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ABSTRACT

Diagnosis and prognosis are necessary tasks for
system reconfiguration and fault-adaptive control
in complex systems. Diagnosis consists of detec-
tion, isolation and identification of faults, while
prognosis consists of prediction of the remain-
ing useful life of systems. This paper presents an
integrated model-based distributed diagnosis and
prognosis framework, where system decomposi-
tion is used to perform the diagnosis and prog-
nosis tasks in a distributed way. We show how
different submodels can be automatically con-
structed to solve the local diagnosis and prog-
nosis problems. We illustrate our approach us-
ing a simulated four-wheeled rover for different
fault scenarios. Our experiments showed that our
approach correctly performs fault diagnosis and
prognosis in an efficient and robust manner.

1 INTRODUCTION
Systems health monitoring is essential to guarantee-
ing the safe, efficient, and reliable operation of engi-
neering systems. Integrated systems health manage-
ment methodologies include efficient fault diagnosis
and prognosis mechanisms, where diagnosis involves
detecting when a fault has occurred, isolating the true
fault, and identifying the true damage to the system;
and prognosis involves predicting how much useful
life remains in the different components, subsystems,
or systems given the diagnosed fault conditions. The
information on the fault size and its expected impact
on system life can be used to initiate recovery and re-
configuration actions that mitigate the fault or extend
system life.

A large body of research exists for both diagno-
sis and prognosis methods. However, the integration
of diagnosis and prognosis algorithms is seldom stud-
ied. In fact, many diagnosis methodologies leave out
the fault identification step, which is necessary to per-
form a prediction from the current system state. Re-
cently, we presented an integrated model-based frame-
work for diagnosis and prognosis of complex systems,

in which we made use of a common modeling frame-
work for modeling both the nominal and faulty system
behavior (Roychoudhury and Daigle, 2011).

In (Roychoudhury and Daigle, 2011), the nominal
system behavior is estimated using an observer built
with the nominal model. Faults are detected when
a statistically significant deviation between the nom-
inal estimates and the observed measurements is ob-
served (Biswas et al., 2003). Fault isolation com-
pares the observed measurement deviations against
predictions of how the measurements would deviate
for each possible fault (Mosterman and Biswas, 1999).
Fault identification performs joint state-parameter es-
timation using multiple observers, where, for each
fault, the faulty system model is constructed as the
nominal model integrated with a hypothesized fault
model (Roychoudhury, 2009). The prognosis module
uses for each fault hypothesis a prediction model based
on its faulty system model and the identified fault pa-
rameters, to predict the remaining useful life of the
system (Daigle and Goebel, 2011). However, this in-
tegrated solution performs the diagnosis and prognosis
task in a centralized fashion, which is prone to single
points of failures, and does not scale well as the size of
the system increases.

To overcome such problems, in this work, we lever-
age previous results for distributed diagnosis (Bre-
gon et al., 2011) and distributed prognosis (?), which
make use of structural model decomposition tech-
niques, to provide a systematic approach to distribut-
ing the different diagnosis and prognosis steps pre-
sented in (Roychoudhury and Daigle, 2011). An al-
gorithm, proposed in (Bregon et al., 2011), is used
to design local distributed subsystems based on global
diagnosability analysis of the system, thus computing
globally correct distributed diagnosis results without
the use of a centralized coordinator. These local dis-
tributed subsystems are then used to construct local
event-based distributed diagnosers for distributed fault
isolation. Distributed fault identification is achieved
by developing independent local state-parameter es-
timators for each hypothesized fault. Regarding dis-
tributed prediction, in (?) we developed an architec-
ture that enables a large prognosis problem to be de-
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composed into several independent local subproblems
from which local results can be merged into a global
result.

The main contribution of this paper is an integrated
framework for distributed model-based diagnosis and
prognosis. The proposed framework scales well and
the resulting subproblems are typically small and easy
to solve, resulting in an efficient and scalable dis-
tributed solution to the combined diagnosis and prog-
nosis problem. We perform a number of experiments
on a simulated four-wheeled rover testbed (Balaban et
al., 2011) to demonstrate and evaluate our approach.

The rest of the paper is organized as follows. Sec-
tion 2 provides the problem formulation for our diag-
nosis and prognosis framework. Section 3 describes
the distributed architecture and Section 4 briefly intro-
duces its different components. Section 5 presents the
case study and experimental results. Finally, Section 6
concludes the paper.

