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This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics-
driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive
control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that
adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded
linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain
phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a linear damaged
twin-engine generic transport model of aircraft. The analysis shows that the system with the adjusted adaptive
gain becomes more robust to unmodeled dynamics or time delay.

I. Introduction

Various adaptive flight control techniques have been investigated over the past number of years.1–9 Adaptive con-
trol system adapts to system uncertainty to maintain performance and stability. However, there still remain challenges
in obtaining system robustness in the presence of unmodeled dynamics, parameter uncertainties, and disturbances.
Adaptive control laws are generally nonlinear and therefore stability robustness of adaptive control cannot be analyzed
by linear stability metrics in terms of phase and gain margins. These margins are designed into linear control laws to
provide robustness to account for system uncertainties such as modeling errors and exogenous disturbances. The lack
of stability metrics for adaptive control is a major challenge to enable adaptive control laws to be adopted in produc-
tion control systems. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some
stability metrics to achieve robustness.10 The bounded linear stability analysis method is applied in order to analyze
adaptive control in terms of the linear stability concept by establishing an approximate linear equivalent system as a
function of a mean square value of the input function to the adaptive law.12 The method uses an error bound analysis
to extract the dominant linear components of the nonlinear adaptive laws without linearization. The idea is to seek a
linear representation that bounds a nonlinear adaptive law.12 This linear equivalent system is only used for analysis
and not for actual adaptation. This method can provide an understanding of the stability margin of nonlinear adaptive
control that can be used to establish limits on adaptive gains during adaptation to ensure system robustness, and thus
the adaptation is made to be metrics-driven. The bounded linear stability analysis is studied in a framework of a model
reference adaptive control to improve system robustness.

II. Bounded Linear Stability Analysis (BLSA)

Given a plant model as11

ẋ = Apx+Bpu+ f (x) (1)

where x ∈Rn is a state vector, u ∈Rn is a control vector, and Ap, Bp ∈Rn×n are known plant matrices, and f (x) ∈Rn

is an unmatched, bounded uncertainty .
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The objective is to produce a controller that enables the plant to follow a reference model described by

ẋm = Amxm +Bmr (2)

where Am ∈Rn×n is Hurwitz and given, Bm ∈Rn×n is also given, and r ∈Rn ∈L∞ is a bounded command vector with
ṙ ∈ Rn ∈L∞ also bounded.

Defining the tracking error as x̃ = xm− x, the goal is to determine a controller that results in limt→∞ ‖x̃‖ = 0. A
dynamic inversion controller is designed to give the tracking error a second-order response with a proportional-integral
feedback control as

u = B−1
p

(
ẋm−Apx+Kpx̃+Ki

ˆ t

0
x̃dτ−uad

)
(3)

where Kp = diag(kp,1, . . . ,kp,n) > 0, and Ki = diag(ki,1, . . . ,ki,n) > 0.
The tracking error dynamics are expressed as

˙̃x =−Kpx̃−Ki

ˆ t

0
x̃dτ +uad− f (x) (4)

Let e =
[ ´ t

0 x̃dτ x̃
]>
∈ R2n, then

ė = Ace+b(uad− f ) (5)

where

Ac =

[
0 I
−Ki −Kp

]
, b =

[
0
I

]
(6)

The direct adaptive signal is parameterized by a linear-in-parameter matched uncertainty as4

uad = W>β (x) (7)

where W ∈ Rm×n is a weight matrix and β ∈ Rm is a basis vector with Lipschitz properties

‖β (x)−β (x0)‖ ≤C‖x− x0‖ (8)

for some constant C > 0, which implies a bounded derivative∥∥∥∥∂β (x)
∂x

∥∥∥∥≤ L (9)

for some constant L > 0.
The adaptive law is then given by4

Ẇ =−Γβe>Pb (10)

where Γ > 0 ∈ R is an adaptive gain and P > 0 ∈ R2n×2n solves the Lyapunov equation

