
Noname manuscript No.
(will be inserted by the editor)

Symbolic PathFinder: Integrating Symbolic Execution with Model
Checking for Java Bytecode Analysis

Corina S. Păsăreanu · Willem Visser · David

Bushnell · Jaco Geldenhuys · Peter Mehlitz ·
Neha Rungta

Received: date / Accepted: date

Abstract Symbolic Pathfinder (SPF) is a software analysis tool that combines symbolic ex-
ecution with model checking for automated test case generation and error detection in Java
bytecode programs. In SPF, programs are executed on symbolic inputs representing multiple
concrete inputs and the values of program variables are represented by expressions over those
symbolic inputs. Constraints over these expressions are generated from the analysis of different
paths through the program. The constraints are solved with off-the-shelf solvers to determine
path feasibility and to generate test inputs. SPF incorporates techniques for handling input
data structures, strings, and native calls to external libraries, as well as for solving complex
mathematical constraints. Model checking is used to explore different symbolic program ex-
ecutions, to systematically handle aliasing in the input data structures, and to analyze the
multithreading present in the code. We describe the tool and its application at NASA, in
academia, and in industry.

Keywords Symbolic execution · Model checking · Testing · Java

1 Introduction

Symbolic execution [15, 36] is a popular analysis technique that performs execution of a pro-
gram on symbolic values rather than concrete data inputs. The technique systematically collects
input constraints along the executed program paths while computing the program effects as
algebraic expressions in terms of the symbolic values. Symbolic execution was introduced in
the 70s, but only recently it has found wider applicability in practice. This is due to recent
algorithmic advances and to the increased availability of powerful constraint solving technol-
ogy and computational resources [12]. We present Symbolic Pathfinder (SPF) – a tool for

Corina S. Păsăreanu · David Bushnell · Peter Mehlitz · Neha Rungta
NASA Ames Research Center
Moffett Field, CA 94035, USA
E-mail: {corina.s.pasareanu, david.h.bushnell, peter.c.mehlitz, neha.s.rungta}@nasa.gov

Willem Visser · Jaco Geldenhuys
University of Stellenbosh,
South Africa
E-mail: {wvisser, jaco}@cs.sun.ac.za

2 Corina S. Păsăreanu et al.

performing symbolic execution of Java bytecode. The tool is typically used for systematic gen-
eration of test cases that achieve high testing coverage and for checking safety violations, such
as assert and concurrency errors, in programs with unspecified inputs. SPF handles inputs
and operations on booleans, integers, reals, strings, and complex data structures [33]. SPF is
tightly integrated with the Java PathFinder (JPF) model checker [32, 70]. The JPF framework
provides SPF the ability to systematically explore symbolic program paths, different thread
interleavings, as well as other forms of nondeterminism present in the code. Furthermore, SPF
incorporates specialized techniques for handling external library calls [44] and for solving com-
plex mathematical constraints [7]. SPF is a freely available open-source project [64]. A parallel
version also exists [65].

SPF is quite general and it can be applied at different phases of software development.
However, as it is not always possible to run the whole program within the SPF’s customized
execution environment (due to sheer size, native libraries, hardware-software interaction, etc.),
SPF is most effective for unit or sub-system level testing. It is often the case that the inputs
to the unit are constrained by the environment, e.g., the calling context of a method or set
of methods representing the unit. To avoid exploration of unrealistic program paths, such
constraints would need to be incorporated in the analysis. SPF addresses this problem in
several ways. First, SPF allows symbolic execution to be started at any point in the program
and at any time during the concrete execution of a program. In other words, one can run
the program in “concrete execution mode” within SPF’s specialized Java virtual machine and
start symbolic execution based on some condition on the concrete program state. Thus, the
concrete execution of the system can be effectively used to set up the environment for the
symbolic execution of a unit in the system. Furthermore, one can analyze a unit symbolically,
while some of the parameters and the calling context of the method are kept concrete. SPF
also provides a mechanism for writing preconditions on the inputs, via annotations in the
code. Such unit preconditions help improve the precision of the unit-level symbolic analysis
by avoiding exploration of program paths that violate the constraints.

SPF has a diverse user base, both at NASA, where SPF helped uncover subtle bugs in
flight software [44], in academia, where SPF is being used and enhanced for various research
projects, and in industry; most recently SPF was used at Fujitsu to test web applications with
over 60,000 source lines of code [39, 48, 60].

There are quite a few tools available that perform symbolic execution for programs written
in modern programming languages (see Section 8). What distinguishes SPF from these tools
is its ability to handle complex symbolic inputs and multithreading, and its extensibility as
demonstrated by the many applications built on top of SPF and discussed in Section 7.

1.1 Tool Overview

A high-level overview of the tool is shown in Figure 1. SPF requires as input: (a) the class files
of an executable program, (b) a configuration file specifying which methods in the program
should be executed symbolically, and (c) properties being verified or any other coverage criteria.
The configuration can contain other options to instruct SPF to use a specific constraint solver,
treat complex data as symbolic, etc. The output of SPF is a test suite (test inputs or test
sequences) and/or the counterexamples for the failed properties.

SPF relies on the Java PathFinder model checker (jpf-core) to systematically explore the
different symbolic execution paths, as well as different thread interleavings. Furthermore, SPF
uses JPF’s built-in strategies for state space exploration, such as depth-first search or breadth-
first search. To limit the possibly infinite search space that results from symbolically executing

Symbolic PathFinder 3

Fig. 1 Symbolic Pathfinder Overview

programs with loops or recursion, a user-specified depth needs to be provided. The constraints
created during symbolic execution are solved with off-the-shelf solvers to determine path feasi-
bility and to generate test inputs. A generic interface facilitates the integration of new solvers
and users can easily configure the symbolic execution to use any one of the supported solvers.
Preconditions specified with user annotations on methods’ inputs are leveraged to reduce the
input data domains and to only generate test inputs that satisfy the preconditions.

1.2 Outline

The rest of this article is organized as follows. In the next section we give some background
on symbolic execution. In Section 3 we describe the overall JPF framework and in Section 4
we describe in detail elements of SPF. Sections 5 and 6 provide an in-depth description of
two recently developed techniques that further distinguish SPF from other symbolic execu-
tion tools: handling of native calls (through mixed concrete-symbolic solving) and symbolic
string analysis. Section 7 describes some novel analyses that have been built by using SPF,
demonstrating its usability and extensibility. A comparison with related tools is provided in
Section 8 and Section 9 gives conclusions and future work.

