aircraft, abnormal flight-to-flight
trends, and individual flight anomalies by fitting a large scale
multi-level regression model to the entire data set. The model
takes into account fixed effects: flight-to-flight and vehicle-to-
vehicle variability. The regression parameters include aerody-
namic coefficients and other aircraft performance parameters
that are usually identified by aircraft manufacturers in flight
tests. Using DFM, a multi-terabyte airline data set with a half
million flights was processed in a few hours. The anomalies found
include wrong values of computed variables such as aircraft
weight and angle of attack as well as failures, biases, and trends
in flight sensors and actuators. These anomalies were missed by
the FOQA data exceedance monitoring currently used by the
airline.

I. INTRODUCTION

Flight Operations Quality Assurance (FOQA) programs
collect high-rate aircraft data from each flight of hundreds of
aircraft. This paper demonstrates a data processing approach
for finding subtle anomalies in aircraft performance from
very large FOQA data sets, automatically, accurately, and
quickly. The anomalies are not characterized in advance of
the processing, instead, they are detected as deviations from
the performance observed for most aircraft in the fleet. As
an interim step, a physically meaningful model of aircraft
performance is built from the data. The anomalies are then
detected as excessively large deviations from this model.

A. FOQA monitoring

A FOQA dataset for a single flight includes the same
parameters that are usually collected by the crash-protected
aircraft recorder and some additional data channels. Some
1000 channels are sampled at 1 sec interval through the flight
duration and logged to yield tens of megabytes of data per
flight. After the flight, the airborne data collected by a Digital
Flight Data Acquisition Unit is transferred from the aircraft
to a ground computing system. Most airlines process the
collected FOQA data in a centralized way. For a medium
size airline, data for all flights of all aircraft add up to a few
terabytes per year.
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Airlines typically employ just a few FOQA analysts who do
not have time to look at the data for hundreds of thousands
of flights. This calls for automated FOQA data processing. A
FOQA system must find a small number of anomalous flights
and allow the analyst to focus on more detailed review of the
anomalous data sets.

In the currently deployed FOQA systems, the automated
processing first detects when the selected parameters exceed
predefined thresholds. The thresholds have to be sufficiently
large so that a small number of the exceedance events is
generated. FAA Advisory Circular No 120-82 [1], which intro-
duced FOQA, recommends establishing a Routine Operational
Measurement - a sample of a chosen parameter at predefined
points in time or space during every flight being analyzed.
The baselines for normal operation are determined as mean,
minimum, and maximum statistics of such data.

B. Anomaly detection

The simplest form of monitoring, known as Statistical
Process Control (SPC), has been used in practice for several
decades. SPC has been introduced for quality assurance of
manufacturing processes. The classical SPC methods are uni-
variate: a time series for a selected measured or computed
process parameter is compared against control limits. The
exceedances of the control limits are reported as anomalies.
The FOQA exceedance monitoring approach closely resembles
the classical univariate SPC.

Multivariate Statistical Process Control (MSPC) methods
monitor many data channels simultaneously. MSPC can pro-
vide significant improvement over univariate SPC monitoring
when the monitored channels are strongly correlated, as is
often the case in practice. In the MSPC framework, the
anomalies are commonly detected by computing Hotelling T2
statistics for the multivariable data [2].

MSPC is well established in industrial process areas such
as refineries and semiconductor manufacturing. These are sta-
tionary processes operating around fixed setpoints. In contrast,
aircraft data is nonstationary and has to be sampled at pre-
defined conditions or preprocessed before MSPC can be used.
One type of such preprocessing is computing the deviations
from an aircraft performance model.

Some large airlines use proprietary performance models
provided by aircraft manufacturers and monitor mismatches
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between these models and the aircraft data sampled in cruise
regime. The model mismatches found are used to drive fuel
performance improvements and to support aircraft mainte-
nance. To use such models consistently, the airlines introduce
focused programs in flight performance model maintenance
to make sure they reflect actual aircraft performance. Such
performance model maintenance programs can be afforded by
large airlines only. There is no indication in the literature
that they use multivariate approaches, such as MSPC, for
monitoring the performance model deviations.