PAc +A>c P =−Q (11)

where Q > 0 is a symmetric positive-definite matrix.
Stability of nonlinear adaptive control is usually analyzed by the Lyapunov method. The traditional linear stability

margin concept may be extended to nonlinear adaptive control if it could be represented by some linear approximations.
To obtain an equivalent linear time invariant system (LTI), the adaptive law can be linearized at a certain point in
time when the weights are at a steady state, usually long after initial transients have settled down. However, transient
responses during adaptation can be important and the adaptive law should be designed in a way that would prevent large
initial transients, which can compromise system robustness. The bounded linear stability analysis seeks a piecewise
linear equivalent approximation of nonlinear adaptive control over a short time window during which the LTI concept
of stability margins could be analyzed to provide a method for adjusting the adaptive gain for the next time window.
The linear equivalent approximation is not a replacement of an adaptive law but rather is used in conjunction with the
adaptive law for the stability analysis purpose.

The following propositions and statements are cited according to Nguyen et. al.12 The equilibrium state y = 0 of
the differential equation

ẏ =−β
> (t)Γβ (t)y (12)
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where y(t) : [0,∞)→R, β (t) ∈L2 : [0,∞)→Rn is a piecewise continuous and bounded function, and Γ > 0 ∈Rn×n,
is uniformly asymptotically stable, if there exists a constant α0 > 0 such that

1
T0

ˆ t+T0

t
β
> (τ)Γβ (τ)dτ ≥ Γα0 (13)

which implies that y is bounded by the solution of a linear differential equation

ż =−Γα0z (14)

for t ∈ [ti, ti +T0], where t0 = 0, ti = ti−1 +T0, and i = 1,2, . . . ,n→ ∞.
Another proposition states that the solution of a linear differential equation

ẏ = Ay+g(t) (15)

where y(t) : [0,∞)→ Rn, A ∈ Rn×n is a Hurwitz matrix, and g(t) : [0,∞)→ Rn ∈ L∞ is a piecewise continuous,
bounded function, is asymptotically stable and semi-globally bounded from above by the solution of a differential
equation12

ż = A
(
z−α

∣∣A−1c
∣∣) (16)

where α ≥ 1 ∈ R and c = supt |g(t)|.
Therefore, the bounded linear stability analysis approximates the adaptive law and the tracking error dynamics by

a piecewise linear representation as

d
dt

[
e

W̃>β

]
≤

[
Ac b

−Γα0b>P 0

][
e

W̃>β

]
+

[
∆1

∆2

]
(17)

for t ∈ [ti, ti +T0], where t0 = 0, ti = ti−1 +T0, and i = 1,2, . . . ,n→ ∞, where W̃ is the weight variation, and ∆1 and ∆2
are some upper bounds.

The piecewise linear approximation of the nonlinear adaptive laws and the tracking error dynamics over a local
time window enables the adaptive control to be analyzed in the context of an equivalent LTI system in a local sense
from which system robustness can be assessed via the linear stability margin concept during that time window. The
window width T can be adjusted to sufficiently capture initial transients for analyzing system robustness.

III. Model Reference Adaptive Control

A rate-command-attitude hold (RCAH) controller is designed using a reduced-order equation of the linearized
angular motion of a damaged aircraft model as13

ω̇ = A1ω +A2σ +Bδ (18)

where ω =
[

p q r
]>

is the aircraft angular rate, σ =
[

α β φ δT

]>
is a trim state vector to maintain

trim condition, δ =
[

δa δe δr

]>
is a control vector of aileron, elevator, and rudder deflections, A1 ∈ R3×3,

A2 ∈ R3×4, and B ∈ R3×3 are true plant matrices which are unknown. The nominal aircraft dynamics is described by

ω̇
∗ = A∗1ω +A∗2σ +B∗δ (19)

where A∗1, A∗2, and B∗ are the nominal plant matrices which are assumed to be known. These matrices can generally
be assumed to be associated with an ideal or undamaged aircraft.