2 Symbolic Execution

Symbolic execution [15, 36] is a program analysis technique that uses symbolic values as pro-
gram inputs and symbolic expressions to represent the values of program variables. As a result,
the outputs computed by a program are expressed as a function of the symbolic inputs. The
state of a symbolically executed program includes the (symbolic) values of program variables,
a path condition (PC), and a program counter. The PC is a conjunction of constraints over
symbolic expressions that encodes the conditions on the input to follow a path through the
program. The path associated with a PC can be executed concretely using input values that
satisfy the constraints in the PC. The paths generated during the symbolic execution of a
program are characterized by a symbolic execution tree.

4 Corina S. Păsăreanu et al.

int x, y;
[1] if (x > y)
[2] result = x - y;
[3] else
[4] result = y - x;
[5] assert (result > 0);

x: Symx, y: Symy
PC : true

[1] [1]

x: Symx, y: Symy
PC : Symx > Symy

[2]

x: Symx, y: Symy
PC : Symx ≤ Symy

[4]

x: Symx, y: Symy
result: Symx − Symy
PC : Symx > Symy

[5] [5]

x: Symx, y: Symy
result: Symy − Symx
PC : Symx ≤ Symy

[5] [5]

x: Symx, y: Symy
result: Symx − Symy
PC : Symx > Symy
∧ Symx − Symy > 0

Path 1

x: Symx, y: Symy
result: Symx − Symy
PC : Symx > Symy
∧ Symx − Symy ≤ 0

FALSE!

x: Symx, y: Symy
result: Symy − Symx
PC : Symx ≤ Symy
∧ Symy − Symx > 0

Path 2

x: Symx, y: Symy
result: Symy − Symx
PC : Symx ≤ Symy
∧ Symy − Symx ≤ 0

Path 3

Fig. 2 Example for symbolic execution (top left) and corresponding execution tree (right).

As an illustrative example [44], consider the code in Figure 2 (top left) that computes the
absolute difference between two input integers x and y. The standard, concrete execution of
the program will follow only one path through the code, based on the values of x and y. Given
the values x=2 and y=1, the true branch of the if statement at line [1] is executed, and in
turn the assertion is not violated.

Symbolic execution starts with symbolic, rather than concrete, input values, x = Symx,
y = Symy, and sets the initial value of PC as true. The corresponding (simplified) execution
tree is shown in Figure 2 (right). At each branch point, PC is updated with constraints on the
inputs in order to choose between alternative paths. For example, after executing line [1] in
the code, both alternatives of the if statement are possible, and PC is updated accordingly
with the two different possibilities. When the path condition is unsatisfiable it becomes “false”,
which means that the corresponding path is infeasible. Symbolic execution does not continue
further along an infeasible path.

For our example, symbolic execution explores three different feasible paths, with the fol-
lowing path conditions (see Figure 2 (right)):

– PC1 : Symx > Symy ∧ Symx − Symy > 0 for Path 1,
– PC2 : Symx ≤ Symy ∧ Symy − Symx > 0 for Path 2,
– PC3 : Symx ≤ Symy ∧ Symy − Symx ≤ 0 for Path 3.

Furthermore, PC3 characterizes the concrete program executions that violate the asser-
tion. This demonstrates that the code has an unstated precondition, namely that x 6= y. For
test input generation, the obtained path conditions are solved using off-the-shelf decision pro-
cedures and the solutions are used as test inputs that are guaranteed to exercise all the paths
through this code.

3 Java PathFinder

Java Pathfinder (JPF or JPF-core) [32] is an extensible run-time environment for verification
of Java bytecode, i.e., compiled Java programs. JPF-core is available as the jpf-core project

Symbolic PathFinder 5

verification
artifacts

*.class
*.jar

Java bytecode
program

native
peer

choice
generator

Search Strategy

state space
branches

state
management

listener

library
abstraction

execution
observation

VM
driver verification

artifacts

instruction
set

execution
semantics

reports, test data

*.jpf
*.prop

publisherVirtual MachineSystem
under Test

JPF configuration

 result +trace

JPF
extension

JPF
core

Fig. 3 JPF’s high-level structure.

from the JPF distribution [32]. JPF has been under development at the NASA Ames Research
Center since 1999 and was open-sourced in 2005. Currently, JPF has an active user and
developer base in academia, industry, and government agencies and labs. JPF was originally
developed as a concrete-value, explicit-state software model checker for concurrent programs.
Over the past few years, however, JPF has evolved into a extensible Java analysis framework
for developing and exploring different verification techniques and application domains.

The inputs to JPF are: the class files (Java bytecode) for a system under test and a set
of configuration text files which specify the desired JPF execution mode, program properties
to verify, and artifacts to generate. The verification artifacts produced are usually reports in
various formats.

An important feature of JPF is its extensibility that allows implementation of new ex-
ecution modes, program property checks, report formats and user interfaces as run-time-
configurable plugin modules (see Figure 3). Due to its origins as a software model checker,
the core of JPF implements a Java Virtual Machine (JVM) that supports backtracking, state
matching, and nondeterminism in both data and scheduling decisions. JPF constructs the
program state space on-the-fly during the execution of the program in the special virtual ma-
chine. A transition in the state space is a sequence of bytecode instructions executed by a
single thread, where the first instruction in the sequence represents a nondeterministic choice
corresponding to a thread context switch. At every transition boundary, JPF saves the cur-
rent JVM state (the program state) in a serialized form for the purpose of backtracking and
state matching. Changes of the JVM state are performed inside the interpreter of bytecode
instructions, which is also a part of JPF.

The following extension mechanisms of JPF are particularly relevant for SPF:

– Choice Generators – state space branch points used to generate choices,
– Instruction Factories – instruction set semantics,
– Attribute Objects – metadata associated with concrete values and objects,
– Native Peers – library abstractions,
– Listeners – execution monitoring.

Some of these mechanisms had been extended specifically to support SPF. The attribute
objects are used to store and propagate symbolic information while the instruction factories
provide the ability to replace the standard execution semantics with a symbolic semantics.
These mechanisms have now become sufficiently general to facilitate other applications as

6 Corina S. Păsăreanu et al.

well, e.g. to keep track of physical dimensions and numeric error bounds or to perform taint
analysis. The remainder of this section contains general descriptions for each of these constructs
and mechanisms. Section 4 explains their concrete use within our SPF tool.

3.1 Choice Generators

JPF uses a generic model of the program state space consisting of States, Choices and Tran-

sitions. States are restorable snapshots of a program execution along a particular path. The
snapshot contains the heap of the program, its current program location, current state of the
various threads (running, waiting, blocked etc.), and the operand stacks of the corresponding
threads. Note that in a sequential program there is only a single thread and operand stack.
Choices are the discriminating execution contexts for possible executions leading out of a state,
such as the choice of which thread to run next. Transitions are the sequence of executed in-
structions between two states, starting with a specific choice value and ending in an operation
that constitutes the next choice.

