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Abstract— The paper presents a prediction-identification
model based adaptive control method for uncertain systems
with time varying parameters in the presence of bounded
external disturbances. The method guarantees desired tracking
performance for the system’s state and input signals. This is
achieved by feeding back the state prediction error to the
identification model. It is shown that the desired closed-loop
properties are obtained with fast adaptation when the error
feedback gain is selected proportional to the square root ofthe
adaptation rate. The theoretical findings are confirmed via a
simulation example.

I. I NTRODUCTION

Adaptive control has been considered as a promising
technology to improve stability and performance of uncer-
tain systems. However, limitations of conventional adaptive
methods (see for example [1]) have prevented them to be
widely adopted in safety-critical systems.

During past two decades majority of the efforts have been
directed to improving the transient of the tracking error
(see for example recent results in [2], [4], [5], [9] for the
systems with time varying uncertainties), but not the control
signal, the behavior of which significantly contributes to the
aforementioned limitations.

These limitations have been addressed in theL1 adaptive
control framework [3]. It has been shown that the desired
transient can be obtained via fast adaptation and a low-pass
filter, which a priori sets the bandwidth, within which the
uncertainties in the system can be compensated for.

An alternative method, which guarantees desired transient
behavior of the closed-loop system, has been proposed in
[8]. It is based on the modification of the reference model by
the tracking error feedback, and is called modified reference
model MRAC (M-MRAC). The idea behind the method was
to drive the reference model toward the system proportional
to the tracking error, thus preventing the system’s attempt
to aggressively maneuver toward the reference model in the
initial stage of the process. It turns out that the error feedback
gain determines the damping in the control signal dynamics,
whereas the adaptation rate determines the frequency. This
allows the designer to choose proper values for the parame-
ters.
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In this paper, we extend the approach to the systems with
time varying parameters using a prediction (or identification)
model based approach. The parameters are assumed to
be bounded and vary with bounded derivatives, no matter
how large these bounds are. The parameter estimates are
generated using the state prediction error as in the case of
conventional indirect adaptive control schemes, which is the
reason to name the approach indirect M-MRAC. However,
our prediction model differs from the conventional ones by
a prediction error feedback term, which turns out to play the
same role as the tracking error feedback term plays in the
direct M-MRAC approach. Hence, the desired closed-loop
behavior can be achieved with fast adaptation by selecting
a proper error feedback gain, which also separates the time
scale of the adaptive estimation from that of the system’s
dynamics.

The rest of the paper outlines the properties of the pro-
posed indirect M-MRAC control architecture and demon-
strates the benefits of it in a simulation example.

II. PROBLEM STATEMENT

Consider the system

ẋ(t) = Ax(t) +BΛ(t) [u(t) +K(t)g(x(t)) + d(t)] (1)

with x(0) = x0, wherex ∈ Rn is the state of the system,
u ∈ Rq is the control,A ∈ Rn×n and B ∈ Rn×q are
given constant matrices withA being Hurwitz and(A,B)
controllable,g : Rn → Rp is continuously differentiable,
Λ : R+ → Rq×q is positive definite with bounded and
piecewise continuous unknown entries, which have bounded
derivatives,K : R+ → Rq×p is an unknown parameter
matrix with bounded and piecewise continuous entries, which
have bounded derivatives, andd : R+ → Rq is bounded and
piecewise continuous disturbance with a bounded derivative.

The control objective is to design a control input such that
the system (1) tracks the reference model.

ẋm(t) = Axm(t) +Br(t) (2)

with xm(0) = xm0, wherer : R+ → Rq is bounded and
piecewise continuous command with a bounded derivative.

We notice that the system (1) can be represented in the
form

ẋ(t) = Ax(t) +Br(t)

+ BΛ(t) [u(t) + Θ(t)f(x, r) + d(t)] , (3)



whereΘ(t)f(x, r) = K(t)g(x(t))− Λ−1(t)r(t). Let

‖Λ(t)‖L∞
≤ λ∗, ‖Θ(t)‖L∞

≤ ϑ∗, ‖d(t)‖L∞
≤ d∗

‖Λ̇(t)‖L∞
≤ λ∗d, ‖Θ̇(t)‖L∞

≤ ϑ∗d, ‖ḋ(t)‖L∞
≤ d∗d (4)

III. PREDICTION MODEL

We introduce the following adaptive prediction model

˙̂x(t) = Ax̂(t) +Br(t) (5)

