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Abstract—This paper presents a new adaptive control ap-
proach that involves a performance optimization objective.
The control synthesis involves the design of a performance
optimizing adaptive controller from a subset of control
inputs. The resulting effect of the performance optimizing
adaptive controller is to modify the initial reference model
into a time-varying reference model which satisfies the
performance optimization requirement obtained from an
optimal control problem. The time-varying reference model
modification is accomplished by the real-time solutions of
the time-varying Riccati and Sylvester equations coupled
with the least-squares parameter estimation of the sen-
sitivities of the performance metric. The effectiveness of
the proposed method is demonstrated by an application of
maneuver load alleviation control for a flexible aircraft.

I. INTRODUCTION

In this work, we develop a multi-objective
performance-based model-reference adaptive control
(MRAC) with the goal of providing adaptation
while seeking to optimize a performance metric for
an uncertain plant. The plant is assumed to have
sufficient control redundancy to achieve the objective
of performance optimization in addition to the usual
MRAC objective of maintaining tracking performance in
the presence of matched uncertainty. The performance
metric is available from sensor measurements but
its sensitivities with respect to the state and control
variables are assumed to be unknown. Least-squares
parameter estimation is designed to estimate the
performance sensitivities. The performance optimization
is cast as a multi-objective gradient optimization
problem. The gradient of the Hamiltonian function
is computed in real-time from the estimates of the
performance sensitivities. This results in time-varying
modified Riccati and Sylvester equations which produce
time-varying control gains. The performance optimizing
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controller is then augmented to the reference model.
This results in a time-varying modified reference model
in order for MRAC to achieve simultaneously the
original tracking performance objective as well as the
performance optimization objective.

Reference model modification has been investigated
extensively but time-varying modification is generally
not considered. One approach is to include a tracking
error feedback term in the reference model to improve
transient performance [1]. The pseudo-control hedging is
another method which modifies the reference command
signal in the presence of control saturation [2]. Multi-
objective adaptive control has also been developed [3].

In the proposed approach, a number of new contribu-
tions are made. The gradient optimization leads to a set
of modified time-varying Riccati and Sylvester equations
whereby the standard weighting matrices Q and R are
modified to incorporate the estimates of the performance
sensitivities. The reference command signal is designed
to be generated from a reference command generating
function in order to allow the performance optimizing
controller to be obtained explicitly from the gradient
optimization in a feedback form. The resultant time-
varying modification of the reference model requires the
standard MRAC to use a time-varying weighting matrix
computed from the modified Riccati equation. A simu-
lation of maneuver load alleviation control demonstrates
the effectiveness of the proposed method.

II. PERFORMANCE OPTIMIZING ADAPTIVE CONTROL

Consider a plant model

ẋ = Ax+B
[
u+Θ

∗>
Φ(x)

]
(1)

subject to x(t0) = x0, where x ∈ Rn is the state vector,
u ∈ Rm is the control vector, Θ∗ ∈ Rl×m is an unknown
constant matrix, Φ(x) ∈ Rl is a known regressor func-
tion, and A ∈ Rn×n and B ∈ Rn×m are known matrices.
The plant states are fully accessible. The pair (A,B) is



assumed to be controllable. The plant is associated with
a performance metric

y =Cx+Du (2)

where y ∈Rk, k < n, is a vector of performance metrics
which are available from measurements, and C ∈ Rk×n

and D∈Rk×m are sensitivity matrices which are assumed
to be unknown. The goal is to design an adaptive con-
troller that tracks a reference model as well as optimizes
the performance metrics. To that end, we introduce a
reference command generating function

ż = Arz+ zr (3)

r =Crz (4)

subject to z(t0) = z0, where z ∈ Rp, p≥ q, zr ∈ Rp is a
constant command signal, r∈Rq is a reference command
signal with q ≤ m, Ar ∈ Rp×p is a stable matrix, and
Cr ∈ Rq×p. Consider the following adaptive controller:

u = unom +uad +up (5)

where unom = Kxx+Krr, uad = −Θ>Φ(x), and up is a
performance optimizing controller to be determined.