An architecture of the model reference adaptive control (MRAC) method is shown in figure 1. This architecture
uses a reference model that translates rate commands into desired acceleration commands, a proportional-integral (PI)
feedback control for rate stabilization and tracking, a dynamic inversion controller that computes a control allocation
using desired acceleration commands, and a neural net direct adaptive law to compensate for the tracking error.
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Fig. 1 - Model Reference Adaptive Control (MRAC) Architecture.

The reference model filters a pilot command ωc into a reference angular rate ωm via a first-order model

ω̇d = Amωm +Bmωc (20)

where Am = −diag(ω1, ω2, ω3) ∈ R3×3 is Hurwitz and Bm ∈ R3×3. For the transport aircraft, typical values for
ω1, ω2, and ω3 are 3.5, 2.5, and 2.0 rad/s for roll, pitch, and yaw respectively.

A tracking error signal ωe = ωm−ω is formed by comparing the reference angular rate with the actual angular
rate output. The inner loop is then closed with a proportional-integral (PI) controller ue operated on the tracking error
signal as

ue = Kpωe +Ki

ˆ t

0
ωedτ (21)

where Kp ∈ Rn×n and Ki ∈ Rn×n are diagonal positive-definite proportional and integral gain matrices. The PI con-
troller is designed to better handle errors detected from the angular rate feedback. A windup protection is included to
limit the integrator at its current value when a control surface is saturated.

Let ω̇d be a desired acceleration that comprises the reference model acceleration, PI controller, and a neural net
adaptive signal.

ω̇d = ω̇m +ue−uad

= Amωm +Bmωc +Kpωe +Ki

ˆ t

0
ωedτ−uad (22)

The dynamic inversion controller is obtained using the nominal plant model, assuming that B∗ is invertible.

δ = B∗−1 (ω̇d−A∗1ω−A∗2σ) (23)

The tracking error dynamics can be expressed as

ė = Ace+b(uad− ε) (24)

where e =
[ ´ t

0 ωedτ ωe

]>
, uad is the direct adaptive control signal, and Ac ∈ R6×6 and b ∈ R6×3 are defined as

Ac =

[
0 I
−Ki −Kp

]
> 0, b =

[
0
I

]

The adaptive signal uad , and adaptive law are defined according to Eq.7 and Eq.10 respectively.

As explained in the previous section, the stability of the adaptive law can be analyzed by a conservatively bounded
linear stability using a linear equivalent adaptive law.
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Let W ∗be the constant ideal weight and W̃ = W −W ∗ be the weight variation, therefore

d
dt

(
W̃>β

)
≤−Γα0b>Pe+∆1 (25)

where ∆1 > 0 is a constant that represents an upper bound error, and α0 > 0 is a mean square value of the input
function to the adaptive law such that

α0 ≤
1
T

ˆ t+T

t
β
>

βdτ ≈ 1
n

n−1

∑
k=0

β
T

β (t + kT ) (26)

where T = n∆t is the analysis time window and n is the number of time steps ∆t.

Since uad =
(
W ∗+W̃

)T
β , then the linear bound to the adaptive law (Eq. 25) is rewritten as

d
dt

(uad) =−Γα0b>Pe+∆1 (27)

or by Laplace transform

uad(s) =−Γα0
P22s+P12

s
ωe(s)+∆2 (28)

where ∆2 is a constant bound.
Using the bounded linear stability analysis approach, the off-nominal open-loop transfer function between the

output ω(s) and the tracking error ωe(s) is obtained as11

G(s) =
ω

ωe
(s) =

kps2 +(ki +Γα0P22)s+Γα0P12

s3 +
(
BB∗−1A∗1−A1

)
s2

×BB∗−1 (29)

If the adaptation is such that it results in a perfect model matching condition so that e→ 0, then the open-loop
transfer function in Eq. (29) becomes an ideal transfer function:

G∗(s) =
kps2 +(ki +Γα0P22)s+Γα0P12

s3 (30)

The off-nominal open-loop G(s) requires the knowledge of the true plant model, while the ideal open-loop G∗(s)
contains all known parameters and thus is most suited in order to adjust the adaptive gain. The process is explained in
more details in the next section.