+ BΛ̂(t)[u(t) + Θ̂(t)f (x, r) + d̂(t)] + kx̃(t)

with x̂(0) = x̂0, wherex̃(t) = x(t)− x̂(t) is the prediction
error,k > 0 is a design parameter,̂Λ(t), Θ̂(t) and d̂(t) are
the estimates of the unknown quantities, generated according
to adaptive laws

˙̂
Θ(t) = γ Pr

(

Θ̂(t), B⊤P x̃(t)f⊤(x, r)
)

˙̂
Λ(t) = γ Pr

(

Λ̂(t), B⊤P x̃(t)[u(t) + Θ̂(t)f(x, r)]⊤
)

˙̂
d(t) = γ Pr

(

d̂(t), B⊤P x̃(t)
)

, (6)

whereγ > 0 is the adaptation rate,P = P⊤ > 0 is the
solution of the Lyapunov equationA⊤P + PA = −Q for
someQ = Q⊤ > 0, and Pr (·, ·) denotes the projection
operator [7], which is defined asPr(θ̂,y) = [I − G(θ̂)]y,
where

G(θ̂) =















0, if ϕ(θ̂) < 0

0, if ϕ(θ̂) ≥ 0, ∇ϕ⊤(θ̂)y ≤ 0
∇ϕ(θ̂)∇ϕ⊤(θ̂)

‖∇ϕ(θ̂)‖2 ϕ(θ̂), if ϕ(θ̂) ≥ 0, ∇ϕ⊤(θ̂)y > 0

with the notation∇ϕ(θ̂) = ∂ϕ(θ̂)

∂θ̂
, and the smooth convex

functionsϕ(θ̂) is given byϕ(θ̂) = tr(θ̂⊤θ̂)−θ2

max

ǫθθ2
max

with θmax

denoting the norm bound imposed on the parameter matrix
θ̂ andǫθ denoting the convergence tolerance. The projection
operator has the following properties

Lemma 3.1: [7] Let θ0 ∈ Ω0 = {θ̂ ∈ R
n | ϕ(θ̂) ≤ 0},

and let the parameter̂θ(t) evolve according to the dynamics

˙̂
θ(t) = Pr(θ̂(t), y), θ̂(t0) ∈ Ω . (7)

Then 1) θ̂(t) ∈ Ω1 = {θ̂ ∈ R
n | ϕ(θ̂) ≤ 1} or ‖θ̂(t)‖ ≤

θ∗ for all t ≥ t0, whereθ∗ =
√
1 + ǫθ θmax, 2) [θ̂(t) −

θ0]
⊤[Pr(θ̂(t), y)− y] ≤ 0 for all t ≥ t0.
It is straightforward to verify that

˙̃x(t) = (A− kI)x̃(t) +BΛ(t)[Θ̃(t)f (x, r) + d̃(t)]

+ BΛ̃(t)[u(t) + Θ̂(t)f (x, r) + d̂(t)] , (8)

whereΘ̃(t) = Θ(t)− Θ̂(t), Λ̃(t) = Λ(t)− Λ̂(t) and d̃(t) =
d(t)− d̂(t) are the estimation errors.

Lemma 3.2: If x̂0 = x0, then the prediction error̃x(t)
satisfies the bound

‖x̃(t)‖ ≤
√

c

λmin(P )

1√
γ
, (9)

where c = c1 + c2
2k , c1 = 4λ∗d∗2 + 4λ∗ϑ∗2 + 4λ∗2, and

c2 = 4λ∗ϑ∗ϑ∗d + 4λ∗d∗d∗d + 4λ∗dd
∗2 + 4λ∗dϑ

∗2.

Proof: The derivative of the candidate Lyapunov func-
tion

V (t) = x̃⊤(t)P x̃(t) + γ−1d̃
⊤
(t)Λ(t)d̃(t) (10)

+ γ−1tr
(

Θ̃⊤(t)Λ(t)Θ̃(t) + Λ̃⊤(t)Λ̃(t)
)

,

computed along the trajectories of the prediction error dy-
namics (8) and the adaptive laws (6), satisfies the inequality

V̇ (t) ≤ −x̃⊤(t)Qx̃(t)− 2kx̃⊤(t)P x̃(t) (11)

+ 2γ−1tr
(

Θ̇⊤(t)Λ(t)Θ̃(t)
)

+ 2γ−1ḋ
⊤
(t)Λ(t)d̃(t)

+ γ−1d̃
⊤
(t)Λ̇(t)d̃(t) + γ−1tr

(

Θ̃⊤(t)Λ̇(t)Θ̃(t)
)

.