The incremental performance metric due to the per-
formance optimizing controller up is defined as

∆y =Cx+Dup (6)

Let ∆ŷ be the estimate of ∆y where

∆ŷ = Ĉx+ D̂up (7)

with Ĉ and D̂ being the estimates of C and D, respec-
tively. Next, the performance metric estimation error is
computed as

ey = ∆ŷ−∆y = C̃x+ D̃up (8)

where C̃ = Ĉ−C and D̃= D̂−D are the estimation errors
of C and D, respectively. Ĉ and D̂ can be estimated
from a least-squares gradient method that minimizes the
following cost function

J =
1
2

e>y ey (9)

This results in the least-squares gradient adaptive laws

˙̂C> =−ΓC
∂J
∂C̃

=−ΓCxe>y (10)

˙̂D> =−ΓD
∂J
∂ D̃

=−ΓDupe>y (11)

where ΓC = Γ>C ∈ Rn×n > 0 and ΓD = Γ>D ∈ Rm×m > 0
are adaptation rate matrices. To design the performance
optimizing controller, consider the ideal plant with u∗ad =
−Θ∗>Φ(x)

ẋ = Amx+Bmr+Bup (12)

where Am = A+BKx and is Hurwitz, and Bm = BKr.

This problem is cast as a multi-objective optimization
of the ideal plant using the following infinite-time-
horizon cost function:

J =
1
2

∫ t f→∞

t0

(
∆ŷ>Q∆ŷ+u>p Rup

)
dt (13)

where Q = Q> > 0∈Rk×k and R = R> > 0∈Rm×m sub-
ject to the plant dynamics in Eq. (12). The Hamiltonian
function is defined as

H =
1
2

∆ŷ>Q∆ŷ+
1
2

u>p Rup +µ
> (Amx+Bmr+Bup)

(14)
where µ ∈ Rn is an adjoint vector. Then, the necessary
conditions are obtained as

µ̇ =−∂H
∂x

>
=−Ĉ>Q

(
Ĉx+ D̂up

)
−A>m µ (15)

subject to the transversality condition µ
(
t f
)
= 0, and

∂H
∂up

>
= D̂>Q

(
Ĉx+ D̂up

)
+Rup +B>µ = 0 (16)

The optimal control up is then obtained as

up =−
(

R+ D̂>QD̂
)−1(

B>µ + D̂>QĈx
)

(17)

Using the assumed solution µ = Wx+V z+Uzr, the
following equations are obtained:

Ẇ +WĀ+ Ā>W −WBR̄−1B>W + Q̄ = 0 (18)

V̇ +
(

Ā>−WBR̄−1B>
)

V +VAr +WBmCr = 0 (19)

U̇ +
(

Ā>−WBR̄−1B>
)

U +V = 0 (20)

subject to the transversality conditions W
(
t f
)
= 0,

V
(
t f
)
= 0, and U

(
t f
)
= 0, where

Ā = Am−BR̄−1D̂>QĈ (21)

Q̄ = Ĉ>Q
(

I− D̂R̄−1D̂>Q
)

Ĉ (22)

R̄ = R+ D̂>QD̂ (23)

Q is chosen such that Q̄ > 0 which implies
D̂R̄−1D̂>Q < I. Equation (18) is a time-varying differ-
ential Riccati equation with the time-varying matrices Ā,
Q̄, and R̄ which are updated at each time step as Ĉ and
D̂ are computed from the least-squares gradient adaptive
laws. The existence of the solution of a time-varying
differential Riccati equation depends on the properties
of the time-varying matrices Ā, Q̄, and R̄.

