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Abstract—The paper presents a prediction-identification In this paper, we extend the approach to the systems with
model based adaptive control method for uncertain systems time varying parameters using a prediction (or identifaai
with time varying parameters in the presence of bounded model based approach. The parameters are assumed to
external disturbances. The method guarantees desired tr&ing be b ded and ith b ded derivati tt
performance for the system’s state and input signals. Thissi € bounaed and vary Wi oundea daerivalives, r_lo matter
achieved by feeding back the state prediction error to the how large these bounds are. The parameter estimates are
identification model. It is shown that the desired closed-lop  generated using the state prediction error as in the case of
properties are obtained with fast adaptation when the error  conventional indirect adaptive control schemes, whictnés t
feedback gain is selected proportional to the square root athe reason to name the approach indirect M-MRAC. However
adaptation rate. The theoretical findings are confirmed via a dicti del diff f th i .I b ’
simulation example. our prediction model differs from the conventional ones by

a prediction error feedback term, which turns out to play the

same role as the tracking error feedback term plays in the
direct M-MRAC approach. Hence, the desired closed-loop

Adaptive control has been considered as a promisirehavior can be achieved with fast adaptation by selecting
technology to improve stability and performance of uncer@ proper error feedback gain, which also separates the time
tain systems. However, limitations of conventional adagpti Scale of the adaptive estimation from that of the system’s
methods (see for example [1]) have prevented them to ls&/namics.
widely adopted in safety-critical systems. The rest of the paper outlines the properties of the pro-

During past two decades majority of the efforts have beegposed indirect M-MRAC control architecture and demon-
directed to improving the transient of the tracking errogtrates the benefits of it in a simulation example.

(see for example recent results in [2], [4], [5], [9] for the

systems with time varying uncertainties), but not the aaintr Il. PROBLEM STATEMENT

signal, the behavior of which significantly contributes he t
aforementioned limitations.

These limitations have been addressed infheadaptive  i(t) = Ax(t) + BA(t) [u(t) + K(t)g(z(t)) + d(t)] (1)
control framework [3]. It has been shown that the desired
transient can be obtained via fast adaptation and a low-paggh x(0) = zo, wherex € R" is the state of the system,
filter, which a priori sets the bandwidth, within which theu € R? is the control,A € R"*"™ and B € R"*? are
uncertainties in the system can be compensated for. given constant matrices witd being Hurwitz and(A, B)

An alternative method, which guarantees desired transieg@ntrollable,g : R™ — RP is continuously differentiable,
behavior of the closed-loop system, has been proposed 4n: BT — R?*7 is positive definite with bounded and
[8]. It is based on the modification of the reference model bpiecewise continuous unknown entries, which have bounded
the tracking error feedback, and is called modified refezendlerivatives, K : R* — R?*? is an unknown parameter
model MRAC (M-MRAC). The idea behind the method wagmatrix with bounded and piecewise continuous entries, whic
to drive the reference model toward the system proportionBfve bounded derivatives, add R* — R? is bounded and
to the tracking error, thus preventing the system’s attemlﬂﬂeceWise continuous disturbance with a bounded derwativ
to aggressively maneuver toward the reference model in theThe control objective is to design a control input such that
initial stage of the process. It turns out that the error femtt  the system (1) tracks the reference model.
gain determines the damping in the control signal dynamics,
whereas the adaptation rate determines the frequency. This

zellrc;ws the designer to choose proper values for the parame-, 2 (0) = @m0, Wherer : R+ — RY is bounded and

piecewise continuous command with a bounded derivative.
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|I. INTRODUCTION

Consider the system

& (t) = Az (t) + Br(t) @)



where®(t)f(z,r) = K(t)g(x(t)) — A=1(t)r(t). Let Proof: The derivative of the candidate Lyapunov func-
tion
Al <X [10() e < 0*, (D) e < d° e
Al < X0 160en < 05 N0l <@ @ VO = & OPEO T DA (10)

+ 7 (8T (MAMOW +AT(MAW) |
computed along the trajectories of the prediction error dy-
. namics (8) and the adaptive laws (6), satisfies the inegualit
o(t) = As(t)+Br() ) O vy < —@T)Qa) - 2ka” (1)PE(1) (11)