The projection operator in the adaptive laws (6) guarantees
the inequalities‖Θ̂(t)‖ ≤ ϑ∗, ‖Λ̂(t)‖ ≤ λ∗ and‖d̂(t)‖ ≤ d∗.
Therefore‖Θ̃(t)‖ ≤ 2ϑ∗, ‖Λ̃(t)‖ ≤ 2λ∗, ‖d̃(t)‖ ≤ 2d∗ and

2tr
(

Θ̇⊤(t)Λ(t)Θ̃(t)
)

+ 2ḋ
⊤
(t)Λ(t)d̃(t) + d̃

⊤
(t)Λ̇(t)d̃(t) +

tr
(

Θ̃⊤(t)Λ̇(t)Θ̃(t)
)

≤ c2. That is

V̇ (t) ≤ −x̃⊤(t)Qx̃(t)− 2kx̃⊤(t)P x̃(t) + γ−1c2 . (12)

On the other hand we haved̃
⊤
(t)Λ(t)d̃(t) +

tr
(

Θ̃⊤(t)Λ(t)Θ̃(t) + Λ̃⊤(t)Λ̃(t)
)

≤ c1. It follows that

V (t) ≤ x̃⊤(t)P x̃⊤(t) + γ−1c1. Therefore, ifV (τ) > γ−1c,
for some τ then x̃⊤(τ)P x̃⊤(τ) > (2kγ)−1c2, which
implies that V̇ (τ) < 0. Since x̃(0) = 0 it follows that
V (0) ≤ γ−1c1 < γ−1c. ThereforeV (t) ≤ γ−1c for all
t ≥ 0.

Since ‖x̃(t)‖2 ≤ x̃⊤(t)P x̃(t)/λmin(P ) ≤
V (t)/λmin(P ), the inequality (9) follows.

It can be observed from Lemma 3.2 that the state pre-
diction error can be decreased as desired by increasing the
adaptation rateγ, when the prediction model is precisely
initialized. The next lemma shows that the initialization error
results in an additive exponentially decaying term.

Lemma 3.3: If x̂0 6= x0, thenx̃(t) satisfies the bound

‖x̃(t)‖ ≤
√

c3
λmin(P )

e−kt +

√

c

γλmin(P )
, (13)

wherec3 = |V (0)− c
γ |, andV (t) is defined by (10).

Proof: Using the sameV (t) as in Lemma 3.2 and
following the same steps one can arrive to the inequality

V̇ (t) ≤ −2k[V (t)− γ−1c1] + γ−1c2 , (14)

integration of which results in

V (t) ≤
[

V (0)− c

γ

]

e−2kt +
c

γ
≤ c3e

−2kt +
c

γ
. (15)

Recalling that‖x̃(t)‖2 ≤ V (t)/λmin(P ), we readily obtain

‖x̃(t)‖ ≤
√

1

λmin(P )

√

c3e−kt +
c

γ
, (16)

Taking into account the inequality
√
a+ b ≤ √

a +
√
b for

any a ≥ 0, b ≥ 0, the bound (13) is concluded.
Since the effect of the prediction model initialization error

decays exponentially with the ratek, which is assumed to
be set to large values for the fast adaptation, in the next
derivations we assume thatx̂0 = x0.



IV. CONTROL DESIGN

Since the reference model is designed to satisfy the ro-
bustness and performance specifications, one would naturally
select the control signal

u(t) = −Θ(t)f(x, r)− d(t) . (17)

to achieve the control objective, if the system (3) were
completely known. Obviously,u(t) is not implementable,
therefore its adaptive version

û(t) = −Θ̂⊤(t)f (x, r)− d̂(t) (18)

is used. When this control signal is applied, the prediction
model (5) reduces to the modified reference model intro-
duced in the M-MRAC architecture, that is

˙̂x(t) = Ax̂(t) +Br(t) + kx̃(t) , (19)

Lemma 4.1: Let the system (3) be controlled by the adap-
tive controlû(t) (18). Then closed loop signals are bounded.