Theorem 1: Let Ā = Ā∗+ δĀ, Q̄ = Q̄∗+ δQ̄ > 0, and
R̄ = R̄∗+δR̄ > 0 where Ā∗, Q̄∗, and R̄∗ are some constant
matrices. If δĀ, δQ̄, and δR̄ are at least piecewise contin-
uous for all t ∈ [0,∞); limt→∞ δĀ = 0, limt→∞ δQ̄ = 0,
and limt→∞ δR̄ = 0; and furthermore, δ̇Ā, δ̇Q̄, and δ̇R̄
are uniformly continuous; then Ā, Q̄, and R̄ tend to



their constant solutions Ā∗, Q̄∗, and R̄∗, respectively, as
t → ∞. Consequently, the solution of the time-varying
differential Riccati equation exists and also tends to its
constant solution in the limit as t f → ∞.

Proof: The Hamiltonian system for a regulator design
with V =U = 0 is defined as[

ẋ
µ̇

]
=

[
Ā −BR̄−1B
−Q̄ −Ā>

][
x
µ

]
= H

[
x
µ

]
(24)

where H is the time-varying Hamiltonian matrix. The
solution of Eq. (18) depends continuously on the time-
varying stable eigenvalues of H in frozen time. For a
first-order SISO system, it can be shown that ‖λ (H)‖2≤∥∥Ā∗+δĀ

∥∥2
+‖B‖2

∥∥∥(R̄∗+δR̄)
−1
∥∥∥∥∥Q̄∗+δQ

∥∥. Therefore,
δĀ, δQ̄, and δR̄ must be at least piecewise continuous
and uniformly bounded for all t ∈ [0,∞). Let Λ =
diag(−ΛH ,ΛH) be the eigenvalue matrix where ΛH is
the diagonal matrix of positive real eigenvalues of H.
Then, the transition matrix Φ(τ,τ0) where τ = t f − t is
the time-to-go variable is defined as

dΦ

dτ
=−ΛHΦ (25)

such that Φ(τ0,τ0) = I. Then, Φ(τ,τ0) is exponen-
tially stable if there exists ε > 0 such that

∥∥Λ̇H
∥∥ ≤ ε .

This implies that δ̇Ā, δ̇Q̄, and δ̇R̄ are bounded for all
t ∈ [0,∞). Moreover, we require Ā→ Ā∗, R̄→ R̄∗, and
Q̄→ Q̄∗ uniformly as t→∞. This implies limt→∞ δĀ = 0,
limt→∞ δQ̄ = 0, and limt→∞ δR̄ = 0. Furthermore, ˙̄A→ 0,
˙̄R→ 0, ˙̄Q→ 0 as t → ∞ which require limt→∞ δ̇Ā = 0,
limt→∞ δ̇Q̄ = 0, and limt→∞ δ̇R̄ = 0. Then, δ̇Ā, δ̇Q̄, and
δ̇R̄ are uniformly continuous according to the Barbalat’s
lemma. The solution of W as t→ ∞ is given by [4]

W = (X21 +X22S)(X11 +X12S)−1 (26)

where
S = Φ(τ,τ0)S

(
t f
)

Φ(τ,τ0) (27)

with Xi j, i, j = 1,2 as the right eigenvector partitioned
matrix such that XΛX−1 = H, and S

(
t f
)

computed from
Eq. (26). Let W =W ∗+δW be the solution of the time-
varying Riccati equation. Then, substituting into Eq. (18)
and taking the limit as t→ ∞ yield

W ∗Ā∗+ Ā∗>W ∗−W ∗BR̄∗−1B>W ∗+ Q̄∗ = 0 (28)

δ̇W +δW Ā∗+ Ā∗>δW −δW BR̄∗−1B>δW

−δW BR̄∗−1B>W ∗−W ∗BR̄∗−1B>δW = 0 (29)

Now, transforming Eq. (29) into the time-to-go vari-
able gives

− dδW

dτ
+δW Ā∗+ Ā∗>δW −δW BR̄∗−1B>δW

−δW BR̄∗−1B>W ∗−W ∗BR̄∗−1B>δW = 0 (30)

subject to δW (τ = 0) = 0 since W
(
t f
)
= 0. The solution

of Eq. (29) yields δW = 0 and δ̇W = 0 as t f → ∞. Thus,
W →W ∗ as t f → ∞ which implies Ẇ → 0.