An alternative to using the proprietary models is presented
by data driven models trained using massive amounts of
historical data. Regression models of FOQA data [3] and clus-
tering models [4], [5] have been considered in earlier NASA
work. Use of clustering models for aircraft operation anomaly
detection was considered in MIT work [6]. Regression models
for aircraft performance were considered in a Stanford paper
[7].

C. Distributed Fleet Monitoring

This paper demonstrates an application of a data driven
monitoring approach called Distributed Fleet Monitoring
(DFM) to FOQA data. DFM analytical software was developed
by Mitek Analytics LLC under a series of NASA-funded
projects. DFM has been verified using realistic simulated
FOQA data in an earlier unpublished study [8].

DFM builds performance models of aircraft as a regression
fit of the FOQA data. The nonlinear regressors used for aircraft
performance modeling have well understood structure - the
same as for proprietary aircraft performance models developed
by aircraft manufacturers. The standard approach is to fit the
aircraft performance models to flight test data. DFM differs
by fitting the models to the historical operational data.

The data-driven performance models in DFM are used to
remove the bulk of the data variability by computing the
model prediction residuals. MSPC methods are then applied to
the residuals. Determining a linear regression model and then
applying MSPC to the model prediction residuals is related to
the Partial Least Squares (PLS) method of MSPC.

DFM is a fleet-wide multi-level MSPC method. It extends
the known approaches of data-driven regression modeling of
performance, model-based calculation of the residuals, and
MSPC monitoring of the residuals to include fixed effects
in the model. DFM uses a three-level regression model for
aircraft performance. The first level describes time inside the
flight, the second level described flight-to-flight variability
and trends, and the third level describes the vehicle-to-vehicle
variability.

Multi-level regression models have been earlier used in
social science, drug testing and other applications, see [9],
[10]. Much smaller data sets were used and no scalable exact
solution methods proposed. The processing of aircraft fleet
data is considered in [11] using a two-level regression model,
which is related to the three-level model used by DFM.

D. Contributions
This paper demonstrates an application of DFM to an airline

FOQA data set of half million flights. DFM was able to detect
a number of anomalies of interest that were missed by existing
airline FOQA data analysis methods.

The demonstrated approach complies with the FAA recom-
mendations [1] in how it handles the secured raw data. As
the initial step, the raw FOQA data is preprocessed into de-
identified compressed data that does not contain the details of
the flight. The subsequent post-processing of the compressed
data yields a report of anomalies in aircraft performance. As
required by [1], the data is analyzed in relation to existing
aggregate information (the fleet performance model). The
reported approach emphasizes support of airline Engineering
Maintenance and Flight Safety functions.

The demonstrated DFM approach extends the existing
FOQA practices. A data-driven performance model is estab-
lished as the normal operation baseline. The anomalies are
detected as deviations from the baseline. DFM novelty com-
pared to the existing FOQA practices is in using a nonlinear
model with physics-based structure that is multivariate and
multi-level. The existing FOQA systems watch for univariate
exceedances. DFM looks at cross-fleet multivariate statistics
for abnormal models, model prediction residuals, and trends.
Similar to the existing FOQA systems, DFM reporting is
automated so that the analyst can focus on a small number
of important anomalies.

DFM algorithms can work in a grid computing environment
where the data are distributed over multiple nodes and the
bulk of the computing is collocated with the data. The grid
computing aspect of DFM was outside of the scope of this
study. In this study, the DFM algorithms were implemented
on a NASA ARC Unix cluster with substantial shared disk
storage capacity. The entire 5 Tb data set was stored on the
disk and accessible through the cluster file system.