2 PROBLEM FORMULATION
The system model for nominal operation is represented
as follows:

ẋ(t) = f(t,x(t),θ(t),u(t),v(t)),
y(t) = h(t,x(t),θ(t),u(t),n(t)),

where x(t) ∈ Rnx is the state vector, θ(t) ∈ Rnθ is
the parameter vector, u(t) ∈ Rnu is the input vector,
v(t) ∈ Rnv is the process noise vector, f is the state
equation, y(t) ∈ Rny is the output vector, n(t) ∈ Rnn
is the measurement noise vector, and h is the output
equation. The parameters θ may evolve in arbitrary
ways.1

Faults in the system are represented as changes in
the above nominal system model. In this work, we
only consider single faults occurring as changes in sys-
tem parameters, θ(t). We denote a fault, f ∈ F , as a
tuple, (θ, gf ), where, θ ∈ θ is the faulty parameter,
and gf denotes the fault progression function, which
models the way fault f is manifested in parameter θ,
i.e.,

θ̇(t) = gf (t,xf (t),θf (t),u(t),mf (t)),

where xf (t) = [x(t), θ(t)]T , θf (t) =
[θ(t)\{θ(t)},φf (t)]T , φf (t) ∈ Rnφf is a vec-
tor of fault progression function parameters, and
mf (t) ∈ Rnmf is a process noise vector associated
with the fault progression function.

To develop our integrated diagnosis and prognosis
framework, the faulty system model for fault f =
(θ, gf ) involves integrating a single fault progression
function into the nominal system model:

ẋf (t) = ff (t,xf (t),θf (t),u(t),v(t)),
y(t) = h(t,x(t),θ(t),u(t),n(t)),

where,

ff (·) =
[

f(t,x(t),θ(t),u(t),v(t))
gf (t,xf (t),θf (t),u(t),m(t))

]
=

[
ẋ(t)
θ̇(t)

]
.

1Here, we use bold typeface to denote vectors, and use
na to denote the length of a vector a.

The goal of diagnosis is to: (i) detect a change in
some θ ∈ θ; (ii) isolate, under the single fault assump-
tion, the true fault f ∈ F , i.e., both the parameter θ that
has changed, and its fault progression function gf ; and
(iii) identify (i.e. estimate) the fault damage by com-
puting p(xf (t),θf (t)|y(0 : t)), where y(0 : t) denotes
all measurements observed up to time t.

The goal of prognosis is to determine the end of
(useful) life (EOL) of a system, and/or its remain-
ing useful life (RUL). For a given fault, f , using the
fault estimate, p(xf (t),θf (t)|y(0 : t)), a probability
distribution of EOL, p(EOLf (tP )|y(0 : tP )), and/or
RUL, p(RULf (tP )|y(0 : tP )) is computed at a given
time point tP (Daigle and Goebel, 2011). Since
there is inherent uncertainty in the state-parameter
estimate, process noise, and uncertainty in the fu-
ture inputs, we predict a probability distribution rather
than single EOL/RUL values. The acceptable be-
havior of the system is expressed through a set
of nc constraints, CEOL = {ci}nci=1, where ci :
Rnx × Rnθ × Rnu → B maps a given point in
the joint state-parameter space given the current in-
puts, (xf (t),θf (t),u(t)), to the Boolean domain
B , [0, 1], where ci(xf (t),θf (t),u(t)) = 1 if
the constraint is satisfied (Daigle and Goebel, 2011).
If ci(xf (t),θf (t),u(t)) = 0, then the constraint
is not satisfied, and the behavior of the system is
deemed to be unacceptable. These individual con-
straints are combined into a single threshold func-
tion TEOLf : Rnx × Rnθ × Rnu → B, such that
TEOLf (xf (t),θf (t),u(t)) = 1 if these constraints are
valid, and TEOLf (xf (t),θf (t),u(t)) = 0 otherwise.

So, EOLf may be defined as EOLf (tP ) , inf{t ∈
R : t ≥ tP and TEOLf (xf (t),θf (t),u(t)) = 1}. i.e.,
EOL is the earliest time point at which the threshold is
reached. RUL is expressed given EOL as RULf (tP ) ,
EOLf (tP )− tP .