Proof: Under the action of the adaptive controlû(t),
the error between the prediction model and reference model
em(t) = x̂(t)− xm(t) satisfies the equation

ėm(t) = Aem(t) + λx̃(t) , (20)

Since A is Hurwitz, and x̃(t) is bounded according to
Lemma 3.2, it follows thatem(t) is bounded. Since the
input r(t) is bounded, the reference model’s statexm(t)
is bounded, therefore the predicted statex̂(t) is bounded as
well. Then, it follows that the system’s statex(t) is bounded.
The parameter estimates are guaranteed to be bounded by the
projection operator, thereforêu(t) is also bounded.

Lemma 4.2: Let the system (3) be controlled by the
controller (18), which is defined by the prediction model
(5) and the adaptive law (6). Then

‖ũ(t)‖ ≤ β1e
−ν1t + β2γ

− 1

2 , (21)

where ũ(t) = u(t) − û(t), andν1, β1 andβ2 are positive
constants to be specified in the proof.

Proof: It is easy to show that̃u(t) satisfies the equation
[

˙̃u(t)
¨̃u(t)

]

=

[

0 Iq×q

−γF (t)L(t) −kIq×q

] [

ũ(t)
˙̃u(t)

]

+

[

0
γ

]

z1(t) +

[

1
k

]

z2(t) , (22)

where we denoteρ(t) = f⊤(x, r)f (x, r) + 1, F (t) =
ρ(t)Iq×q − H(t), H(t) = G(Θ̂)f⊤(x, r)f (x, r) +
G(d̂), L = B⊤PBΛ(t) (L(t) is positive definite),
z1(t) = [ρ̇(t)B⊤

0 P + ρ(t)B⊤
0 PAm]x̃(t), and z2(t) =

−Θ̃⊤(t)ḟ (x, r) − ḋ(t). Sincex(t) is bounded, it follows
thatρ(t) is bounded. That is, there exists a positive constant
α1 such that1 ≤ ρ(t) ≤ α1 for all 0 ≤ t < ∞. On the
other hand, it follows from the definition of the projection
operator that‖G(Θ̂)‖ ≤ 1 and‖G(d̂)‖ ≤ 1. ThereforeF (t)
is bounded. Further, it follows from the dynamics (3) that
ẋ(t) is bounded. Thereforėρ(t) and z2(t) are bounded.
That is, there exist positive constantsα2 andα3 such that
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Fig. 1. M-MRAC angle tracking performance withγ = 1000.
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Fig. 2. M-MRAC rate tracking performance withγ = 1000.

|ρ̇(t)| ≤ α2 and ‖z2(t)‖ ≤ α3 for all 0 ≤ t < ∞. Hence,
(22) can be considered as a second order linear system in
ũ(t) with time varying coefficients, where the adaptation rate
γ determines the frequency of̃u(t) and the feedback gain
k determines the damping ratio. We notice that selection
of the initial parameter estimates inside the convex sets
defined by the projection operator results inH(t) = 0 on
some initial interval[0 t1]. Therefore,F (t) = ρ(t)Iq on
[0 t1]. Let a0 = α1λ

0+λ0

2 , whereλ0 = maxt≥0 λ(L(t)) and
λ0 = mint≥0 λ(L(t)). DenotingE(t) = a0Iq−ρ(t)L(t), we
can write

[

˙̃u(t)
¨̃u(t)

]

=

[

0 Iq×q

−γa0Iq×q −kIq×q

] [

ũ(t)
˙̃u(t)

]

(23)

+

[

0
γ

]

z1(t) +

[

1
k

]

z2(t) + γ

[

0n×n

E(t)

]

ũ(t) ,

the solution of which has an equivalent integral form

ũ(t) = ψ(t)
[

ũ(0) ˙̃u(0)
]⊤

+ γ
∫ t

0
ψ2(t− τ)[z1(τ) +

E(τ)ũ(τ)]dτ +
∫ t

0 [ψ1(t− τ) + kψ2(t− τ)]z2(τ)dτ,(24)



whereψ(t) = [ψ1(t) ψ2(t)] is the first row of the transition
matrix of the LTI part of system (23). Following [8], we
select

k = 2
√
γa0 , (25)

which results in the minimum norm‖ψ2(t)‖L1
= (γa0)

−1.
For the same k, we have ‖ψ1(t) + kψ2(t)‖L1

≤
4(γa0)