�

Equation (19) is a time-varying differential Sylvester
equation. The existence of the solution of Eq. (19) can be
established from Theorem 1. If W → W̄ ∗, then the matrix
Ā−BR̄−1B>W tends to a constant Hurwitz matrix Ac =
Ā∗−BR̄∗−1B>W ∗. Equation (19) is transformed into the
time-to-go variable as

dV
dτ

= A>c V +VAr +WBmCr (31)

subject to V (τ = 0) = 0. Since Ar is a stable matrix, and
Ar can be chosen such that λi (Ac)+λ j (Ar) 6= 0 for all i
and j, then it follows that V is bounded as t f → ∞ and
tends to a constant solution of the following algebraic
Sylvester equation:

A>c V ∗+V ∗Ar +W ∗BmCr = 0 (32)

Since V ∗ exists, U∗ is bounded as t f → ∞ and tends
to the following solution:

U∗ =−A−>c V ∗ (33)

Thus, the solutions of Eqs. (18), (19), and (20) are
computed from their corresponding time-varying alge-
braic equations. The performance optimizing controller
up is then expressed as

up = K̄xx+ K̄zz+ K̄zr zr (34)

where K̄x = −R̄−1
(
B>W + D̂>QĈ

)
, K̄z = −R̄−1B>V ,

and K̄zr = R̄−1B>A−>c V .
The optimal control solution can also be formulated

by using an alternative expression of the adjoint solution
µ =Wx+T where T =V z+Uzr is the assumed solution.
This results in the the following differential equation:

Ṫ +
(

Ā>−WBpR̄−1B>p
)

T +WBmr = 0 (35)

subject to T
(
t f
)
= 0 in lieu of Eqs. (19) and (20). Since

W (t) → W̄ ∗ and Ac is Hurwitz, it follows that T is
bounded as t f → ∞ and tends to the following solution:

T ∗ =−A−>c W ∗Bmr−
∞

∑
n=1

(−1)n
(

A>c
)−n−1

W ∗Bmr(n)

(36)
Note that the series solution of T ∗ is not a closed-form

solution. This illustrates the advantage of the use of the
reference command generating function.

Note that the uniform continuity condition for δ̇Ā, δ̇Q̄,
and δ̇R̄ requires the parameter convergence of Ĉ and D̂
to some constant matrices C̄ and D̄, respectively.



Theorem 2: The least-squares gradient adaptive laws
ensures a parameter convergence of Ĉ (t) and D̂(t) to
some constant solutions C̄ and D̄, respectively.

Proof: Choose a Lyapunov candidate function

V = trace
(

C̃Γ
−1
C C̃>+ D̃Γ

−1
D D̃>

)
(37)

for the ideal plant in Eq. (12). Then, V̇ is evaluated as

V̇
(
C̃, D̃

)
=−2e>y C̃x−2e>y D̃up

=−2
(
C̃x+ D̃up

)> (C̃x+ D̃up
)
=−2e>y ey ≤ 0 (38)

Thus, C̃ ∈L2∩L∞ and D̃∈L2∩L∞, but x∈L∞ and
up ∈L∞. It follow that K̄x ∈L∞, K̄z ∈L∞, and K̄zr ∈L∞.
Therefore, for the ideal plant, ẋ ∈L∞. We note that V̈ is
bounded since ẋ ∈L∞ and u̇p ∈L∞ by the virtue of ż ∈
L∞, ˙̄Kx ∈L∞, ˙̄Kz ∈L∞, and ˙̄Kzr (t) ∈L∞. Therefore, V̇
is uniformly continuous. Invoking the Barbalat’s lemma,
V̇ → 0 as t → ∞. This implies ey → 0 as t → ∞. Since
¨̂C an ¨̂D are bounded, it follows that ˙̂C and ˙̂D are also

uniformly continuous with ˙̂C→ 0 and ˙̂D→ 0 as t→ ∞.
Let

∆Ĉ = Ĉ (t)−Ĉ (t−∆t) =−
∫ t

t−∆t
Γcxe>y dτ (39)