JPF captures state space branch points in dedicated ChoiceGenerator objects, which keep
track of the choice set for backtracking purposes. Typical examples of choices are threads
representing different scheduling sequences and numeric values representing random numbers,
which are both handled in core JPF. However, extensions can introduce their own choice types
such as user input, or – as in SPF – branch condition values.

3.2 Instruction Factories

The standard Java Virtual Machine specification defines a set of bytecode instructions for
operations such as invoking methods, accessing fields and pushing or popping values from the
operand stack. JPF represents each of these bytecodes by a dedicated Instruction class that
provides a specific execute() method defining its respective execution semantics. Each method
that is loaded by JPF internally stores the associated code as an array of Instruction objects,
which are created from the bytecodes read from the corresponding class file.

JPF instantiates such Instruction objects by means of an abstract InstructionFactory, i.e.,
it does not assume a particular implementation and imposes very few constraints about such
execution semantics. The concrete InstructionFactory that implements the Java execution
semantics can be overridden by JPF extensions. The JPF core distribution contains an imple-
mentation of the standard Java stack machine instruction set that operates on concrete values
of operands, local variables and object fields. Alternative instruction sets can provide different
execution semantics by means of overriding the execute() methods in their implementation of
Instruction classes.

3.3 Attribute Objects

In addition to storing concrete values of operands, local variables, and fields according to
the JVM specification, JPF provides a mechanism to attach extra information (metadata) to
program data by means of Attribute Objects (see Figure 4).

Whenever a bytecode instruction transfers a concrete value between operands, local vari-
ables and fields, the associated attribute object reference is automatically copied by JPF, i.e.
the attribute follows the value. If JPF backtracks to a previous state, attribute references are

Symbolic PathFinder 7

lo
ca

ls

values attributes

op
er

an
ds

slots

values attributes

putfield

getfield
dup
..

iload
..

istore
..

caller invokevirtual
..

return
..attribute

object
setAttr(i,o)

getAttr(i)

- listener
- Instruction
- native peer getOperandAttr(i)

getLocalAttr(i)

setOperandAttr(i,o)
setLocalAttr(i,o)

JPF core

JPF
extension

heap
(object fields)

stack
(stack frames)

create

callee

JPF object

host VM object

arrows represent
data flow

is a

data flow

Fig. 4 JPF Attributes.

restored. Because of these features, attributes are suitable for analyzing data flow and keeping
track of information such as symbolic values – as in the case of SPF.

In addition, attribute objects can also be set and queried for JPF-specific constructs such
as ChoiceGenerators and heap objects. All constructs that can have attributes provide a
consistent API to set, add and query attributes based on their type, enabling coexistence of
extensions that use this mechanism for different purposes.

3.4 Native Peers and the Model Java Interface

Native Peers are companion classes that can be used to execute certain methods of the system
under test on the host Java Virtual Machine (JVM) instead of JPF. Each time JPF loads
a system under test class, it uses the package and class name to locate a corresponding Na-
tivePeer. If such a class is found, JPF identifies potential peer methods by means of their
modifiers and signatures.

In analogy to the standard Java Native Interface (JNI), the related JPF mechanism is called
the Model Java Interface (MJI). In contrast to JNI, MJI allows interception of all methods,
including constructors and static initialization. MJI is therefore a suitable mechanism for
library abstraction. NativePeer classes are also the preferred way to handle native, platform
specific Java methods such as file I/O, which cannot be directly executed by JPF and hence
would result in UnsatisfiedLinkErrors at run-time.

When a respective method is called during system under test execution, JPF uses standard
Java reflection to invoke the associated peer method, passing in an additional MJIEnv argument
that allows the peer method code to access JPF internal data and functions.

8 Corina S. Păsăreanu et al.

3.5 Listeners

Listeners are JPF plugins that can monitor and control JPF’s internal operations. Both the
JVM and the Search object maintain their own sets of listeners and notify each listener in-
stance of events such as instruction execution, thread context switches, object allocation,
state backtracking, and many more. The JPF listener mechanism is an instance of the Pub-
lisher/Subscriber design pattern.

Listeners can query the program state and control JPF accordingly, for instance by reg-
istering ChoiceGenerators or detecting property violations. Consequently, listeners are often
used to implement high level property checks or to set object attributes.

4 Symbolic PathFinder

Symbolic PathFinder (SPF) is an extension project in JPF and it is available as the project
jpf-symbc from the JPF distribution [32]. SPF replaces the standard concrete bytecode in-
terpretation of JPF-core with a non-standard symbolic interpretation using an instruction
factory. The symbolic information is stored in attributes associated with program data and is
propagated as needed during symbolic execution (see Section 3.3). Furthermore, SPF uses JPF
to systematically generate and execute the symbolic execution tree of the code under analysis
and also to handle multithreading. SPF uses a variety of off-the-shelf decision procedures and
constraint solvers to solve the constraints generated by the symbolic execution of bytecode
programs.

Choice generators are used to implement nondeterministic choices when symbolically ex-
ecuting branching conditions, and listeners are used for printing the results of the symbolic
analysis. SPF also uses native peers for modeling native libraries. Recent work, [45], imple-
ments an alternative way for executing native libraries, without modeling them. We describe
this technique in detail in Section 5. In this section, we describe the basic features of SPF and
present several illustrative examples.

4.1 An Instruction Factory for Symbolic Execution of Bytecodes

As described in Section 3.2, JPF analyzes an input Java program (i.e. a set of class files) by in-
terpreting the Java bytecodes in a customized Virtual Machine. It also provides a mechanism to
extend execution semantics of the bytecode (recall Figure 3). JPF uses an InstructionFactory

to instantiate its Instruction objects. In order to perform symbolic execution, SPF imple-
ments a SymbolicInstructionFactory that creates instances of instructions for the symbolic
interpretation of Java bytecodes (see Figure 5). The new symbolic Instruction classes in the
SymbolicInstructionFactory inherit from JPF-core’s DefaultInstructionFactory. The sym-
bolic instructions classes conditionally add new functionality required for symbolic execution
(e.g., in case the operands are symbolic), otherwise (e.g., in case the operands are concrete)
they just delegate execution to their concrete super classes. This enables simultaneous concrete
and symbolic execution modes.

As an example, JPF’s standard execution of the ifeq bytecode pops a condition value from
the operand stack and branches (or not) based on that value. The SPF implementation of
the same bytecode ignores the condition value on the operand stack when it is symbolic, and
instead uses a ChoiceGenerator to produce condition values that explore both branches. See
Section 4.3 for more details and Section 4.9 for some longer examples.

Symbolic PathFinder 9

*.class ifeq(..) : Instruction
...