3 DISTRIBUTED ARCHITECTURE

For a large system, both the diagnosis and prognosis
problems are correspondingly large. A centralized ap-
proach does not scale well, can be computationally ex-
pensive, and prone to single points of failures. There-
fore, we propose to distribute the global integrated di-
agnosis and prognosis problem into independent local
subproblems. In this work, we build on ideas from
structural model decomposition (Blanke et al., 2006;
Pulido and Alonso-González, 2004) to compute local
independent subproblems, which may be solved in par-
allel, thus providing scalability and efficiency.

Structural model decomposition allows decompos-
ing a global model into a set of local models for which
local diagnosis and prognosis problems can be directly
defined. The global model of the system, denoted as
M, is defined as follows.

Definition 1 (Model). The model of a system,M, is a
tupleM = (X,Θ, U, Y, C), whereX is the set of state
variables of x, Θ is the set of unknown parameters of
θ, U is the set of input variables of u, Y is the set
of output variables of y, and C is the set of model
constraints of f , h, and CEOL.
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Figure 1: An instantiation of the integrated diagnosis and prognosis architecture.

Model decomposition is accomplished by using
some variables (either measured variables or variables
for which the values are known) as local inputs. Sub-
models computed in this way are computationally in-
dependent of each other. A submodel is then defined
as follows:
Definition 2 (Submodel). A submodel Mi of a sys-
tem model M = (X,Θ, U, Y, C) is a tuple Mi =
(Xi,Θi, Ui, Yi, Ci), where Xi ⊆ X , Θi ⊆ Θ, Ui ⊆
X ∪U ∪Y , and Yi ⊆ Y are the state, parameter, input,
and output variables, respectively, and Ci ⊆ C are the
submodel constraints.

In (Bregon et al., 2011), we proposed a framework,
based on structural model decomposition, to design
submodels for distributed residual generation and fault
isolation. Later, the framework was extended to cover
identification in a distributed way. More recently, the
same concept was used to decompose the prediction
problem (Daigle et al., 2011). Next, we discuss the
fundamental ideas of our approach to obtain submod-
els for distributed diagnosis and prognosis. Then, we
propose our integrated approach.

3.1 Model Decomposition for Distributed
Diagnosis and Prognosis

For residual generation and fault isolation, the sub-
models use Ui ⊆ U ∪ (Y − Yi), and we find a set
of submodels such that each Yi is a singleton, and over
all Yi, Yj where i 6= j, Yi ∩ Yj = ∅. So, each sub-
model uses some global model inputs and some mea-
sured values as local inputs so that the submodels be-
come decoupled, are minimal, and may be computed
independently from each other. An algorithm for com-
puting the set of submodels with these properties is
given in (Daigle et al., 2011), which is based on the
model decomposition algorithms presented in (Pulido
and Alonso-González, 2004; Bregon et al., 2012).

Based on the computed minimal submodel and
an initial subsystem definition provided by the user,
in (Bregon et al., 2011) we propose a subsystem de-
sign approach which first computes the initial submod-
els for each subsystem, and then determines the min-
imal submodels that need to be merged with the ini-
tial submodels to create globally diagnosable subsys-
tems.2 Once the globally diagnosable subsystems have

2In this work, a subsystem is globally diagnosable if all

been designed, the merged submodels are used for
distributed residual generation and to compute event-
based local diagnosers for fault isolation. These de-
sign and diagnoser computation processes are detailed
in (Bregon et al., 2011). One of the properties of the
design process is that the resulting local diagnosers are
independent, and can provide globally correct diagno-
sis results without a centralized coordinator.

Regarding distributed fault identification, the joint
state-parameter estimators are computed from the min-
imal submodels (Bregon et al., 2012), i.e., we consider
Ui ⊆ U ∪ (Y − Yi) with Yi as a singleton. It will be
shown later that the fault identification module is the
central part of our diagnosis-prognosis integration ap-
proach and provides the joint state-parameter estima-
tions for the prediction module.

For distributed prediction, as detailed in (Daigle
et al., 2011), the submodels use Ui ⊆ UP , where
UP ⊆ X ∪U . Here, UP is a set of variables whose fu-
ture values can be hypothesized, which depends on the
hypothesized faults. We find a set of submodels such
that each submodel has at least one c ∈ CEOL belong-
ing to Ci, and over all submodels, all constraints in
CEOL are covered. This ensures that TEOL may be
computed for the system from the local constraints.