The contributions of this paper are as follows. (i) The
paper demonstrates practical efficacy of regression modeling
of airframe performance using a large set of FOQA data.
(ii) It shows that computational implementation of multilevel
regression modeling can be scalable. FOQA data for half
million flights is processed in a few hours. (iii) The approach
is demonstrated to detect several classes of real life FOQA
data anomalies missed by the standard FOQA analysis.

II. REGRESSION MODELING

This section describes the regression modeling in the center
of the DFM data processing approach.

A. Simple regression
In this work a regression model of the nominal aircraft flight

performance is trained using the FOQA data. As a starting
point consider a simple linear regression model of the aircraft
dynamics relating the FOQA record data and the performance
data derived from the FOQA data at a given instant (time
sample) t. The model has the form

y(t) = Bx(t) + v(t), (1)
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where y is the vector of performance variables (nonlinear com-
binations of the data channels), x is the vector of regressors
variables, B is the matrix of regression parameters encoding
the performance model, and v is the vector of residuals (noise).
The regression parameters include aerodynamic coefficients,
engine thrust coefficient, etc. A cruise flight model with similar
structure is considered in [7].

In this paper we consider aircraft flight performance in
enroute flight including climb, cruise, level turns, and descent.
We extract the segment of the FOQA data limited by the
altitude and the range of the Mach number. The enroute
flight can be described using models of the aircraft steady
flight performance discussed in [12]. It is well known that the
aerodynamic forces acting on the aircraft can be represented
in the form

Faero = q̄Ca,0 + q̄Ca,1a + q̄Ca,2u1 + . . . + q̄Ca,n+1un, (2)

where a is angle of attack (AOA), u1, . . . , un are control
surface deflections, and Ca,0, Ca,1, . . . , Ca,n+1 are the model
coefficients (aerodynamic coefficients times the cross section
area). The dynamic pressure q̄ = 1

2ρairV
2, where ρair is

the air density and V is the airspeed. The engine thrust was
modeled to be proportional to air density and fan (propeller)
speed, see [12].

Regression parameters in B include the aerodynamic coef-
ficients C in (2), aircraft mass model parameters, and thrust
model parameters. The results of this work demonstrate that a
fixed regression model B can describe the entire enroute flight
segment with aircraft in the clean aerodynamic configuration.

The columns of matrix B can be computed by least squares
regression fit of the actual FOQA data. One possible approach
is to fit the model for a single flight data set. This will not
be very accurate because such data insufficiently covers the
operation of the aircraft fleet. As solutions to ill-conditioned
problems with noisy data, the models fitted to different flight
data sets might differ substantially. Another possible approach
is to fit the model to the pooled data for the entire fleet. Such
model will be much more stable but would completely miss the
fixed effects, the fact that all individual aircraft have slightly
different performance. The pooled model would also miss the
flight-to-flight trends in the aircraft performance. The problem
formulation in the next section addresses these issues.

B. Three-level regression

We consider a three-level regression model for a fleet
of aircraft. The FOQA data are used to compute response
variables y ∈ ℜm and explanatory variables x ∈ ℜn (re-
gressors) as discussed in the previous subsection. Computing
these variables (e.g., the dynamic pressure) is a nonlinear
transformation of the raw FOQA data.

The three-level model considers the response (output) vari-
ables yi,kf (t) that depend on

t - a sample number inside a given flight record
i - a vector component number,
k - a tail number
f - a flight number

The three-level model has similar indexing for the explanatory
(regression) variables xj,kf (t), and model residuals vi,kf (t).
The model can be written in the form

ykf (t) = Bkxkf (t) + akfz(t) + vkf (t), (3)

where xkf (t) ∈ ℜm is the regressor vector, ykf (t) ∈ ℜm is
the response variable vector, Bk ∈ ℜm,n is the model for tail
k, each flight has a bias akf ∈ ℜm, and z(t) = 1 describes
the bias that is fixed inside the flight.