«interface»
InstructionFactory

DefaultInstructionFactory SymbolicInstructionFactory ...

execute()
Instruction

... ...

init (JavaClass)

factory
code : Instruction[]

MethodInfo

concrete value
instruction set

symbolic value
instruction set

code[i] =
 factory.ifeq(..); JPF core

JPF extension

execute()
IFEQ

execute()
IFEQ

Fig. 5 Symbolic Instruction Factory replacing Default Instruction Factory.

4.2 Symbolic Data Attributes

As described in Section 3.3, JPF can associate data attribute objects to storage entities such
as values of operands, values of local variables, and values of fields. SPF uses these attributes
to store the symbolic expressions computed during symbolic execution. The attributes are
created or accessed in bytecode instructions via accessors (e.g., methods setAttr, getAttr).
Attribute manipulation is mainly done inside of the JPF-core, within the various operations
that modify and store the program states. Therefore, to implement symbolic execution, SPF
only overrides instruction classes that create or modify symbolic information, such as instruc-
tions that perform numeric operations, compare-and-branch, and type conversion operations.
Other bytecode instructions that simply retrieve or store values remained unchanged, since
the attributes are propagated by JPF-core.

4.3 Handling Branching Conditions

The symbolic execution of conditional branch statements involves creating two choices in JPF.
The two choices consist of adding the decision predicate in the branch statement and its nega-
tion respectively to the path condition in each choice. In order to generate these two choices,
we implemented a new choice generator (PCChoiceGenerator) that branches the execution in-
side JPF. A path condition is associated with each choice generated by PCChoiceGenerator;
the path condition is checked for satisfiability using a decision procedure or a constraint solver.
If the path condition becomes un-satisfiable, JPF is automatically instructed to backtrack.

4.4 Multithreading, State matching, Loops and Recursion

Our framework performs an inter-procedural symbolic analysis by using JPF to systematically
generate and explore the symbolic execution tree of the analyzed program. JPF is also used to
systematically analyze all the possible thread interleavings and other forms of nondeterminism
that might be present in the code. SPF takes advantage of JPF’s built-in mechanisms for

10 Corina S. Păsăreanu et al.

combating state explosion, such as partial order and symmetry reductions. By default SPF is
run with state matching turned “off”. To limit the possibly infinite (symbolic) search state
space that results from analyzing programs with loops or recursion, the user needs to provide
a limit on the model checker’s search depth or on the number of constraints encoded in the
path condition.

When run with state matching “on”, SPF explores an underapproximation of the program
behavior, since, by default, the attributes used to store symbolic values do not participate in
the matching. SPF also provides some support for abstract state matching, where only the
shape of the program heap is used for matching. Note that in this case the symbolic state space
explored by SPF forms a graph rather than a tree. Other kinds of abstract state matching
can be written by over-riding JPF’s default serialization mechanism. Extending SPF with full
support for state matching would require subsumption checking between symbolic states [2];
this and more sophisticated handling of loops [43] is planned for future work.

4.5 Decision Procedures and Constraint Solvers

SPF uses multiple decision procedures and constraint solvers through a generic interface, which
provides generic operations for building symbolic expressions and constraints and for solving
them. Currently, SPF supports: the CVC3 [5] and Yices [75] Satisfiability Modulo Theories
solvers, the Choco [66] and CORAL [63] solver for handling mixed integer-real constraints, and
the interval arithmetic solver IASolver [30]. Adding support for additional constraint solvers
such as HAMPI [35] and Z3 [42] is work in progress. SPF also implements constraint simpli-
fication and caching via a new recent extension (described in Section 7). While some of the
existing decision procedures support incremental solving, SPF does not currently implement
this feature.

4.6 Handling Input Data Structures

SPF uses lazy initialization [33] to handle unbounded input data structures. The execution
starts on data structures with uninitialized fields and it initializes them lazily, when the fields
are first accessed. A field of class T is initialized nondeterministically to (1) null, (2) a ref-
erence to a new instance of class T with uninitialized fields, or (3) a reference to an object
of type T created during a prior field initialization; this systematically treats aliasing. The
HeapChoiceGenerator is used to generate the choices. We have recently extended SPF to pro-
vide support for polymorphism. Step (2) above is replaced with nondeterministically assigning
new instances of class T and of all the classes that inherit from T . Similarly, step (3) is replaced
with assigning previously created objects to class T and objects from classes that inherit from
T . Once the field has been initialized, the execution proceeds according to the concrete (non-
symbolic) execution semantics. The model checker systematically handles the nondeterminism
introduced when creating different heap configurations and when updating path conditions.
SPF also offers support for fixed-size input arrays of primitive types; extended support for
reference types is work in progress.

4.7 Handling Math Functions

SPF uses the MJI mechanism to model native libraries and other program parts that cannot
be analyzed directly with symbolic execution. For an alternative technique see Section 5. SPF

Symbolic PathFinder 11

public class IADD extends Instruction{
...
public Instruction

execute (... ThreadInfo th) {
[1] int v1 = th.pop();
[2] int v2 = th.pop();
[3] th.push(v1 + v2, ...);
[4] return getNext(th);

}
}

public class IADD extendsbytecode.IADD{
...
public Instruction

execute (... ThreadInfo th){
[1] IntegerExpression sym_v1, sym_v2;
[2] sym_v1 =getOperandAttr(0);
[3] sym_v2 =getOperandAttr(1);
[4] if (sym_v1 == null && sym_v2 == null)

// both values are concrete
[5] return super.execute(ss, ks, th);
[6] else {
[7] int v1 = th.pop();
[8] int v2 = th.pop();

...
[9] th.push(0, ...); // ignore concrete val
[10] IntegerExpression result =

IntegerExpression._plus(sym_v1,sym_v2);
[11]setOperandAttr(result);
[12] return getNext(th);

} } }

Fig. 6 Concrete (left) and symbolic (right) execution for the IADD bytecode.

also reuses JPF’s large base of models for core libraries. Furthermore, SPF incorporates native
peers to capture the calls to the java.lang.Math libraries and uses these calls to build complex
mathematical constraints that can be handled by an appropriate constraint solver, such as
CORAL. For example when Math.sin is called with a symbolic argument X, the method is not
actually executed inside SPF, but rather a symbolic expression sin(X) is created, which can
later appear in the symbolic expressions and path conditions built by the analysis. The same
mechanism is also used for capturing String operations (see Section 6).

4.8 Symbolic Listeners

The listeners gather and display information about the path conditions generated during
the symbolic execution. They generate test cases and test sequences in various user-defined
formats. There are two listeners that display information about the execution:

– the SymbolicListener shows the computed path conditions and also the computed test
cases – test inputs and expected return – (in text and HTML format), while

– the SymbolicSequenceListener shows test sequences (i.e. sequences of method calls), for
each path condition encountered.