−1/2. Since ‖E(t)‖L∞
= a0 − λ0, we obtain1 −

γ‖ψ2(t)‖L1
‖E(t)‖L∞

= 2λ0a
−1
0 . Then, according to [8], it

follows from the expression (24) that

‖ũ(t)‖ ≤ b1(‖ũ(0)‖+ ‖ ˙̃u(0)‖)e−ν1t

+
1

2λ0
‖z1(t)‖L∞

+
4
√
a0

2λ0
‖z2(t)‖L∞

, (26)

whereb1 is a positive constant and

ν1 = −
√
γ

2

(√
a0 −

√

a0 − λ0

)

. (27)

From the definition ofz1(t) and Lemma 3.2 we have

‖z1(t)‖L∞
≤ (α2‖B⊤P‖+ α1‖B⊤PA‖)

√

c

γλmin(P )
.

Then, it is straightforward to obtain the bound (21) with

β1 =
b1(‖ũ(0)‖+ ‖ ˙̃u(0)‖)

2λ0

β2 =
4α3

√
a0

2λ0
+

(α2‖B⊤P‖+ α1‖B⊤PA‖)√c
2λ0

√

λmin(P )
.

This concludes the proof.

V. TRACKING ERROR

In this section we derive a norm bound for the tracking
errore(t) = x(t)− xm(t), which is given by the following
lemma.

Lemma 5.1: Let the system (1) be controlled by the
controller (18), which is defined by the prediction model
(5) and the adaptive law (6). Then

‖e(t)‖ ≤ β3e
−νt + β4γ

− 1

2 , (28)

β3 andβ4 are positive constants to be specified in the proof.
Proof: It is straightforward to obtain the tracking error

dynamics in the form

ė(t) = Ae(t)−BΛ(t)ũ(t) . (29)

Since A is Hurwitz, it follows that there exist positive
constantsb2 and ν2 such that‖eAt‖ ≤ b2e

−ν2t. Therefore
the following bound can be obtained

‖e(t)‖ ≤ b2‖e(0)‖e−ν2t + b2‖BΛ(t)‖L∞

∫ t

0
e−ν2(t−τ) ·

[β1e
−ν1τ + β2γ

− 1

2 ]dτ ≤ b2‖e(0)‖e−ν2t + b2‖BΛ(t)‖L∞
[

β1

ν1−ν2
(e−ν2t − e−ν1t) + β2

ν2
(1 − e−ν2t)γ−

1

2

]

(30)

which can be expressed in the form of (28) with

β3 = b2‖e(0)‖+
b2β1

|ν2 − ν1|
‖BΛ(t)‖L∞

β4 =
1

ν1
b2β2‖BΛ(t)‖L∞

.
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Fig. 3. M-MRAC control signal time history withγ = 1000.
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Fig. 4. MRAC angle tracking performance withγ = 1000.

andν = min[ν1, ν2].
Remark 5.1: The proposed method guarantees the regula-

tion of all error signals by increasing the adaptation rate,
which is only subject to available computational power.
Therefore, with fast adaptation the control objective is
achieved without generating unwanted excursions and os-
cillations in adaptive signals. The effects of the external
disturbances and parameter variations are compensated for
by the fast adaptation, and the effects of the initial conditions
decay exponentially. �

Remark 5.2: It can be observed that the dynamics of
the reference model, the operating system and the tracking
error have the same time scales determined by the matrix
A. Hence, the reference model initialization error generates
an additive exponential termb2‖e(0)‖e−νt in the bound
of the tracking error with a rate of decay defined by the
time constant of the reference model, since the adaptation
process is much faster. The time scale of the prediction
error dynamics (8) is determined byk, which is proportional
to

√
γ, and the time scale of the adaptive estimates is

determined byγ. Therefore, for large values ofγ the time
scale of the adaptive estimation process is separated from the



time scale of the underlying closed-loop dynamics, which is
not achievable by conventional adaptive methods [1].�

VI. I LLUSTRATIVE EXAMPLE

In this section, the advantages of the proposed indirect
M-MRAC architecture are demonstrated in simulations for a
dynamic model that represents the lateral-directional motion
of a generic transport aircraft (GTM) [6]. The nominal model
is the linearized lateral-directional dynamics of GTM at the
altitude of30000 ft and speed of0.8M and is given by

ẋ(t) = Anx(t) +Bnu(t) , (31)

wherex = [β r p φ]⊤ is the lateral-directional state vector,
in which β is the sideslip angle,r is the yaw rate,p is the
roll rate,φ is the bank angle, andu = [δa δr]

⊤ is the control
signal that includes the aileron deflectionδa and the rudder
deflectionδr, and the numerical values forAn andBn are

An =









−0.1578 −0.9907 0.0475 0.0404
2.7698 −0.3842 0.0240 0

−10.1076 0.5090 −1.7520 0
0 0.0506 1.0000 0









,

Bn =









0.0042 0.0476
0.0351 −2.2464
6.3300 1.7350

0 0









.