The regression fit problem could be posed as minimization
of the least-squares loss index L

L =
K∑

k=1

Fk∑
f=1

Tkf∑
t=1

∥ykf (t)−Bkxkf (t)− akfz(t)∥2

+ρ
K∑

k=1

Fk∑
f=2

∥akf − ak,f−1∥2 + µ
K∑

k=1

∥Bk −B∗∥2F , (4)

where Fk is the number of flights for tail k in the data set,
Tkf is the number of the samples in the flight data collected
in flight f of tail k, and B∗ is the unknown central model for
the fleet.

The problem of minimizing (4) can be interpreted as optimal
Bayesian estimation of the three-level regression parameters
from the pooled fleet data. Loss index (4) describes three levels
of the regression fit and includes three main components cor-
responding to posterior and prior probabilities in the Bayesian
model

1) The data for each flight f of each tail k is described
by the model fit residuals ykf (t)−Bkxkf (t)−akfz(t).
The first sum in (4) describes the accuracy of the three
level regression fit pooled across all flights of all tails.
This term corresponds to the negative log posterior
probability of the observation noise.

2) The prior for flight-to-flight trend (bias change) is de-
fined by the quadratic penalties in the flight-to-flight
trend increments ∥akf − ak,f−1∥2. This second sum in
(4) corresponds to the negative log priors in independent
random walk models for trends akf .

3) Tail-to-tail model prior is defined by the quadratic
penalty ∥Bk − B∗∥2F , where B∗ is an unknown fleet
average model. The third sum in (4) corresponds to the
negative log prior for normal distribution of the models
Bk with the mean B∗.

Computing parameters akf , Bk, and B∗ of the three-level
regression (3) by minimizing (4) is a batch problem. The
solution is discussed in the next section. The solution could
be also implemented incrementally as an extension of the well
known recursive least squares method.

III. DFM ALGORITHM

Figure 1 illustrates a functional decomposition of the Dis-
tributed Fleet Monitoring (DFM) logic described in [8]. The
overall monitoring data function takes the aircraft data (raw
FOQA data) and reports monitoring results, such as anomalies.
The collection of these functions fits a three-level regression
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to the fleet data and reports anomalous deviations from this
model as described in more detail below. The word Distributed
is in the DFM name because the preprocessing is done for one
flight at a time and can be implemented as distributed and
parallel computations.

Secured Raw 

FOQA Data 

Compute

Monitoring 

Scores

Monitoring  

• Flights

• Tail Trends 

• Fleet 

Airborne Data 

Preprocess 

Post-process
Anomaly

Reporting
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Data
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Compressed 
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FOQA

Data
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Anomaly
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Detailed

Anomaly

Data
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Records

Fig. 1. Computational logic flow of the DFM algorithm.

A. Regression model training

The regression fit problem is to minimize loss index (4) with
respect to akf , Bk, and B∗. To do that, consider quadratic form
reduction for the first term in (4). By expanding the norms in
(4) one can see that the contribution of all data for the entire
flight into the loss index L can be described through the scatter
matrices

Tkf∑
t=1

ykf (t)yT
kf (t),

Tkf∑
t=1

xkf (t)xT
kf (t), (5)

Tkf∑
t=1

xkf (t)yT
kf (t),

Tkf∑
t=1

xkf (t)z(t),

Tkf∑
t=1

ykf (t)z(t).

The dimensions of these matrices are n, m, or 1.
The solution of the regression problem now looks as fol-

lows: first, compute the scatter matrices for all flight records,
then, minimize the loss index L with respect to akf , Bk, and
B∗. The FOQA data collected in one flight might contain some
1000 channels sampled at 12,000 instances to yield some 100
MB of the data. For a couple dozen regressors and outputs,
the scatter matrices would take about a KB of memory. Thus,
computing these matrices provides data reduction on the order
of 100,000:1. The original 5 TB of raw FOQA data are reduced
to about 50 MB of the scatter matrices. The scatter matrix
data fit into computer memory, which allows solving the
minimization problem efficiently. A version of the algorithm
described in [11] could be used for solving the problem of
minimizing (4).