4.9 Examples

We illustrate symbolic execution of bytecodes with two examples. Let us first consider the IADD

bytecode that performs addition of two integers. The code in Figure 6 (left) shows the default
JPF class that implements the concrete interpretation of the bytecode: the first two values on
the operand stack are popped (lines [1] and [2]), the two values are added, and the result of
the addition is pushed back on the stack (line [3]). JPF is then instructed to execute the next
bytecode (line [4]). Figure 6 (right) shows a simplified version of the code that implements
semantics for the “symbolic” counterpart. The class IntegerExpression implements symbolic

12 Corina S. Păsăreanu et al.

public class IFGE extends Instruction{
public Instruction

execute (... ThreadInfo th) {
[1] condition = (th.pop() >= 0);
[2] if (condition)
[3] next=getTarget();
[4] else
[5] next=getNext(th);
[6] return next;

}
}

public class IFGE extendsbytecode.IFGE{
public Instruction

execute (... ThreadInfo th) {
IntegerExpression sym_v;
PCChoiceGenerator cg;

[1] sym_v =getOperandAttr();
[2] if(sym_v == null)
[3] // the condition is concrete
[4] return super.execute(... th);
[5] else {

// the condition is symbolic
[6] cg = new PCChoiceGenerator(2);

...
[7] condition=cg.getNextChoice()==0?false:true;
[8] th.pop();
[9] if (condition) {
[10] pc._add_GE(sym_v, 0);
[11] next = getTarget();

}
[12] else {
[13] pc._add_LT(sym_v, 0);
[14] next = getNext(th);

}
[15] if(!pc.isSatisfiable())
[16] ... // instruct JPF to backtrack
[17] else
[18] cg.setCurrentPC(pc);
[19] return next;

} } }

Fig. 7 Concrete (left) and symbolic (right) execution for the IFGE bytecode.

integer expressions; a similar class, RealExpression, implements symbolic real expressions.
SPF path conditions are built from these expression classes (among others).

Recall that the symbolic information is propagated via attributes. The execute method first
checks if the attributes associated with the two operands are null. Null values for the operands
indicate that the operands are concrete and the execution follows according to standard ex-
ecution semantics (line [5]). Otherwise, if at least one of the operands is symbolic, then the
result also becomes symbolic, and this is recorded in the result attribute that is pushed on
the stack. Method plus builds a new symbolic expression that represents the addition of its
parameters. The attribute of the result is set to this new symbolic expression (line [11]). Since
the result becomes symbolic, its concrete value does not matter as by default we use no state
matching, so we set it to 0 (line [9]).

We illustrate the use of choice generators in the symbolic execution of branching conditions
with the IFGE bytecode. The code in Figure 7 (left) shows the concrete interpretation of the
bytecode: the first popped value from the stack is compared with 0 to compute the associated
condition. This condition determines the next instruction to be executed.

In symbolic execution (Figure 7 (right)), the concrete condition is no longer used to ex-
clusively choose between program branches. Instead we create a choice generator (line [6])
that introduces a nondeterministic choice (line [7]) that allows both execution branches to
be considered. For each branch, the path condition is updated with the symbolic condition
(line [10]) and its negation (line [13]) respectively. The isSatisfiable method uses a decision
procedure to check if the path condition is satisfiable or not. In the latter case, JPF backtracks
(line [16]).

Symbolic PathFinder 13

Fig. 8 Screenshot of an application file (.jpf) in SPF used to execute symbolic execution on a Java program
within the Eclipse IDE.

4.10 Experience

The Java Pathfinder toolkit sources are Mercurial repositories within the
http://babelfish.arc.nasa.gov/hg/jpf directory that provides anonymous public read access.
Running SPF requires getting the jpf-core and jpf-symbc projects from the repository at the
above address. The project jpf-core is a pure Java 6 application with no specific platform
requirements, while jpf-symbc is written in Java but needs different off-the-shelf constraint
solvers, that may have different platform requirements. Where possible we provide binaries of
the constraint solvers for some of the commonly used platforms.

JPF-core and SPF can be run from within an IDE (integrated development environment),
such as Eclipse or NetBeans. Figure 8 shows a screenshot of a JPF Eclipse plugin being used
to run an application configuration file (.jpf). For the example in Figure 8, the configuration
file contains the class name of the Java program which is being analyzed (target), the path
to the directory that contains the compiled class files of the Java program (classpath), the
path that contains the sources of the Java program (sourcepath), the name of the method
to be symbolically executed (symbolic.method), the parameters in the symbolic method that
are to be executed symbolically (symbolic.method(sym#sym)), the listener to gather infor-

14 Corina S. Păsăreanu et al.

Error Type LOC States Time (sec) Memory (MB)

VecDeadlock0 Deadlock 7267 1370 4.56 66
VecDeadlock1 Deadlock 7169 2948 6.89 69

VecRace Race 7151 3120 7.98 65

Table 1 SPF Results for Finding Concurrency Errors

mation about the path conditions and test cases generated (listener), and finally turning off
state matching (vm.storage.class). The application configuration file can also be run from the
command line or using a NetBean plugin.

SPF has been applied at NASA in various projects including test case generation for the
Orion control software [44], fault tolerant protocols, aviation software, and robot executives.
SPF has been extended by Fujitsu, where it is being used for testing web applications. MIT’s
tool JFuzz [31], a concolic white-box fuzzer for Java, is built on top of SPF and is freely
available from the JPF web site. See Section 7 for a description of other analyses and projects
that are built on top of SPF.

SPF can analyze both Java bytecode and statechart models, e.g., Simulink/Stateflow,
Standard UML, and Rhapsody UML. The statechart models are automatically translated into
Java bytecode using the Polyglot tool [3]. We are currently using SPF for the analysis of model-
based NASA software composed of multiple interactive components; SPF has generated test
sequences that uncovered problems in the interaction between Ares and Orion models [4]. We
have also used the tool for the analysis and testing of the JPL MER Arbiter [3].

We present here some recent results on running SPF for finding concurrency errors with
guided heuristics [52] and for generating test sequences for the examples from [65]. In addition
we show some results for running SPF with increasing analysis depth, which is a typical
scenario for using the tool.

Table 1 shows the number of states explored and the resources consumed (time and mem-
ory) for detecting two deadlocks and a race-condition in the Vector class in the JDK 1.4 library,
using a total of three threads. These results demonstrate SPF’s capability of analyzing small
multithreaded programs with respect to deadlocks and data races. Other properties, such as
the absence of assert violations or program specifications written as automata monitors and
temporal logic (supported in some experimental JPF extensions), are also handled.