+ BAD®) + OW)F (@ r) +d(0)] + k(1) b2 (0T ()AMO®) + 2 d (HAMA)

with (0) = &0, wherex(t) = z(t) — (t) is the prediction A NN _ A R
error,k > 0 |soa design parameteA,( ), ©(t) and d( ) are + 77id DA+ (@T(t)A(t)G(t)) :

the estimates of the unknown quantities, generated acaprdiThe projection operator in the adaptive laws (6) guarantees

1. PREDICTION MODEL
We introduce the following adaptive prediction model

to adaptive laws the inequalitied©(¢)|| < ¥*, [|A(t)]] < A* and||d(t)[| < d*.
. . _ T Therefore||O(t)|| < 20*, |#A )] < 2x*, ||d(t)| < 2d* and
o = 7Pr(60), BTPEOS (@r)) 2tr(OT(HAMOW)) +2d (HAB)A() +d' (HA®D)A(E) +
Mty = Pr(A@), BTPEW®) +OWf(2,r)]T) b (6T (A1) < cz. Thatis

d(t) = ~Pr (El(t), BTP:E(L‘)) , 6) V() <-2"()Qa(t) — 2k (t)PE(t) +7 'ea.  (12)

~T ~
where~y > 0 is the adaptation rate? = PT > 0 is the On . the other h?nd _we haved (t)A(t)d(t) +
solution of the Lyapunov equatiodT P + PA = —Q for T (@T(t)A(t)e(t) +AT(t)A(t)) < ¢ It follows that
some@ = Q' > 0, andPr(-,-) denotes the projection V(¢t) < &' (t)P&" (t) +~ 'c,. Therefore, ifV'(r) >y~ c,
operator [7], which is defined aBr(,y) = [I — G(0)]y, for some r then &' (1)Pz"(r) > (2ky)~'ca, which

where implies thatV(r) < 0. Sincez(0) = 0 it follows that
0, it o(0) <0 Z/S)z) < y7le; < y7le. ThereforeV(t) < vy~ 1c for all

~ . ~ T/A = U.
GO=9% sewra o p0) 20, Vo (Y =<0 Tgince a2 < & (OPED)/ Aam(P) <
o 0(0), if 9(0) >0, Ve (0)y >0 V()/Amin(P), the inequality (9) follows. m

V()|
Ive@| It can be observed from Lemma 3.2 that the state pre-

with the notationVy () = W(é)’ and the smooth convex diction error can be decreased as desired by increasing the
99 tr(e 9) adaptation ratey, when the prediction model is precisely

functions(f) is given byp(d) = 7 With O initialized. The next lemma shows that the initializationoe
denoting the norm bound imposed on the parameter matrl’ésults in an additive exponentially decaying term.
6 andey denoting the convergence tolerance. The projection Lemma 3.3 If # xo, thenz(t) satisfies the bound

operator has the following properties

Lemma 3.1: [7] Let 6 € Qo = {f € R" | (d) < 0}, 0| < / S / (13)
and let the parameté(t) evolve according to the dynamics Amin Amin(

wherecs = [V(0) — £, andV( ) is deflned by (10).

0(t) = Pr(0(t), y), O(to) € Q. (7 Proof: Using g the samé/(t) as in Lemma 3.2 and
Then 1)9() € = {9 e R | (0 ) <1} or H (}5)” < followmg. the same steps one can arrive to the inequality
0* for all t > to, where0* = T+ €5 Omax, 2) [0(t) — V(t) < =2k[V(t) =y ted] + v tea, (14)

00]T[Pr(A(t), y) —y] <0 forall t > t.