The ideal open-loop transfer function G∗(s) is used in order to obtain an estimation of phase margin and time-delay
margin of the generic transport model of aircraft, and in order to examine the effect of adaptive gain. It is well known
that while increasing the adaptive gain Γ up to some point does improve the tracking performance, it causes a decrease
in phase margin and time-delay margin. This effect is shown in figures 2 with the plots of phase margin and time-delay
margin versus adaptive gain.
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Fig. 2 - Effect of Adaptive Gain Γ on Phase Margin (left) and Time-delay Margin (right).

5 of 13

American Institute of Aeronautics and Astronautics



Figure 3 is a plot of the pitch rate doublet tracking, and roll and yaw rate responses for two different adaptive
gains. It is shown that with Γ = 700 an improved tracking performance is achieved as compared to performance with
Γ = 50. However as shown in figure 2, the stability margins obtained with Γ = 50 are up to 3 times higher. Therefore
a trade-off should be made in order to choose a proper adaptive gain that both preserves the margins and provides a
viable tracking performance. As discussed in the next, by adjusting the adaptive gain during adaptation in order to
achieve certain criteria for phase margin, adaptation is made to be metrics-driven.
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Fig. 3 - Tracking Performance to Pitch Rate Doublet Input.

IV. Metrics-Driven Adaptive Control

The ideal open-loop transfer function (Eq.30) contains all known parameters and therefore it could be used for
adjusting the adaptive gain Γ during adaptation in order to meet certain phase margin requirements. The frequency
response of the ideal transfer function is used to define the phase margin φm and the corresponding gain crossover
frequency ωg.

By definition, phase margin is described as φm = arg [G∗( jωg)]+Π15–17 or:

φm = arctan

(
(ki +Γα0P22)ωg

Γα0P12− kpω2
g

)
−π/2 (31)

and the corresponding gain-crossover frequency ωg is defined by
∣∣G∗( jωg)

∣∣= 1 or:

√√√√(Γα0P12− kpω2
g
)2 +(ki +Γα0P22)

2
ω2

g

ω4
g +ω6

g
= 1 (32)

The α0 parameter is computed according to Eq. (26) within a given time-window T . Using this value and a
desired phase-margin φm, Eqs. (31) and (32) are solved together using a nonlinear root search to calculate ωg and the
appropriate adaptive gain Γ. The calculated Γ is then used for adaptation for the next time-window. With the purpose
of reaching a desired phase-margin φm, this process is repeated for each time-window. Therefore, the adjusted adaptive
gain instead of a fixed gain is used in the adaptive control. The analysis result is illustrated in the simulation section.

Investigation on the convergence of the system of nonlinear equations (Eqs. 31, 32) indicates that for any desired
phase margin of the range φm ≤ 65deg, there exist solutions for Γ and ωg. However, there is no solution for the
system of nonlinear equations given the phase margins in the range φm > 65deg. This fact is shown in figure 4, which
demonstrates that only the graphs for the solution of phase margin Eq. (31) in the range of10− 65deg intersect with
the graph for the solution of gain crossover frequency ωg. No solution intersection between the phase margin φm and
gain crossover frequency ωg is obtained out of this range.
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Fig. 4 - Limit on the Desired φm Criteria for the Metrics-Driven Adaptive Control.

V. Simulation

In order to illustrate metrics-driven adaptive control with the BLSA method, a simulation is performed for a
damaged twin-engine generic transport model (GTM)14 as shown in figure 5. A wing damage simulation is performed
with 25% of the left wing missing. A pitch doublet maneuver is commanded while the roll and yaw rates are regulated.

Fig. 5 - Generic Transport Model.