Table 2 gives the results of running SPF for six examples [65]. The first two systems,
an Altitude Switch (ASW) and a Wheel Brake system (WBS) are two synchronous reactive
systems from the avionics and automotive domains, respectively. They were both developed in
Simulink and later translated to Java. The other four Java data structures are freely available
with the JPF distribution and they are commonly used in conjunction with JPF. In our
experiments, we performed analysis and test generation for these data structures by exploring
all possible sequences of input operations up to a finite length, as specified in the Java test
driver that we built for each example. We put a limit on sequence length as shown in the table;
this number was chosen to allow SPF to run for a reasonably long but still feasible analysis
time, and to complete using 1 GB of memory. Random depth first search was used as a search
strategy. The results (as shown in the table) indicate that the time for performing symbolic
execution increases quickly with the sequence size. A parallel version of SPF [65] attains close
to linear speedup for the same set of examples.

Finally, Table 3 displays the results for running SPF with iterative deepening for three
examples, including two larger ones. Mer Arbiter models a component of the flight software
for NASA JPLs Mars Exploration Rovers (MER). The analyzed software consists of a Re-
source Arbiter and several user components. Each user serves one specific application, such

Symbolic PathFinder 15

System Classes LOC Seq. Length Time (min:sec)

ASW 15 425 2 7:57

WBS 1 231 5 10:22

BinHeap 2 268 6 9:26

BinTree 2 115 6 117:34

FibHeap 2 258 7 47:16

TreeMap 2 447 7 47:33

Table 2 SPF Results for Test Sequence Generation

System Classes LOC Depth States Time (sec) Memory (MB)

WBS 1 231 25 349272 20 242
30 644184 37 214

Mer Arbiter 268 4.6 K 25 17103 47 413
30 33273 92 413
35 35359 102 292

Apollo 54 2.6 K 10 674 195 421
12 2243 1033 390

Table 3 SPF with Iterative Deepening

as imaging, controlling the robot arm, communicating with earth, and driving. The arbiter
module moderates access to several shared resources. It prevents potential conflicts between
resource requests coming from different users and it enforces priorities. Mer Arbiter has been
modeled in Simulink/Stateflow and it was automatically translated into Java using the Poly-
glot framework [3]. The configuration for our analysis involved two users and five resources.
The example has 268 classes, 553 methods, 4697 lines of code (including the Java Polyglot
execution framework).

The Apollo Lunar Autopilot is a Simulink model that was automatically translated to Java,
resulting in 2.6 KLOC in 54 classes. The model is available from MathWorks. It contains both
Simulink blocks and Stateflow diagrams and makes use of complex mathematical functions
(e.g. Math.sqrt). The code has been analyzed using Symbolic PathFinder together with the
Coral solver for solving complex, non-linear constraints (see Section 7).

In the experiments reported here SPF was run with two different search depths, as specified
in the JPF configuration file. The experiments mimic a typical use of symbolic execution tools
such as SPF, which are usually run in an iterative deepening mode, to achieve the desired
code coverage or to discover the errors that might be present in the code. We note that the
results from previous iterations could in principle be reused at the current depth (we do not
report on it here). For some recent work on reusing the information during iterative deepening
and other incremental analyses in the context of SPF see [74].

Table 3 shows the time and memory consumed when running SPF. We note that, as
expected, the time cost is larger for increased depths. However the memory cost for symbolic
execution at the larger depth can be smaller. To understand this observation we ran SPF
several times with the same configuration and we found that the reported memory cost varies
a lot. We conjectured that this depends on how the underlying garbage collection works and
that comparison of the memory cost (as shown in the table) is not very meaningful. On the
other hand, in terms of space cost, a comparison based on number of states seems to make
more sense. Indeed a larger number of states is explored with increasing depth, as expected.

16 Corina S. Păsăreanu et al.

4.11 Discussion

In this section we have provided an overview of Symbolic PathFinder. The tool uses a combi-
nation of symbolic execution, model checking and constraint solving to perform a systematic
analysis of Java programs with unspecified inputs, up to a prescribed search depth. The tool
handles inputs of reference and primitive types. Furthermore, the tool relies on JPF for the
efficient analysis of multithreading. SPF uses models and also more sophisticated techniques
(see next sections) for handling external and complex mathematical libraries. The tool can
be used for automated test case generation and for the detection of software errors (assert
violations, run-time errors, races, deadlocks, etc.). The tool currently provides only partial
support for input arrays and a rather simple treatment of loops. Addressing these limitations
together with other on-going challenges to symbolic execution, such as path explosion in the
presence of concurrency and adding even more support for complex mathematical calculations
and external function calls are the subject of current and future work.

The most important engineering decision was to build SPF tightly integrated with JPF-
core. This enabled us to take advantage of the large code base in the core for the efficient
systematic analysis of multithreaded Java bytecode. The symbolic information is stored in
attributes associated with, but separated from, the program data, enabling a mixed symbolic-
concrete execution mode. We note that in our previous tool, JPF–SE [1], symbolic execution
was performed by program instrumentation, which incurred significant interpretation over-
head, as compared with the attribute based implementation, and was not fully automated.
Finally, we also mentioned that we have a generic interface for integrating different constraint
solvers. This interface is designed to take advantage of the plethora of solvers that are becoming
available, and it facilitates easy extension with new solvers.

5 Mixed Concrete-Symbolic Solving

Symbolic execution may fail due to inherent incompleteness in decision procedures and its
inability to handle external library calls. So far, we have discussed how SPF addresses theses
limitations by using the MJI mechanism to model external libraries or to capture the calls to
Mathematical functions to build complex constraints that can be solved with Choco or CORAL
(see Section 7 for a description of heuristic solving with CORAL). In this section we describe
an alternative approach that does not rely on MJI and addresses limitations arising from the
incomplete nature of decision procedures and native calls; for additional details see [45].

The approach performs satisfiability checking with mixed concrete-symbolic solving and it ap-
plies to “pure” (side-effect free) external function calls. Similar to dynamic symbolic execution
techniques, such as DART [25], we use concrete values to simplify constraints that can not
be handled by the decision procedure directly. However, unlike DART, we do not use the
run-time values of program variables, but instead we use the concrete solutions of the solvable
constraints in the current path condition. As a result our technique can be more powerful than
DART, i.e. it can obtain full path coverage where DART fails (e.g. on the example in the next
section). We note however that, in fact the two techniques are incomparable in power, and
provide more discussion on DART and related tools in Section 8. The mixed concrete-symbolic
solving consists of two main ingredients:

– use of uninterpreted functions to represent calls to unknown or complex functions during
symbolic execution and

– the delayed execution of these functions, based on the values obtained by solving the “sim-
ple”, solvable constraints in the path condition (simplePC).