∆D̂ = D̂(t)− D̂(t−∆t) =−
∫ t

t−∆t
ΓDupe>y dτ (40)

Then, ∆Ĉ→ 0 and ∆D̂→ 0 since ey→ 0 as t→∞. This
implies that Ĉ→ C̄ and D̂→ D̄ as t→∞. Therefore, Ā, Q̄,
R̄, K̄x, K̄z, and K̄zr all converge to the constant matrices
Ā∗, Q̄∗, R̄∗, K̄∗x , K̄∗z , and K̄∗zr , respectively. Note that Ĉ
and D̂ do not necessarily converge to the true unknown
matrices C and D, respectively. This would require the
persistent excitation condition which cannot be verified
for a closed-loop system.

�

The closed-loop plant with the performance optimiz-
ing controller up now becomes

ẋ = (Am +BK̄x)x+Bmr+B(Kzz+Kzr zr)

+B
[
uad +Θ

∗>
Φ(x)

]
(41)

Then, the performance optimizing reference model is
expressed as

ẋ∗m = A∗mx∗m +Bmr+BK∗z z+BK∗zr zr (42)

where A∗m = Am +BK̄∗x . Let x̂m be the estimate of x∗m.
Then, the time-varying performance optimizing refer-
ence model is given by

˙̂xm = (Am +BK̄x) x̂m +Bmr+BKzz+BKzr zr (43)

Thus, x̂m→ x∗m as t→∞. Let e = x̂m−x be the track-
ing error based on the time-varying modified reference
model. Then, the tracking error equation becomes

ė = (Am +BK̄x)e+BΘ̃
>

Φ(x) (44)

The new MRAC update law is given by

Θ̇ =−ΓΦ(x)e>WB (45)

where W is the time-varying weighting matrix computed
from the Riccati equation which replaces the constant
weighting matrix P computed from the Lyapunov equa-
tion in the standard MRAC update law. Robust modifi-
cation can be used with the new MRAC update law such
as the optimal control modification [5] given by

Θ̇ =−ΓΦ(x)
[
e>W −νΦ

> (x)ΘB>W (Am +BK̄x)
−1
]

B
(46)

where ν > 0 is a modification parameter.
The time-varying weighting matrix W is obtained from

the time-varying algebraic Riccati equation

WĀ+ Ā>W −WBR̄−1B>W + Q̄ = 0 (47)

Equivalently, the time-varying algebraic Riccati equa-
tion can be approximated by a stable time-varying dif-
ferential Riccati equation integrated forward in time as
follows:

εẆ =WĀ+ Ā>W −WBR̄−1B>W + Q̄ (48)

with W (0) = W0 > 0 and 0 < ε < 1 is a small positive
constant. Using the singular perturbation argument, we
transform Eq. (48) into the stretch time variable t∗ = t

ε
:

dW
dt

=WĀ(t∗)+ Ā(t∗)>W −WBR̄(t∗)−1 B>W + Q̄(t∗)
(49)

with W (t∗0 ) = W0. By letting ε → 0 in Eq. (48) which
corresponds to t∗ = O

( 1
ε

)
→ ∞, the asymptotic outer

solution of Eq. (48) is then obtained from Eq. (47). The
inner solution of Eq. (48) corresponding to t = O (ε)
obtained from Eq. (49) gives

dWi

dt∗
≈W0Ā0 + Ā>0 W0−W0BR̄−1

0 B>W0 + Q̄0 = σ (50)

where σ is a small-value matrix. The subscript i denotes
the inner solution. The subscript 0 denotes the value
of a matrix evaluated at t∗ = t∗0 which depends on the
initial conditions Ĉ (t0) =C0 and D̂(t0) = D0. It follows
that