3.2 Distributed Architecture
Fig. 1 illustrates an example architecture for our dis-
tributed diagnosis and prognosis scheme. At each dis-
crete time step, k, the system takes as input both uk
and yk and splits them into local inputs uik and lo-
cal outputs yik for the local diagnosers. Within each
Mi local diagnoser, nominal tracking is performed,
computing estimates of nominal measurements, ŷik.
The fault detector compares the estimated measure-
ments against the observed measurements, to deter-
mine statistically significant deviations for the resid-
ual, rik = yik− ŷik. Qualitative values of the deviations
in the residuals are used by the event-based diagnoser
to isolate faults. The set of isolated fault candidates
Fik is used as input for the corresponding identification
module. Identification is performed for each hypothe-
sized fault, using the minimal submodels, to compute
local state-parameter estimates p(xik,θ

i
k|yi0:k). These

faults in the subsystem are distinguishable from every other
fault in the system using only local measurements.
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local estimates are then used as input to the prediction
submodels. In some cases, the local estimates have to
be merged according to the prediction submodels. For
example, submodelM5 uses the estimates fromM2,
M3, andM4, to build its local state. Distributed pre-
diction modules compute local EOL/RUL predictions,
p(EOLikP |yi0:kP ) and p(RULikP |yi0:kP ) at given pre-
diction time kP based on the local EOL constraints.
Finally, local predictions are combined into global pre-
dictions p(EOLkP |y0:kP ) and p(RULkP |y0:kP ). The
next section describes the details of the different mod-
ules of the distributed integrated diagnosis and prog-
nosis architecture.

4 DIAGNOSIS AND PROGNOSIS APPROACH
Fig. 1 shows the basic modules of our distributed inte-
grated approach. In this section we give details on how
each module has been implemented, and establish the
integration between the diagnosis and prognosis tasks.

4.1 Distributed Nominal Tracking
For distributed nominal tracking, each local diagnoser
takes a subset of the local inputs uik and local outputs
yik, to compute an estimate of its output measurements
ŷik. Tracking is performed in discrete time using a ro-
bust filtering scheme, e.g., the extended or unscented
Kalman filter (Julier and Uhlmann, 2004), the particle
filter (Arulampalam et al., 2002), among others, which
provides accurate tracking in the presence of sensor
noise, process noise, and discretization error.

4.2 Distributed Fault Detection
A statistical test is used to look for significant devia-
tions in the residual signal rik. Residuals are computed
as the difference between the estimated output mea-
surements ŷik and the real measurements of the sys-
tem yik. In our approach, we use a Z-test as described
in (Biswas et al., 2003).

4.3 Distributed Fault Isolation
Fault isolation is performed using local event-based
diagnosers. These local event-based diagnosers are
constructed from a set of globally diagnosable subsys-
tems. The process to design globally diagnosable sub-
systems and construct the local event-based diagnosers
is detailed in (Bregon et al., 2011) and (Daigle et al.,
2009), respectively.

Fault isolation is triggered when a fault is detected,
and it works as follows. Initially, all event-based lo-
cal diagnosers start in their initial state, and the set of
faulty candidates is empty. Local residual deviations
cause the local diagnosers to move from one state to
another. These residual deviations are abstracted to a
tuple of qualitative symbols (σ1, σ2) for each residual
signal, where σ1 represents magnitude changes and σ2
represents slope changes. A + (−) value indicates a
change above (below) normal for a measurement resid-
ual or a positive (negative) residual slope. A 0 implies
no change in the measurement value or a flat residual
slope. The symbols are generated using a sliding win-
dow technique as described in detail in (Biswas et al.,
2003). If there is a match between an event from the

current state and a tuple of qualitative symbols gen-
erated by any residual, the local diagnoser moves to
the next state and remains active. If not, the local di-
agnoser blocks. This process continues until a local
diagnoser reaches an accepting state. At this point,
since the local diagnosers have been computed to be
globally diagnosable, a globally correct diagnosis re-
sult has been found without the use of a centralized
coordinator.