As mentioned in the previous section, adjusted adaptive gain Γ is obtained from the analysis of the ideal open-loop
transfer function, Eq. (30), with the purpose of achieving the desired phase margin φm = 45deg. Over each time-
window, the adjusted adaptive gain Γ is calculated, and it is then used for adaptation for the next time-window. The
metrics-driven analysis as shown in this paper is only performed for the pitch axis. Figure 6 shows the α0 value for
the pitch axis obtained over the time-window of T = 0.65sec (left plot), and the corresponding adjusted adaptive gain
Γ (right plot).
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By evaluating the ideal open-loop transfer function (Eq.30) and using the adjusted adaptive gain, a phase margin
estimate of 45deg is obtained. However, if instead a fixed adaptive gain Γ = 1000 is used, a phase margin of only
21deg is achieved as illustrated in figure 7.
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Fig. 7 - Estimated Phase Margin with Adjusted and Fixed Adaptive Gain Γ.

Figure 8 is a plot of the tracking performance of the aircraft angular rates to the pitch rate doublet command. The
tracking performance is illustrated using both the adjusted adaptive gain and the fixed gain Γ = 1000. Although the
pitch rate performance is not much affected by the adjusted Γ, the roll and yaw rate suffers with higher tracking error
as compared to the performance with fixed Γ = 1000.

Figure 9 shows adaptive control signal uad for pitch, roll, and yaw axes. Using adjusted Γ, adaptive control signal
is shown to become more stable, with less oscillations.
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Fig. 8 - Pitch Rate Response with Adjusted and Fixed Adaptive Gains.
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Fig. 9 - Adaptive Control Signal Response with Adjusted and Fixed Γ.

In order to assess the time-delay margin analysis of the metrics-driven adaptive control method, an added uncer-
tainty as a time-delay is introduced at the control input signal to the aircraft dynamics. The maximum time-delay
that system tolerates is shown in figure 10 (left plot) using adjusted and fixed Γ. The right plot shows the estimate
of the time-delay margin obtained from the ideal open-loop transfer function (Eq.30). Both plots illustrate that with
adjusted Γ versus fixed Γ = 1000, a much higher time-delay margin is achieved. This indicates that by using the ad-
justed Γ, system robustness is significantly improved. Moreover, comparing the two plots indicate that the time-delay
margin analysis using BLSA method (right plot) provides a conservative and practical estimate for the actual max
time-delay that system tolerates (left plot). This fact specially proves that BLSA method is reliable for the purpose of
metrics-driven adaptive control.
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Fig. 10 - Time-Delay Analysis with Adjusted and Fixed Adaptive Gain Γ.

Figures 11 and 12 illustrate the angular rate performance and the adaptive control signal respectively, with the
added maximum tolerated time-delay of td = 0.22sec. Both figures indicate that despite an added high value of time-
delay td = 0.22sec, system still retains its stability.

Figure 13 is a plot of tracking error with added maximum time-delay. The plot again shows that with adjusted
Γ if up to 0.22sec time-delay is introduced in the system, tracking error still remains stable. While with the fixed
Γ = 1000, system becomes unstable with only 0.07sec of added time-delay.
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Fig. 11 - Angular Rate Tracking Performance with Added MAX. Time-Delay.
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VI. Discussion

One of the issues with adaptive control is the lack of metrics to assess stability robustness in the presence of
unmodeled dynamics or time-delay. Fast adaptation is needed in order to improve tracking performance when a
system is subject to a large source of uncertainties such as structural damage to the aircraft. With fast adaptation, the
direct model reference adaptive control (MRAC) results in reduced phase and time-delay margin. Therefore, adaptive
gain must be chosen carefully in order to avoid instability due to time-delay or unmodeled dynamics. By adjusting the
adaptive gain during adaptation to meet certain stability margin requirements, the adaptive law is made to be metrics-
driven. With bounded linear stability analysis (BLSA) method, a piecewise linear upper bound for the adaptive law
is formed, and from there the true off-nominal and ideal open-loop transfer functions are obtained. With the goal of
achieving a certain phase margin φm criteria, the ideal open-loop transfer function is used in order to adjust the adaptive
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gain Γ during adaptation. As demonstrated in figure 4, the analysis indicates that the adaptive gain Γ can always be
adjusted for a specific desired phase margin on the range of φm ≤ 65 deg.