: . ) integration of which results in
It is straightforward to verify that ¢

C

B(t) = (A= KDa(t) + BA®O®F(@,7) +d(t) v < Vo -] 6”“*3936’2“;- (15)
+ BA@®)[u(t) + O(t) f (@, ) +d(1)], (8)  Recalling that]|Z()||2 < V/(£)/Amin(P), we readily obtain

where@(t) = O(t) — O(t), A(t) = A(t) — A(t) andd(t) =
d(t) — d(t) are the estimation errors. B O <4/5 () \ 6 ki + - (16)

Lemma 3.2: If &y = x(, then the prediction erro&(t)

satisfies the bound Taking into account the inequalitya + b < /a + v/b for
3 c 1 anya >0, b > 0, the bound (13) is concluded. ]
|Z@)[ < P 9) Since the effect of the prediction model initializationaarr

decays exponentially with the rate which is assumed to
wherec = c; + 53, ¢ = 4\* d*? + 4 *9*2 4 4)*2, and be set to large values for the fast adaptation, in the next
Co = AN*OFOY + AN d* A 4+ ANGd*? + AN59*2. derivations we assume that = x.



IV. CONTROL DESIGN ‘ ‘ Sidetpanleindegrees

Since the reference model is designed to satisfy the ro- oosk
bustness and performance specifications, one would nigtural . /\ /\
select the control signal \/

u(t) = —O(t) f(x,r) — d(t). (17) 0 S ﬁ&e

5 10 40

to achieve the control objective, if the system (3) were
completely known. Obviouslyu(t) is not implementable,
therefore its adaptive version

a(t) = -0 (t)f(z,r) - d(t) (18)

is used. When this control signal is applied, the prediction

Bank angle in degrees

System
: : : : : : Reference
5 10 15 20 25 30 35 40

model (5) reduces to the modified reference model intro- ’ Tme
duced in the M-MRAC architecture, that is
:ﬁ(t) _ A:i:(t) + B'r(t) + k:ﬁ(t) (19) Fig. 1. M-MRAC angle tracking performance with= 1000.

Lemma 4.1: Let the system (3) be controlled by the adap-
tive control(t) (18). Then closed loop signals are bounded.
Proof: Under the action of the adaptive contr(t),
the error between the prediction model and reference mode

en(t) = &(t) — x,(¢t) satisfies the equation

Yaw rate in degrees/second
T T T

System

em(t) = Aem(t) + Ni(t), (20) Y S T S S S

0 5 10 15 20 25 30 35 40

Since A is Hurwitz, and Z(¢) is bounded according to ‘ ‘ _Rollte degeesisec

Lemma 3.2, it follows thate,,(¢) is bounded. Since the

input ~(¢) is bounded, the reference model’s statg, (¢)

is bounded, therefore the predicted state) is bounded as

well. Then, it follows that the system’s statét) is bounded.

The parameter estimates are guaranteed to be bounded by ti ‘ ‘ ‘ ‘ ‘ ‘

projection operator, therefor(t) is also bounded.  m PR e ®
Lemma 4.2: Let the system (3) be controlled by the

controller (18), which is defined by the prediction model Fig. 2. M-MRAC rate tracking performance with = 1000.

(5) and the adaptive law (6). Then

System
Reference

1

a(t)|| < Bre "t + T3, 21
le@®l < e Py 1) lo(t)] < ag and||z2(t)|| < ag for all 0 < ¢t < co. Hence,

wherea(t) = u(t) — u(t), andvy, 51 and B, are positive (22) can be considered as a second order linear system in
constants to be specified in the proof. u(t) with time varying coefficients, where the adaptation rate

|

where we denote(t) = f'(z,7)f(z,r) + 1, F(t) =

Proof: It is easy to show thak(¢) satisfies the equation ~ determines the frequency @f(¢) and the feedback gain
- - k determines the damping ratio. We notice that selection
?(t) } = { 0 lgxq ] { Qf(t) } of the initial parameter estimates inside the convex sets
u(t) —FOLE)  —HFlgxg u(t) defined by the projection operator results if(¢) = 0 on
N { 0 ]zl(t) N [ h } 2(1), (22) Some initial inter\i\aIJ[r(i t1]. There(z)fore JF(t) = p(t)I, on

[0 t1]. Let ag = *557=2, where\” = max;>o A\(L(t)) and
Ao = ming>o A(L(¢ )) DenotlngE( ) = aoly — p(t)L(t), we

o(gxq — H(), H(E) = GOV (@,r)f@,r) + CaNWrite
G(d), L = BTPBA(t) (L(t) is positive definite), I . - »
Zl(t) ¥ 4 ()BJP + A5 PAnJE(). and zo(f) = { ﬁgti } - { —Yaolgxqg —klgxq ] { ﬂgt§ } @3)