4.4 Distributed Fault Identification
In our distributed identification scheme, identifica-
tion submodels, Mi, are obtained, as explained in
the previous section, as minimal submodels. A lo-
cal state-parameter estimator is constructed for each
identification submodelMi, and produces a local es-
timate p(xik,θ

i
k|yi0:k) by using an appropriate algo-

rithm. In this paper, we use an unscented Kalman fil-
ter (UKF) (Julier and Uhlmann, 2004) with a variance
control algorithm (Daigle et al., 2012). The UKF as-
sumes the general nonlinear form of the state and out-
put equations described in Section 2, but restricted to
additive Gaussian noise.

4.5 Distributed Prediction
The local state-parameter estimates for each local dis-
tributed prediction module are constructed from the lo-
cal estimates of the distributed fault identification sub-
models. Each prediction submodel is made up of a set
of states Xi and parameters Θi, and constructs a local
distribution p(xik,θ

i
k|yi0:k), by assuming that the local

state-parameter estimates are sufficiently represented
by a mean µi and covariance Σi. For each predic-
tion submodel Mi, we combine the estimates of the
local identification submodels that estimate states and
parameters in Xi ∪Θi into µi and Σi. If two submod-
els estimate the same state variable or parameter, then
many different techniques can be applied depending on
the desired performance of the prediction submodels,
e.g., taking the estimate with the smallest variance, or
taking an average.

Different techniques can be applied to perform
prediction for each prediction submodels. In this
work, we use an unscented Kalman filter (Julier and
Uhlmann, 2004). Given the mean and covariance in-
formation, we represent the distribution with a set of
sigma points derived using the unscented transform.
Then, each sigma point is simulated forward to EOL,
and we recover the statistics of the EOL distribution
given by the sigma points.

Algorithm 1 (Daigle and Goebel, 2011), shows the
pseudocode for the prediction procedure. The algo-
rithm is executed for each submodel i, deriving lo-
cal EOL predictions using its local threshold func-
tion based on the local EOL constraints. For a given
submodel, each sample j is propagated forward un-
til T iEOL(xi(j)k ,θ

i(j)
k ) evaluates to 1. The algorithm

hypothesizes future inputs ûik. Then, the global
EOL/RUL is determined by the minimum of the local
EOL/RUL distributions for each prediction submodel,
i.e., p(EOLikP |yi0:kP ) and p(RULikP |yi0:kP ). To com-
pute this, we sample from each local EOL distribution
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Algorithm 1 EOL Prediction

Inputs: {(xi(j)
kP

,θ
i(j)
kP

), w
i(j)
kP
}Nj=1

Outputs: {EOLi(j)
kP

, w
i(j)
kP
}Nj=1

for j = 1 to N do
k ← kP

x
i(j)
k ← x

i(j)
kP

θ
i(j)
k ← θ

i(j)
kP

while T i
EOL(x

i(j)
k ,θ

i(j)
k , ûi

k) = 0 do
Predict ûi

k

θ
i(j)
k+1 ∼ p(θ

i
k+1|θ

i(j)
k )

x
i(j)
k+1 ∼ p(x

i
k+1|x

i(j)
k ,θ

i(j)
k , ûi

k)
k ← k + 1
x

i(j)
k ← x

i(j)
k+1

θ
i(j)
k ← θ

i(j)
k+1

EOL
i(j)
kP
← k

and take the minimum of the local samples. This is re-
peated many times and the statistics of the global EOL
distribution are computed.

5 CASE STUDY
In this section, we apply our system-level prognosis
approach to a four-wheeled rover testbed developed at
NASA Ames Research Center. We develop a model of
the rover, and demonstrate the approach using simu-
lated scenarios.

5.1 Rover Modeling
The rover model was originally presented in (Balaban
et al., 2011). In this section we summarize the main
features and include some extensions to the model.