Computing the scatter matrix data corresponds to the Pre-
process step in Figure 1. Solving the minimization problem to
obtain the trends akf , and models Bk, B∗, from the scatter
matrix data is shown as Post-process in Figure 1.

B. Monitoring

Monitoring of the anomalies relies on the knowledge that
the majority of the aircraft in the fleet and data sets for each
aircraft are nominal. A small percentage of the aircraft and
of the flights might be abnormal and need to be reported as
such. The DFM automated monitoring system processes the
data without human intervention and provides anomaly reports
in the end. These reports provide decision support and can be
reviewed or acted upon by a human operator.

Minimizing index (4) yields estimates of the regression
models Bk, and trends akf for all vehicles in the fleet.
These estimates and the data ykf (t) allow computing model
prediction residuals vkf (t) = ykf (t)−Bkxkf (t)− akfz(t).

The processing results are used to compute three types of the
monitoring scores as Hotelling T2 statistics for the respective
multivariable data.

T 2
v,kf =

1

Tkf

Tkf∑
t=1

T 2(vkf (t)), (6)

T 2
a,kf = T 2(akf ), (7)

T 2
B,k = T 2(Bk). (8)

These T2 statistics are based on the empirical means and
empirical covariances of the data. The score T 2

v,kf (6) for
the model prediction residual is the Hotelling T2 statistics
for the residuals vkf (t) averaged across all data points in a
flight. Using the score T 2

a,kf (7) for the trend corresponds
to the Multivariate Exponentially Weighted Moving Average
(MEWMA) method of MSPC [2]. The use of residual statistics
T 2

v,kf corresponds to MEWMA Wandering Mean prediction
error used for detecting an abrupt change in conjunction with
the MEWMA method, see [2]. The score T 2

B,k (8) is the
Hotelling T2 statistic describing the deviation of the tail model
from the population average. Figure 1 shows the calculation
of the T2 statistics (6), (7), (8) for the residuals, trends, and
models (Score Data) as Compute Monitoring Scores block.

C. Anomaly reporting

Computing Hotelling T2 statistics (7) for the estimated
trends akf for all aircraft tail and comparing it with a threshold
allows detecting trend anomalies. The abrupt change anoma-
lies can be similarly detected through Hotelling T2 statistics
(6) for the regression model residuals vkf (t). The model
anomalies can be computed by thresholding T2 statistics (8)
for the models B computed for all aircraft tails.

The anomalies are detected when the T2 statistics (Score
Data) exceed the respective thresholds. The thresholds are
established from the false positive/false negative alarm trade-
off. The Monitoring block in Figure 1 detects three types
of anomalies from the Score Data: (i) anomalous single
flight residuals, (ii) anomalous tail trends, and (iii) aircraft
performance models that are anomalous compared to other
tails in the fleet.

The Anomaly Reporting block in Figure 1 takes the
Anomaly data produced by the Monitoring block and gen-
erates more detailed anomaly reports in a form accessible to
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human operators. The report includes summary conclusions
for operators and maintenance personnel. The report can also
include detailed engineering information in the form of de-
tailed graphs, charts, and tables for the engineering personnel.

The Anomaly Reporting block could also produce detailed
anomaly reports. For a particular anomalous FOQA flight
record, detailed charts of the monitored variables ykf (t) (flight
f for tail k), of the regression model fit, and of raw FOQA
data variables could be displayed to help with establishing the
root cause of the anomaly. This requires fetching the selected
Detailed Anomaly Data - a raw FOQA data record - from the
Secured Raw FOQA Data set as illustrated in Figure 1. Only
a small number of the raw data records generally need to be
fetched to investigate the anomalies.

IV. FOQA DATASET

This section provides an overview of DFM application to
commercial airline data for a fleet of aircraft.