∥∥Ẇi
∥∥ = σ

ε
. Equation (48) can be expressed in a

Hamiltonian system as

ε

[
ṗ
λ̇

]
=

[
−Ā BR̄−1B>

Q̄ Ā>

][
p
λ

]
=−H

[
p
λ

]
(51)

where λ =W p with p(t0) = p0 and λ (t0) =W0 p0. The
transition matrix Φ(t, t0) computed by

dΦ

dt
=−1

ε
ΛHΦ (52)



is exponentially stable. The solution is then given by
Eq. (26) with S = Φ(t, t0)S (0)Θ(t, t0) [4]. As ε → 0 in
the limit for the asymptotic outer solution, S→ 0 and
W →W21W−1

11 which is the solution of the time-varying
algebraic Riccati equation. Moreover, the outer solution
also yields Ẇ = 0 as t→∞ corresponding to the constant
solution W ∗ when Ĉ→ C̄ and D̂→ D̄.

The stability of the optimal control modification adap-
tive law can be shown in the following proof:

Proof: Choose a Lyapunov candidate function

V = e>We+ trace
(

Θ̃
>

Γ
−1

Θ̃

)
(53)

Then, V̇
(
e,Θ̃
)

is evaluated as

V̇ =−e>
[
Ẇ +W (Am +BK̄x)+(Am +BK̄x)

>W
]

e

+2νΦ
> (x)ΘB>W (Am +BK̄x)

−1 BΘ̃
>

Φ(x) (54)

Using the outer solution of the singularly perturbed
differential Riccati equation (48), we get

V̇ =−e>Qe+2νΦ
> (x)ΘB>W (Am +BK̄x)

−1 BΘ̃
>

Φ(x)

≤−c1 ‖e‖2−νc2 ‖Φ(x)‖2 (∥∥Θ̃
∥∥− c3

)2
+νc2c2

3 ‖Φ(x)‖2

(55)

where Q = Q̄ +WBR̄−1B>W , c1 = inft λmin (Q) > 0,
c2 = inft λmin

(
B> (Am +BK̄x)

−>Q (Am +BK̄x)
−1 B

)
>

0, and c3 =
supt

∥∥∥B>W (Am+BK̄x)
−1B

∥∥∥‖Θ∗‖
c2

> 0. Then,
‖Φ(x)‖ ≤ Φ0 for 0 < ν < νmax. Thus, V̇ ≤ 0 outside
a compact set. Therefore, the closed-loop system with
the optimal control modification is uniformly ultimately
bounded with the following ultimate bounds:

‖e‖ ≤

√
λmax (W ∗) p2 +λmax (Γ−1)α2

λmin (W ∗)
(56)

∥∥Θ̃
∥∥≤√λmax (W ∗) p2 +λmax (Γ−1)α2

λmin (Γ−1)
(57)

where p =

√
νc2c2

3Φ2
0

c1
and α = 2c3. When ν = 0, we

recover the new MRAC update law. Then, it can be
shown that V̈ is bounded. Invoking the Barbalat’s lemma,
V̇ → 0 which implies e→ 0 as t→ ∞. Thus, asymptotic
tracking is achieved with the time-varying reference
model modification by the performance optimizing con-
troller for the new MRAC update law.

III. APPLICATION

A maneuver load alleviation adaptive control design
is implemented for a flexible wing Generic Transport
Model (GTM) equipped with the Variable Camber Con-
tinuous Trailing Edge Flap (VCCTEF) [6] as shown in

Fig. 1. Maneuver load alleviation can be viewed as a
performance optimizing control objective to maintain
structural load limits on aircraft wings during a maneu-
ver. A pull-up maneuver is simulated with the VCCTEF
deployed for the maneuver load alleviation while the
elevator is deployed for the pitch rate control.