The reference model is selected from the perspective of
improving the performance characteristics of the nominal
dynamics and is given by the equation (2), whereA = An−
BnK andB = BnN , with the feedback and feedforward
matrices

K =

[

0 0 0.43 0.55
1.92 −1.5 0 0

]

, N =

[

1.26 0.65
3.33 −0.07

]

.

The reference model is driven by a command, which is
chosen to be a series of coordinated turn maneuvers. That
is, sideslip angle command is set to zero and the bank angle
command is chosen to be a square wave of the amplitude of
15 degrees and of the frequencyπ10 rad/sec, which is filtered
through a first order stable filter10s+10 .

The uncertain model of GTM roughly corresponds to28%
loss of left wing tip att = 0 sec, and55% loss of rudder
surface and vertical tail att = 20 sec. Its dynamics are in the
form of the equation (3) with piecewise constantΘ(t) and
Λ(t), andf (x) = x. The corresponding numerical values
are

Θ(t) =























[

−0.1820 0.0149 −0.1049 0
0.0807 −0.0109 0.0168 0

]

, t ≤ 20

[

−0.2268 0.0209 −0.1053 0
−0.8514 0.0692 0.0003 0

]

, t > 20

Λ(t) =























[

0.5401 0.0167
−0.0632 1.0524

]

, t ≤ 20

[

0.5413 −0.0492
0.0408 0.4225

]

, t > 20
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Fig. 5. MRAC rate tracking performance withγ = 1000.
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Fig. 6. MRAC control signal time history withγ = 1000.

The external disturbance is chosen to be a sinusoid of
amplitude0.1 and frequency2π/3 rad/sec in the yaw channel
and a square wave of amplitude0.15 and frequencyπ/3
rad/sec in the roll channel. The disturbance magnitude corre-
sponds to8.6 degrees of aileron deflection and5.7 degrees of
rudder deflection. In the definition of the projection operator
the conservative boundsλ∗ = ϑ∗ = d∗ = 10 are used.

First, a simulation is run withγ = 1000, Q = I4 and k
is computed according to (25), where we used conservative
boundsλ0 = 0.2 andλ0 = 2. Figures 1 and 2 display the
tracking performance of the states. Clearly good tracking
is achieved with the chosen controller gains, for which the
control time history is presented in Figure 3. It can be
observed that the adaptive control signal closely follows
the reference signal given by (17). Small spikes in the
control signal are attributed to the discontinuities of the
disturbance. For the comparison purposes we also present the
conventional MRAC performance with the same setup. It can
be observed from the Figure 4 that MRAC achieves output
tracking with small oscillations in sideslip angle. However,
the rates and the control surface deflection commands are
experiencing unacceptable oscillations (see Figures 5 and6).
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Fig. 7. M-MRAC output tracking withγ = 10000.
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Fig. 8. M-MRAC input tracking withγ = 10000.

Next we increase the adaptation rate10 fold. As it can be
viewed form Figures 7 and 8, the output and input tracking
performances are substantially improved as predicted. Com-
putations show that the tracking error is decreased more than√
10 fold, implying the the derived bounds are conservative.

Farther increase of adaptation rate toγ = 100000 further
improves the system’s input and output performance (see
Figures 9 and 10), which verifies the theoretical derivations.

VII. C ONCLUSIONS

We have presented indirect modified reference model
MRAC (M-MRAC) approach to uncertain systems with
time varying parameters and bounded external disturbances
without imposing ”slow variation” restriction on the system’s
parameters. The method uses a prediction error feedback
term to speed up the adaptive estimation process, which
results in predictable transient behavior for both state and
input variables of the system. It has been shown that the
unwanted high frequency effects of the fast adaptation in the
control signal can be regulated by the proper choice of the
feedback gain.
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Fig. 9. M-MRAC output tracking withγ = 100000.
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Fig. 10. M-MRAC input trackingγ = 100000.
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