The rover consists of a symmetric rigid frame with
four independently-driven wheels. The wheel speeds
are governed by

ω̇FL =
1

JFL
(τmFL − τfFL − τglFL + τgrFL) (c1)

ω̇FR =
1

JFR
(τmFR − τfFR − τglFR − τgrFR) (c2)

ω̇BL =
1

JBL
(τmBL − τfBL − τglBL + τgrBL) (c3)

ω̇BR =
1

JBR
(τmBR − τfBR − τglFR − τgrBR) . (c4)

The F , B, L, and R subscripts stand for front, left,
back, and right, respectively. Here, for wheel w, Jw
denotes the wheel inertia; τmw is the motor torque;
τfw = µfwωw is the wheel friction torque, where
µfw is a friction coefficient; τglw = rwµgl(vw − v)
is the torque due to slippage, where rw is the wheel
radius, µgl is a friction coefficient, vw is the transla-
tional wheel velocity, and v is the translation veloc-
ity of the rover body; and τgrw = rwµgrwω cos γ is
the torque due to the rotational movement of the rover
body, where µgrw is a friction coefficient, ω is the ro-
tational velocity of the rover body, and γ = arctan l/b
with l being the rover’s length and b being its width.

We consider here friction-based damage progres-
sion in the motors, resulting in an increase in motor

friction over time. For wheel w, µfw is governed
by (Daigle and Goebel, 2011)

µ̇fFL = νfFL µfFL ω
2
FL (c5)

µ̇fFR = νfFR µfFR ω2
FR (c6)

µ̇fBL = νfBL µfBL ω
2
BL (c7)

µ̇fBR = νfBR µfBR ω2
BR, (c8)

where for wheel w, νfw is an unknown wear coeffi-
cient.

The translational velocity v of the rover is described
by

v̇ =
1

m
(FglFL + FglFR + FglBL + FglBR) , (c9)

where m is the rover mass, and for wheel w, Fglw =
µgl(vw−v) is the force due to slippage. The rotational
velocity ω is described by

ω̇ =
1

J
(d cos γFglFR + d cos γFglBR − d cos γFglFL

− d cos γFglBL − dFgrFL − dFgrFR − dFgrBL

− dFgrBR). (c10)

Here, J is the rotational inertia of the rover and d is
the distance from the center of the rover to each wheel.

The wheels are driven by DC motors with PID con-
trol that sets the voltages V applied to the motors. The
motor currents i are governed by

i̇FL =
1

L
(VFL − iFLRFL − kωωFL) (c11)

i̇FR =
1

L
(VFR − iFRRFR − kωωFR) (c12)

i̇BL =
1

L
(VBL − iBLRBL − kωωBL) (c13)

i̇BR =
1

L
(VBR − iBRRBR − kωωBR). (c14)

Here, L is the motor inductance, R is the motor resis-
tance, and kω is an energy transformation term. The
motor torque is τmw = kτ iw, where kτ is an energy
transformation gain. The voltages applied to the mo-
tors are determined by the controllers, where for wheel
w, Vw = P ∗ (uw − ωw) + I ∗ eiw, where P is a pro-
portional gain, uw is the commanded wheel speed, I is
an integral gain, and eiw is the integral error term. The
integral error terms are governed by

ėiFL = uFL − ωFL (c15)
ėiFR = uFR − ωFR (c16)
ėiBL = uBL − ωBL (c17)
ėiBR = uBR − ωBR. (c18)

The batteries, which are connected in series, are de-
scribed by a simple electrical circuit equivalent model
that includes a large capacitance Cb in parallel with
a resistance Rp, together in series with another resis-
tance Rs.3 The battery charge variables qi are gov-

3We use a simple model here only for demonstration pur-
poses. More detailed batter models for prognosis can be
found in the literature, e.g., (Saha and Goebel, 2009).
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erned by

q̇1 = −V1/Rp1 − (iFL + iFR + iBR + iBL) (c19)
q̇2 = −V2/Rp2 − (iFL + iFR + iBR + iBL) (c20)
q̇3 = −V3/Rp3 − (iFL + iFR + iBR + iBL) (c21)
q̇4 = −V4/Rp4 − (iFL + iFR + iBR + iBL). (c22)

The available sensors measure the voltages of the
batteries,

V ∗
1 = q1/Cb1 −Rs1 ∗ (iFL + iFR + iBR + iBL) (c23)

V ∗
2 = q2/Cb2 −Rs2 ∗ (iFL + iFR + iBR + iBL) (c24)

V ∗
3 = q3/Cb3 −Rs3 ∗ (iFL + iFR + iBR + iBL) (c25)

V ∗
4 = q4/Cb4 −Rs4 ∗ (iFL + iFR + iBR + iBL), (c26)

the motor currents,

i∗FL = iFL (c27)

i∗FR = iFR (c28)

i∗BL = iBL (c29)

i∗BR = iBR, (c30)

and the wheel speeds,

ω∗FL = ωFL (c31)