A. Data set description

We used DFM to process data for a medium-size airline
fleet that included Airbus A319 and A320 aircraft. The fleet
included 188 aircraft (tail numbers). The data was collected
over two years: 2010 and 2011. In this period each aircraft
has made between 200 and 3000 flights. The overall data set
included about half million flights.

The A319 and A320 aircraft have the same body and wing
shape, but differ in length (123ft for A320 vs 111ft for A319).
The weight ranges and engine thrust ranges of the two aircraft
types mostly overlap, but are some 5% higher for A320.

The data channels used for processing and monitoring
included: time stamps, aileron left and right, elevator left and
right, rudder, stabilizer, angle of attack, lateral, longitudinal
and normal accelerations, aircraft weight, pitch, roll, fan
speeds for two engines, mass fuel flow for two engines, total
temperature, altitude, and airspeed.

In addition to the described raw data, derived parameters
were used. These included dynamic pressure, Mach, and air
density computed based on atmosphere model.

B. Implementation overview

DFM algorithms are implemented using a pipeline computa-
tional architecture. The architecture consists of data pipes each
reading inputs from a buffer (disk files) and writing outputs
into another buffer. Each pipe implements a stage of the data
processing. By going through the input data files sequentially,
the pipe can process large amounts of data that do not fit into
memory. The DFM data pipes roughly correspond to what is
shown in Figure 1. The first datapipe ingests the raw FOQA
data, the last datapipe outputs the Anomaly Reports.

In this work, DFM software was implemented on a Unix
cluster. Embarrassingly parallel implementation of the algo-
rithm was used. The parallel and sequential implementation
allowed multi-Terabyte data processing with the standard lim-
ited memory of a few Gb at each processor. The computational
logic implementing the datapipes was programmed in Matlab

and deployed as Matlab-generated Unix binaries. The parallel
execution of 16 threads on as many cores allowed to complete
the DFM processing of the 5 TB data set in about 10 hours.

C. Processing results overview

The anomaly detection thresholds were initially calculated
based on 5% p-values for the T2 statistics. Later, it was found
that the outlier distribution in the data is, in fact, heavy tailed
and the thresholds were empirically increased by an order of
magnitude to limit the number of the flagged anomalies such
that they can be surveyed in detail.

No model anomalies were flagged. A possible reason is
that the fleet was a mixture of A319 and A320 aircraft. The
differences between these two types of aircraft established the
large range of the normal model variability. No vehicle in the
fleet differed from the rest by much more than this variability.

For reporting, the monitoring scores were scaled by 5% p-
values of the T2 statistics. For the estimated trends, the bulk
of the scaled monitoring scores was less than 0.1. The 15
tails flagged for the trend anomalies had monitoring scores
exceeding 10.

The bulk of the scaled monitoring scores for the residual
anomalies was less than 0.2. The 20 tails flagged for the
residual anomalies had scores exceeding 6. Most of the flights
with residual anomalies were also flagged as trend anomalies.

Many intermediate-sized anomalies have smaller magnitude.
They clearly stand out compared to the bulk of the data,
but were left out in this study. These anomalies could be
of interest to aircraft operator once all larger anomalies are
addressed. The flagged anomalies with large trend and residual
monitoring scores involve 24 tails. These anomalies were
analyzed in more depth and are described in more detail below.

V. ANOMALIES FOUND

The following large anomalies were uncovered as a result
of the DFM processing of the described FOQA dataset.