—OT(t)f(x,r) — d(t). Sincez(t) is bounded, it follows

that p(t) is bounded That is, there exists a positive constant + [ 0 ] z1(t) + [ ]1€ } zo(t) + { Oruxcn } u(t),
Y

aq such thatl < p(t) < g for all 0 < ¢t < co. On the
other hand, it follows from the definition of the projection
operator that| G(6)| < 1 and||G(d)|| < 1. ThereforeF(t)

E(1)

the solution of which has an equivalent integral form

is bounded. Further, it follows from the dynamics (3) that

a(t)

is bounded. Thereforg(t) and z,(t) are bounded. a(t) = (1) [@(0) ﬁ(o)]T + Jy Y2t = 7)[z1(7) +

That is, there exist positive constants and a3 such that E(r)u(r)|dr + fg [1(t — ) + kpa(t — 7)]z2(7)dT(24)



wherew(t) = [11(t) ¥2(t)] is the first row of the transition

matrix of the LTI part of system (23). Following [8], we

select

k=274, (25)

which results in the minimum norns (t)||z, = (vao)~!.
For the samek, we have ||v1(t) + ko(t)]lz, <
4(vag) /2. Since |E(t)| .. = ao — Ao, we obtainl —
Y2 ()]l 2, | E#)|| oo = 2X0ag . Then, according to [8], it
follows from the expression (24) that

la@)| < bi(l@(0)]| + [[w(0)])e "
1 4\/ag
— t t 26
+ 2)\0H21( Meo + g llz2(t)|| 2. > (26)
whereb; is a positive constant and

n= YT (s~ vag ) (27)

From the definition ofz;(¢) and Lemma 3.2 we have

_c
VAmin(P) .
Then, it is straightforward to obtain the bound (21) with
b(||@(0)]| + u(0)])

z1(8)]lz.. < (e2|BTP||+ ay1||BTPA|)

B = g
4 — 0sy@ | (0a BTP| + || BTPA|)VE
2/\0 2)\0 )\min(P)
This concludes the proof. [ ]

V. TRACKING ERROR
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Fig. 3. M-MRAC control signal time history withy = 1000.
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In this section we derive a norm bound for the tracking

errore(t) = x(t) — z,(t), which is given by the following
lemma.

Lemma 5.1: Let the system (1) be controlled by the
controller (18), which is defined by the prediction mOdelandu _

(5) and the adaptive law (6). Then
le()]| < Bse™" + By~ %, (28)

Fig. 4. MRAC angle tracking performance with= 1000.

min[vy, va). [ |
Remark 5.1: The proposed method guarantees the regula-

tion of all error signals by increasing the adaptation rate,

which is only subject to available computational power.

f3 and 3, are positive constants to be specified in the proofrperefore, with fast adaptation the control objective is

Proof: It is straightforward to obtain the tracking error

dynamics in the form
e(t) = Ae(t) — BA(t)u(t) . (29)

Since A is Hurwitz, it follows that there exist positive
constantsh, and v, such that|e?|| < bye~*2t. Therefore
the following bound can be obtained

le(®)]] < balle(0)[[e™2" + bal | BAt) . fy €247 -
[Bre™17 + Boy~=]dr < bo||e(0) 72" + bo|| BA(t)) .
Gt — ety 4 B2 (1 ety 3] (30)
which can be expressed in the form of (28) with
b2 31

lva — 1]

1
—ba 32| BA(?)||z.. -
1

Bz = bafle(0)]| + IBA(H)]| 2o

Ba

achieved without generating unwanted excursions and os-
cillations in adaptive signals. The effects of the external
disturbances and parameter variations are compensated for
by the fast adaptation, and the effects of the initial caadg
decay exponentially. O
Remark 5.2: It can be observed that the dynamics of
the reference model, the operating system and the tracking
error have the same time scales determined by the matrix
A. Hence, the reference model initialization error genarate
an additive exponential term|e(0)||e~** in the bound
of the tracking error with a rate of decay defined by the
time constant of the reference model, since the adaptation
process is much faster. The time scale of the prediction
error dynamics (8) is determined ldéy which is proportional
to /7, and the time scale of the adaptive estimates is
determined byy. Therefore, for large values of the time
scale of the adaptive estimation process is separated frem t



time scale of the underlying closed-loop dynamics, which is
not achievable by conventional adaptive methods [1].0J