ω∗FR = ωFR (c32)

ω∗BL = ωBL (c33)

ω∗BR = ωBR. (c34)

Here, the ∗ superscript indicates a measured value.
We are interested in predicting when any of the

rover batteries are at their voltage threshold, beyond
which the batteries will be damaged (Saha and Goebel,
2009). The constraints are given as

V1 > V − (c35)

V2 > V − (c36)

V3 > V − (c37)

V4 > V −, (c38)

where the voltage threshold is given by V − = 9.6 V,
and for battery i, Vi = qi/Cbi − Rsi ∗ (iFL + iFR +
iBR + iBL). The rover cannot be operated when any
of these constraints, c35–c38, are violated.

5.2 Results
To demonstrate the validity of the approach, we de-
scribe two different faulty scenarios of the rover. In
the first, friction damage is progressing on one motor,
and in the second, a capacitance decrease occurs in one
battery. In all cases, the rover travels between various
waypoints, moving at an average speed of 0.5 m/s. Ta-
ble 1 shows the minimal submodels for the rover de-
rived by using measured values as local inputs. Table 2
shows the submodels for residual generation and fault
isolation. These submodels have been designed to ob-
tain globally diagnosable subsystems by using the de-
sign algorithm in (Bregon et al., 2011). For distributed
fault identification we used the minimal submodels in
Table 1. As will be shown, the correct prediction sub-
models to use depend on the scenario.
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Figure 2: Estimated νfFL values.
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Figure 3: Current iFL increase through time and esti-
mated current increase.

Friction Damage Progression
We first consider a scenario in which, for the front-
left motor, the friction begins to increase. The friction
damage progression begins at t = 50 s with friction
wear parameter νfFL = 1× 10−3. A fault is detected
by the local diagnoser computed from submodelM5,9
at 119.25 s, via an increase in the motor current iFL.
The initial candidate list is immediately reduced to one
candidate, {νfFL}, based on the signatures and order-
ings. Thus the true fault is isolated.

Fault identification was initiated once the candi-
date was isolated. For the friction damage progres-
sion fault, the wear rate νfFL estimate averaged to
νfFL = 1 × 10−3 with very small output error. Fig-
ure 2 shows the wear parameter estimate for friction
damage.

As a result of the continuously increasing friction,
the current drawn by the motor increases as well in
order for the motor controller to maintain the same de-
sired wheel speed (Figure 3 shows this increase in the
current through time). Hence, the total current drawn
from the batteries is increased, and EOL occurs around
half an hour. Because iFL is constantly changing, and
in a way that is dependent on the motor state, it is
incorrect to use it as a local input for prediction and
to decompose the prediction problem into independent
local prediction problems for the batteries and motors,
i.e., it is not known a priori. Therefore, we must use
merged submodels, using as local inputs average val-
ues for the remaining motor currents, average com-
manded wheel speeds, and average rover translational
velocity v and rotational velocity ω. The prediction
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Submodel Xi Θi Ui Yi Ci