Symbolic PathFinder 17

@Concrete("true")
@Partition({"x>3.0","x<=3.0"})
double hash(double x) {...}

void test(int x, int y) {
[1] if (x > 0) {
[2] if (y == hash(x))
[3] S0;
[4] else
[5] S1;
[6] if (x > 3 && y > 10)
[7] //if (y > 10)
[8] S3;
[9] else
[10] S4;

}
}

S1

PC: X<=0

Solve: x>3 & y>10
hash(4)=40
check:
x>3 & y>10 & y=40

S3 S4

PC: X>0

S4S3 S4

PC: X>0
& Y=hash(X)

& Y=hash(X)
PC: X>0 & X<=3

Solve x>0
hash(1)=10
check x>0 & y=10

S0

PC: X>0

x: X, y: Y
PC: true

PC: X>3 & Y>10
& Y=hash(X) & Y!=hash(X)

& Y!=hash(X)

PC:X>3 & Y<=10
& Y!=hash(X) & Y!=hash(X)

PC: X>3 & Y>10 PC: X>0 & X<=3

Fig. 9 Example illustrating mixed concrete-symbolic solving.

The results returned from the delayed execution of the external functions are used to build
a new set of simplified constraints that are solved again, using an off-the-shelf solver, hence
the name “mixed concrete-symbolic solving”. If the new constraints are satisfiable, then the
original PC is also satisfiable, and the symbolic execution continues on that path; otherwise it
backtracks. Note that in the latter case, it may happen that the original constraints are indeed
satisfiable, but our method failed to detect that. In other words, our method is incomplete,
similar to related approaches [11, 25].

We address the incompleteness through three heuristics that attempt to “force” the solver
to generate more solutions from simplePC and increase the chances of finding a solution for
the simplified complex part of PC.

– The first heuristic uses incremental solving to generate multiple solutions for simplePC.
These solutions are then used to execute the external functions and perform iterative
mixed concrete-symbolic solving (up to a user specified limit).

– The second heuristic leverages user annotations that partition the domains of the unin-
terpreted functions into subsets that are deemed interesting by the user. Such partitions
can be simple abstractions (e.g. partition the inputs between positive and negative values)
or they can come from some form of black-box analysis of the external functions. The
extra constraints are systematically added to the current PC and mixed concrete-symbolic
solving is called for each newly obtained PC.

– The third heuristic simply uses random values for all the inputs that are unconstrained in
the path condition.

5.1 Example

Figure 9 (left) shows a simple program taken from [45] using Java-like syntax. We analyze
method test that invokes another method hash. Assume that hash is a complex mathematical
function that our off-the-shelf constraint solver can not handle or a function whose code is
simply unavailable for analysis (e.g. native method in Java). For illustrative purposes, let us
assume that hash(x) = 10 ∗ x, for 0 ≤ x ≤ 10 and 0 otherwise. “S0”, “S1”, “S3” and “S4”
denote statements that we wish to cover with our automated testing techniques (their exact
content does not matter here).

18 Corina S. Păsăreanu et al.

[1] void test(int x, int y) {
[2] if(x>=0 && x>y && y==x*x)
[3] S0;
[4] else
[5] S1;
[6] }

Fig. 10 Example illustrating potential for unsoundness.

The path condition PC to reach the execution of “S0” at line #4 has the value X>0 &

Y=hash(X), where X and Y denote the two input symbolic values for method test. We use
upper case letters to denote the symbolic representation of the equivalent variables defined in
lower case letters. Normally symbolic execution would get stuck given our assumption that the
constraint solver cannot handle hash directly so it cannot generate two values for the inputs x

and y that drive the execution of test through the then branch of the conditional at line #3.
For example, in Figure 9(right), in order to execute the path corresponding to “S0, S3”, we
need to decide if PC: X>0 & Y=hash(X) is satisfiable.

With our technique, we first split PC into simplePC : X>0 and complexPC : Y=hash(X) and
solve simplePC . The obtained solution X=1 is used to compute hash(1)=10 and to simplify
complexPC into Y=10. This constraint is conjoined back with simplePC and the result is newPC:
X>0 & Y=10 which is satisfiable (more constraints are added to ensure soundness as discussed
in the next section).

Similarly, the second PC along the path “S0, S3” is PC: X>0 & X>3 & Y>10 & Y=hash(X),
which is equivalent to PC: X>3 & Y>10 & Y=hash(X). Our mixed concrete-symbolic solving
technique will first solve simplePC : X>3 & Y>10, it will use solution X=4 to compute hash(4)=40

and will then solve again the simplified constraints newPC: X>3 & Y>10 & Y=40. Our mixed
solving approach can cover all the paths through the code.

Assume now that in the code of Figure 9(left), we replace line #6 with line #7. Then it
becomes harder to cover the paths through test. Our technique will not be able to cover
that path, since it does not have enough information in simplePC to decide the satisfiability
of the overall PC. To overcome the problem, we developed some simple heuristics that allow
us to cover “S0, S3” as well. The first heuristic uses iterative solving to generate multiple
solutions for the simplePC : X>0 & Y>10 and then uses these solutions to repeatedly concretize
hash and to perform mixed concrete-symbolic solving. Thus, after running for two iterations,
solution X=2 is found and this is good enough for making X>0 & Y>10 & Y=hash(X) true, since
Y=hash(2)=20 and X>0 & Y>10 & Y=20 is satisfiable.

The second heuristic uses extra constraints provided by the user via a @Partition annota-
tion to help finding solutions (see Figure 9(left) that defines two partitions on the input: X>3
and X<=3). For the example, applying the heuristic results in adding the constraints describing
the partitions to PC. As a result, we obtain two new path conditions: PC & X>3 and PC &

X<=3 and we apply mixed concrete-symbolic solving for each resulting path condition. The new
constraint PC & X>3 is equivalent to X>0 & Y=hash(X) & Y>10 & X>3, for which we can find a
solution so we stop.

5.2 Potential for Unsoundness

The example in Figure 10 illustrates the need for additional equality constraints to ensure the
soundness of our method. Soundness here means that path conditions reported to be satisfiable
should indeed have at least one solution. The path condition corresponding to the execution

Symbolic PathFinder 19

of “S0” is X>=0 & X>Y & Y=X*X. Note however that “S0” is unreachable, i.e. the path condition
is not satisfiable. If we split this path condition into the part we can solve, namely simplePC:
X>=0 & X>Y, and the part we cannot solve1, namely complexPC: Y=X*X, then we can obtain
a result for the first part that suggests we should use X=0 in the non-linear part. This will
simplify the non-linear side to Y=0. In turn this will lead to a simplified combined constraint of
X>=0 & X>Y & Y=0 which is satisfiable with X=1 and Y=0; which could lead us to believe that S0

is reachable. The problem is that we introduced unsoundness when we ignored the solutions
obtained from the solvable side when using the simplified result from the non-linear side.