VI. | LLUSTRATIVE EXAMPLE

In this section, the advantages of the proposed indirect
M-MRAC architecture are demonstrated in simulations for a
dynamic model that represents the lateral-directionaignot
of a generic transport aircraft (GTM) [6]. The nominal model
is the linearized lateral-directional dynamics of GTM a& th
altitude of30000 ft and speed 00.8M and is given by

&(t) = Anx(t) + Boul(t), (31)

wherez = [ r p ¢]' is the lateral-directional state vector,
in which g is the sideslip angle; is the yaw ratep is the
roll rate, ¢ is the bank angle, and = [§, 6,]" is the control
signal that includes the aileron deflectién and the rudder
deflectiond,, and the numerical values fot,, and B,, are

—0.1578 —0.9907 0.0475 0.0404
A — 2.7698  —0.3842 0.0240 0
71 —=10.1076  0.5090 —1.7520 0 ’
0 0.0506 1.0000 0
0.0042  0.0476
B _ 0.0351 —2.2464
"] 6.3300 1.7350
0 0

The reference model is selected from the perspective of
improving the performance characteristics of the nominal
dynamics and is given by the equation (2), whdre- A,, —
B, K and B = B, N, with the feedback and feedforward
matrices

. 0 0 0.43 0.55 N — 1.26  0.65
1192 —-15 0 0 0333 —0.07 |

The reference model is driven by a command, which is

K

Fig. 5.
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MRAC control signal time history withy = 1000.

chosen to be a series of coordinated turn maneuvers. Thaffhe external disturbance is chosen to be a sinusoid of
is, sideslip angle command is set to zero and the bank ang@@plitude0.1 and frequencgr/3 rad/sec in the yaw channel
command is chosen to be a square wave of the amplitude @td a square wave of amplitudel5 and frequencyr/3

15 degrees and of the frequengy rad/sec, which is filtered

i i 10
through a first order stable filter .

The uncertain model of GTM roughly correspond2&%
loss of left wing tip att = 0 sec, and55% loss of rudder
surface and vertical tail @t= 20 sec. Its dynamics are in the
form of the equation (3) with piecewise constadft) and

rad/sec in the roll channel. The disturbance magnitudeseorr
sponds ta.6 degrees of aileron deflection ahd’ degrees of
rudder deflection. In the definition of the projection operat
the conservative bounds' = 9¥* = d* = 10 are used.

First, a simulation is run withy = 1000, Q = I, and k
is computed according to (25), where we used conservative

A(t), and f(z) = x. The corresponding numerical valuesboundsio = 0.2 and \” = 2. Figures 1 and 2 display the

are
~0.1820  0.0149 —0.1049 0
0.0807 —0.0109 0.0168 0
o(t) =
~0.2268 0.0209 —0.1053 0
~0.8514 0.0692 0.0003 0
0.5401  0.0167
[ 00632 1.0524 }’ =20
(t) =
0.5413  —0.0492
{(k0408 0.4225 }’ t>20

], t<20

], t>20

tracking performance of the states. Clearly good tracking
is achieved with the chosen controller gains, for which the
control time history is presented in Figure 3. It can be
observed that the adaptive control signal closely follows
the reference signal given by (17). Small spikes in the
control signal are attributed to the discontinuities of the
disturbance. For the comparison purposes we also pregent th
conventional MRAC performance with the same setup. It can
be observed from the Figure 4 that MRAC achieves output
tracking with small oscillations in sideslip angle. Howeve
the rates and the control surface deflection commands are
experiencing unacceptable oscillations (see Figures %and
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Fig. 7. M-MRAC output tracking withy = 10000. Fig. 9. M-MRAC output tracking withy = 100000.
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Fig. 8. M-MRAC input tracking withy = 10000. Fig. 10. M-MRAC input trackingy = 100000.
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