A. Angle of Attack

Wrong value of Corrected Angle of Attack (AOA) was
recorded for three tails. In these cases the Indicated AOA
value looks normal. The corrected AOA value is stuck at
zero for one aircraft. The corrected AOA values are stuck at
43 and at 42 for two other aircraft. For each of these three
aircraft, the anomalies persisted for several sequential flights
then disappeared. The problem is illustrated in Figure 2 that
plots scaled flight anomaly score (6) for sequential flights
of one of the three aircraft The amplitude of anomaly (the
monitoring score) is very large for three flights. Note that
the score is above the variation (though below the selected
threshold) for several flights around the event. The Corrected
AOA and the Indicated AOA at the peak amplitude of the
anomaly are included as an insert plot in the figure.
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Fig. 2. Corrected AOA anomaly

B. Accelerations

Problems with three accelerometer readings were found for
two tails. In one flight, the acceleration signal dropped to
an unreasonably low value mid-flight. This is a single event.
For another aircraft, the deterioration evolved over 18 flights.
Scaled trend anomaly score (7) in Figure 3 shows the ampli-
tude of the anomaly increasing from one flight to another. The
three-channel acceleration oscillations at the peak amplitude
are included as the insert plot in the figure. It is assumed
that after reaching the peak the accelerometer problem was
resolved. If the anomalous accelerations were caused by an
Inertial Navigation System failure, this could potentially have
safety implications. The accelerations influence the aircraft
Air Data system through Air Data Inertial Reference System
(ADIRS). It is assumed that the oscillating accelerations did
not trigger the exceedance event until the amplitude reached
its peak. Despite the highly abnormal pattern, the accelerations
did not reach unusually high or low values earlier.

Fig. 3. Acceleration sensor anomaly

C. Aircraft gross weight

In multiple flights, the aircraft gross weight is indicated as
100x larger than normal during first 20-60 min of flight. At the
end of this period, the weight suddenly drops to a normal value
consistent with the model. For 16 aircraft in the fleet, there are
multiple occurrences of this happening. The abnormal gross
weight indication is not correlated with any observed changes
in the aircraft fuel capacity or other related channels. It does
not seem to influence operation of aircraft flight control. This
appears to be a problem with FOQA data collection, rather
than an actual aircraft related problem.

D. Elevator oscillations

In a single flight of one tail, the left elevator starts oscillating
from -26 to 11 deg some 20 min into a flight. No flight
attitude disturbance is visible. A possible culprit is an electrical
failure in the actuator control circuit that is disconnected
from the actuator. In this case, the airline does not have a
record of elevator maintenance performed on this tail between
the anomalous flight and the next flight when the anomaly
disappeared.

E. Elevator bias

Fig. 4. Elevator bias: persistent bias in the right elevator

For one tail, a 1.5 deg right elevator bias was found. The
anomaly persisted for about 400 sequential flights and was
absent in the flights before and after that period. This anomaly
is illustrated in Figure 4 showing scaled flight anomaly score
(6). The upper insert plot in Figure 4 shows two elevator traces
in the flight with the largest monitoring score. The lower insert
plot shows the elevator traces for normal data, before the 400-
flight elevator bias event started.

F. Aileron bias

The anomaly shown in Figure 5 is related to a bias of one
of the ailerons. The plot shows a trend anomaly score (7) that
increases in a series of 20 flights. After reaching its peak, the
anomaly disappears. No maintenance actions related to these
anomalies were confirmed by the airline.
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The upper insert plot in Figure 5 shows the sum of aileron
positions in the flight with one of the largest monitoring scores.
The lower insert plot shows the aileron sum for normal data,
before the start of the increasing anomaly trend.

An interesting observation is that the ailerons sum is -2 deg
in the normal condition, which is the condition maintained in
the vast majority of flights for this tail. Near the anomaly peak,
the sum of the aileron position is close to zero. This differs
from the described normal condition.

Fig. 5. Aileron bias: trend in the sum of aileron positions

G. Smaller biases

Reducing the anomaly reporting threshold uncovers many
additional anomalies that are smaller in magnitude but still
well outside of the variation range for most of the data. Many
of these anomalies are related to biases in flight actuators or
sensors. The limited space of this paper does not allow us to
provide a more detailed survey of these smaller anomalies.
The actuator bias anomalies might be important because they
could lead to changes in aircraft trim and, as a result, might
increase the fuel burn compared to an optimized trim flight.
They might also indicate an incipient actuator problem.
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