Figure 1. GTM with Variable Camber Continuous Trailing Edge Flap

The longitudinal aircraft model is expressed as

ẋ = Ax+Bpup +Ba

(
ua +Θ

∗>x
)

(58)

where x =
[

h V α q θ
]> is the aircraft state

vector with h as the altitude, V the airspeed, α the
angle of attack, q the pitch rate, θ the pitch atti-
tude; ua = δe is the elevator deflection; up is the
shape function of the VCCTEF deflections, and Θ∗ =[

0 0 θ ∗α θ ∗q 0
]> is a matched uncertainty.

A pitch attitude controller is designed for the elevator
to track a second-order pitch attitude reference model

θ̈m +2ζ ωnθ̇m +ω
2
n θm = ω

2
n r (59)

where ζ is the desired closed-loop damping ratio and
ωn is the desired closed-loop frequency. The adaptive
controller for the elevator is designed as

ua = Kxx+ krr−Θ
>x (60)

For the maneuver load alleviation, the performance
metric is the wing root bending moment which can
be measured from a strain gauge sensor. Then, the
performance optimizing controller is designed as

up = K̄xx+ K̄zz+ K̄zr zr (61)

where the reference command generating function is
specified as[

ż
ṙ

]
=

[
0 ω

−ω 0

][
z
r

]
+

[
0

θ0ω

]
(62)

with θ0 = 20◦ and ω = 2 rad/sec. The weighting co-
efficient and matrix are selected to be Q = 6× 10−12

and R = 1000I. Θ, Ĉ, and D̂ are initialized with zero
values. The adaptation rate matrices are chosen to be Γ=



diag(0,0,0.2,0.5,0), ΓC = diag(10,10000,2000,5,1),
and ΓD = diag(30,40,30,50). The optimal control mod-
ification adaptive law is implemented with ν = 0.01.

Figure 2 shows the time histories of the aircraft pitch
attitude and the wing root bending moment. The aircraft
pitch attitude tracks the time-varying modified reference
model very well with the performance optimizing adap-
tive controller. The amplitude of the wing root bending
moment is effectively reduced by 38.8% due to the
performance optimizing adaptive controller. Thus, the
effectiveness of the performance optimizing adaptive
controller is demonstrated. The estimated performance
metric ŷ agrees very well with the measured performance
metric y. Figure 3 shows the time histories of the
adaptive parameters Θ, Ĉ, and D̂ which converge to their
steady state values. Figure 4 shows the control signals of
the elevator deflection δe and the VCCTEF deflections
δ . All the control signals appear to be well-behaved.
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Figure 2. Aircraft Response to Performance Optimizing Adaptive
Control with r (t) = θ0 sinωt
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Figure 3. Θ(t), Ĉ (t), and D̂(t) with r (t) = θ0 sinωt

Figure 4. Θ(t), Ĉ (t), and D̂(t) with r (t) = θ0 sinωt

IV. CONCLUSIONS

This paper presents a new adaptive control method that
includes a performance optimization objective. The per-
formance optimization is formulated as a multi-objective
optimal control problem coupled with a least-squares
parameter estimation of the unknown sensitivities of the
performance metric. The gradient optimization leads to
a set of modified time-varying Riccati and Sylvester
equations for which the standard weighting matrices
Q and R are modified to incorporate the estimates of
the performance metric sensitivities. The resultant time-
varying modification of the reference model necessitates
a revision of the standard MRAC using a time-varying
weighting matrix computed from the modified Riccati
equation. The revised MRAC achieves simultaneously
asymptotic tracking and performance optimization. The
effectiveness of the proposed method is demonstrated in
simulations of maneuver load alleviation control for a
flexible wing Generic Transport Model.
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