M1 q1 Cb1 i∗FL, i
∗
FR, i

∗
BL, i

∗
BR V ∗

1 c19,c23,c27,c28,c29,c30
M2 q2 Cb2 i∗FL, i

∗
FR, i

∗
BL, i

∗
BR V ∗

2 c20,c24,c27,c28,c29,c30
M3 q3 Cb3 i∗FL, i

∗
FR, i

∗
BL, i

∗
BR V ∗

3 c21,c25,c27,c28,c29,c30
M4 q4 Cb4 i∗FL, i

∗
FR, i

∗
BL, i

∗
BR V ∗

4 c22,c26,c27,c28,c29,c30
M5 iFL, eiFL ∅ uFL, ω

∗
FL i∗FL c11,c15,c27,c31

M6 iFR, eiFR ∅ uFR, ω
∗
FR i∗FR c12,c16,c28,c32

M7 iBL, eiBL ∅ uBL, ω
∗
BL i∗BL c13,c17,c29,c33

M8 iBR, eiBR ∅ uBR, ω
∗
BR i∗BR c14,c18,c30,c34

M9 ωFL, v, ω, µfFL νfFL i∗FL, ω
∗
FR, ω

∗
BL, ω

∗
BR ω∗FL c1,c5,c9,c10,c27,c32,c33,c34

M10 ωFR, v, ω, µfFR νfFR i∗FR, ω
∗
FL, ω

∗
BL, ω

∗
BR ω∗FR c2,c6,c9,c10,c28,c31,c33,c34

M11 ωBL, v, ω, µfBL νfBL i∗BL, ω
∗
FL, ω

∗
FR, ω

∗
BR ω∗BL c3,c7,c9,c10,c29,c31,c32,c34

M12 ωBR, v, ω, µfBR νfBR i∗BR, ω
∗
FL, ω

∗
FR, ω

∗
BL ω∗BR c4,c8,c9,c10,c30,c31,c32,c33

Table 1: Minimal and identification submodels.

Submodel Xi Θi Ui Yi Ci

M5,9 ωFL, v, ω, µfFL, iFL, eiFL νfFL uFL, ω
∗
FR, ω

∗
BL, ω

∗
BR ω∗FL, i

∗
FL C5 ∪ C9

M6,10 ωFR, v, ω, µfFR, iFR, eiFR νfFR uFR, ω
∗
FL, ω

∗
BL, ω

∗
BR ω∗FR, i

∗
FR C6 ∪ C10

M7,11 ωBL, v, ω, µfBL, iBL, eiBL νfBL uBL, ω
∗
FL, ω

∗
FR, ω

∗
BR ω∗BL, i

∗
BL C7 ∪ C11

M8,12 ωBR, v, ω, µfBR, iBR, eiBR νfBR uBR, ω
∗
FL, ω

∗
FR, ω

∗
BL ω∗BR, i

∗
BR C8 ∪ C12

M1,2,3,4 q1, q2, q3, q4 Cb1, Cb2, Cb3, Cb4 i∗FL, i
∗
FR, i

∗
BL, i

∗
BR V ∗

1 , V
∗
2 , V

∗
3 , V

∗
4 C1 ∪ C2 ∪ C3 ∪ C4

Table 2: Residual generation and fault isolation submodels.
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Figure 4: Predicted RUL of the rover. The mean is
indicated with a dot and confidence intervals for 5%
and 95% by lines. The gray cone depicts an accuracy
requirement of 15%.

submodels for this case are shown in Table 3. Note
that the prediction submodels used in this case do not
correspond directly to those used for estimation. So,
when constructing the estimate forM13, for example,
it takes the estimates fromM1 andM9.

The prediction results are shown in Fig. 4. The in-
creased friction causes the batteries to discharge, and
EOL occurs around 1650 s. Here, we used the relative
accuracy (RA) as a measure of prediction accuracy,
and the relative standard deviation (RSD) as a mea-
sure of spread as described in (Saxena et al., 2010).
For this experiment, RA averages to 91.63% and RSD
averages to 16.26%.

Capacitance Decrease
As a second scenario, we consider a capacitance de-
crease fault in battery 3 of the rover, Cb3. The fault
begins at t = 50 s with an abrupt decrease from 2000
to 1800 in the capacity of the battery. The fault is de-
tected immediately by the local diagnoser computed
from submodel M1,2,3,4 at 50.0 s, via an increase in
the voltage V3. The fault candidate is immediately iso-
lated, {Cb3}, based on the signatures and orderings,
thus starting the fault identification. For the capaci-
tance fault, the estimated value of the capacitance av-
eraged Cb3 = 1798.6 with very small output error. As
a result of the decrease in capacitance, the battery dis-
charges at a faster rate, and so reaches end of discharge
more quickly. Regarding prediction results for this ex-
periment, RA averages to 85.42% and RSD averages
to 12.98%.

6 CONCLUSIONS
This paper presented a distributed integrated model-
based diagnosis and prognosis framework. Our ap-
proach starts off with a common modeling paradigm
to model both the nominal behavior and fault progres-
sion, and then proposes a framework where the models
are decomposed based on the requirements and con-
straints of each task. We demonstrated our approach
on a four-wheeled rover testbed, where we diagnosed
faults and prognosed the EOL/RUL accurately.

In future work, we will apply this approach to larger
systems, to study the scalability of our diagnosis and
prognosis scheme; and expand the capability of this
approach to hybrid systems, as well as diagnosis and
prognosis of multiple faults.
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