The stability margin analysis of the ideal open-loop transfer function Eq.(30) indicates that with adjusted Γ an
estimate of the phase margin and time-delay margin of φm = 45deg and T Dm = 0.16sec is obtained; while with a
fixed adaptive gain Γ = 1000, a phase margin and time-delay margin as low as φm = 21.5deg and T Dm = 0.04sec
is achieved respectively (figure 7 and figure 10 _right plot_). Figures 8 and 9 compares the behavior of the control
system with the adjusted and fixed Γ . The tracking performance with adjusted Γ is shown to suffer at the beginning of
the adaptation, mostly in the roll and yaw axis (figure 8). However using the adjusted Γ, the adaptive control signals
are shown to become even more stable as compared to an oscillatory response obtained with the fixed Γ = 1000 (figure
9).

Time-delay analysis is performed in order to evaluate the metrics-driven adaptive control with BLSA method. By
adding a time-delay between the control signal and aircraft, the simulation with adjusted Γ indicates that system still
remains stable with as much as 0.22 sec of introduced time-delay. However with the fixed adaptive gain Γ = 1000,
system tolerates only a very small amount 0.07 sec of time-delay (figure 10 _left plot_). This indicates that system
with adjusted adaptive gain Γ becomes up to 3 times more robust to unmodeled dynamics or time-delay. Figures 11
and 12 illustrate the tracking performance and adaptive control signals with an added time-delay of 0.22 sec in the
system, when adjusted Γ is used.

The bounded linear stability analysis in this paper is performed over a time-window of T = 0.65 sec. It should be
mentioned that a trade-off should be made between a large time-window that does not properly capture transients, and
a small time-window that causes poor convergence of the adaptive parameters.

The analysis presented in this paper provides a promising method for improving the robustness of adaptive systems.
Some research could be done to study the effect of varying the time-window T in order to both capture the transient and
provide sufficient adaptation. This paper used the stability margin notations for a single-input single-output (SISO)
system, and the metrics-driven analysis was only performed for the pitch axis. However, further work and research
needs to be pursued in order to perform frequency response for the multi-input multi-output (MIMO) systems, and
in order to introduce the analysis of singular value for the metrics-driven adaptive control with BLSA method. The
next step for this work is to apply the metrics-driven adaptive control method to a real-time flight control simulation
software, and analyze the method using the full scale damaged generic transport model of aircraft.

It should be noted that there are other approaches that attempt to predict the time-delay margin of adaptive control
systems. One such method is based on Lyapunov theory for a time delay system using Pade approximation.18 However,
the predicted time-delay margin using this approach is quite conservative and may not be well-suited for a practical
implementation.

VII. Conclusion

The application of bounded linear stability analysis on adaptive systems is evaluated in order to construct a method-
ology for establishing a metrics-driven learning paradigm that preserves margins during adaptation by adjusting the
adaptive gain. With the purpose of achieving a certain phase margin requirement, the adaptive gain is re-calculated
over a time-window during adaptation. Therefore, the adjusted adaptive gain in used in the adaptive law. The analysis
is performed on a linear damaged twin-engine generic transport model. The analysis indicates that with the adjusted
adaptive gain Γ the system robustness to uncertainty is increased significantly, and the desired phase margin criteria is
achieved. By using the adjusted Γ, although the tracking performance is degraded to some point, the adaptive control
signals in all axes become more stable. Future work will be conducted to further investigate the metrics-driven learning
paradigm, and also to apply the method to realistic systems with different failure scenarios.
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