We therefore always add extra equality constraints on the solutions that we use to simplify
complexPC. These extra constraints are stored in extraPC. For the example, extraPC is
X=0 and the final constraint becomes X>=0 & X>Y & Y=0 & X=0 which is not satisfiable. The
constraint on the solution for X, namely X=0, that we used to simplify Y=X*X is thus added back
into the final constraint.

5.3 Implementation

We have implemented the mixed concrete-symbolic solving as additional procedures for check-
ing satisfiability of path conditions within SFP. The input required from the user is in the form
of annotations (@Concrete(“true”)), that specify which methods to leave uninterpreted. An-
other annotation (@Partition(..)) provides a list of conditions that is used in the partitioning
heuristic (as discussed in the example above).

We use Java reflection to perform the actual invocation of the methods during the delayed
execution and simplification of the generated PCs. Using reflection we are able to concretely
execute the external functions on the host VM, without providing a model class using MJI.
Note that our approach works only for the external methods that are pure, side-effect free,
or for methods whose side effects are deemed uninteresting for the analysis (e.g. printing
statements). All the other methods still need models. Using this technique we were able to
analyze software that could not be analyzed before with “classical symbolic execution”, such as
components from Tactical Separation Assisted Flight Environment and Apollo Lunar autopilot
(see [45] for details on the heuristics and the experiments).

6 Symbolic String Analysis

The widespread use of web-based interfaces have resulted in a greater need for the validation
of various string inputs to ensure better security. However, classic testing approaches, such as
guided black-box and random testing are not capable of reliably detecting malicious inputs,
simply because the domain of string inputs is too large. For this reason, SPF has been extended
to enable symbolic reasoning over strings.

Consider function site_exec in Figure 11: its purpose is to receive and execute remote com-
mands and if the command extracted from the input contains the substring “%n”, a run-time
exception is thrown. This example, although very simple, illustrates a typical code injection
scenario; the example is taken from [29] and is based on a real error [13]. An input string s1

triggers the run-time exception if it satisfies the following constraints (s2 and i2 are auxiliary
variables):

1 Assuming here our solver cannot deal with non-linear integer arithmetic

20 Corina S. Păsăreanu et al.

1 public static void site_exec(String cmd) {
2 String result, path = "/home/ftp/bin";
3 int j, sp = cmd.indexOf(’ ’);
4 if (sp == -1) {
5 j = cmd.lastIndexOf(’/’);
6 result = cmd.substring(j);
7 } else {
8 j = cmd.lastIndexOf(’/’, sp);
9 result = cmd.substring(j);

10 }
11 if (result.length() + path.length() > 32) {
12 // buffer overflow
13 return;
14 }
15 String buf = path + result;
16 if (buf.contains("%n")) {
17 throw new RuntimeException("THREAT");
18 }
19 }

Fig. 11 Example of code injection

s1.indexOf(’ ’) = i1
∧ s1.lastIndexOf(’/’) ≥ 0
∧ s1.lastIndexOf(’/’) = i2
∧ s1.substring(i2) = s2
∧ s2.length() < 19
∧ s2.contains("%n")

We refer to the last constraint as a (pure) string constraint, because it involves only string
variables and constants. The second to last constraint, on the other hand, is a (pure) integer
constraint, since s2.length is in essence an integer variable and 19 is an integer constant (19
comes from 32 - path.length()). The first three constraints are mixed (integer and string)
constraints. This classification is important, because typically different off-the-shelf decision
procedures and constraint solvers are required to handle string vs. numeric constraints. In fact
many of the current solutions to symbolic execution for strings either consider a limited set of
string-integer interactions [14, 56, 60, 67] or none at all [35, 28].

6.1 String Graphs

To handle constraints from mixed numeric and string domains, we construct a constraint
hypergraph [51, pp. 211–212] which we refer to as a string graph. This usually requires the
introduction of auxiliary variables (such as s2 above). Specifically, an integer variable is intro-
duced to represent the length of each of the string variables in the string graph.

Figure 12 shows the string graph for the six constraints discussed above. Variables are
shown as round vertices, constant values as square vertices, and hyperedges as lines that meet
at a black dot. Because the string graph is directed, the vertices connected by a hyperedge
are numbered. For example, the hyperedge in the center of the figure is labeled “substring”
and connects vertices “s1”, “i2”, and “s2”, in that order; it corresponds to the constraint
s1.substring(i2) = s2. The dashed lines are not edges: they merely connect a string variable
with the integer variable that represents its length. In other string graphs, the lengths may,
however, participate directly in constraints.

Note that the constraint s2.length() < 19 does not appear in the string graph. Instead,
n2 < 19 is added to the set of numeric constraints. Other numeric constraints are also gen-

Symbolic PathFinder 21

“%n” i1 “ ”

n2 s2 s1 n1

i2 “/”

2

1

contains 3

1

2indexOf

3

2

1substring

3

1

2

lastIndexOf

Fig. 12 Example of a string graph

solve(PathCondition pc)

1 StringGraph sg

2 (pc, sg) := buildStringGraph(pc)

3 boolean sat := false

4 while ¬sat ∧ ¬timeout:

5 (sat , pc, sg) := numericSolver(pc, sg) { Phase I }
6 if sat : (sat , pc, sg) := stringSolver(pc, sg) { Phase II }
7 return sat

buildStringGraph(PathCondition pc)

8 StringGraph sg := ∅
9 for string or mixed constraint c ∈ pc:

10 sg := sg ∪ hyperedge(c)

11 return preprocess(pc, sg)

Fig. 13 String constraint solving algorithm

erated by the string graph. For example, s2.contains("%n") triggers the introduction of the
constraint n2 ≥ 2. Simple heuristics are applied to the string graph during a preprocessing
stage. The preprocessor can often lead to the early (and cheap) conclusion that the constraints
are unsatisfiable. For example, given the constraints s1.equals(s2), the preprocessor would
merge the vertices for s1 and s2, and merge all their edges accordingly. Or, given constraints
such as s3.equals(s4), s4.equals(s5), and !s5.equals(s3), the preprocessor can conclude
immediately that the constraints are unsatisfiable.

The string graph allows us to easily split the PC into: (a) purely numeric constraints, and
(b) string and mixed string-numeric constraints. We then use an iterative two-phase approach:
In phase I the numeric constraints are solved and the candidate solutions are temporarily
placed in the string graph. In phase II we use one of two techniques (based on either bitvectors
or automata; discussed below) to solve the string and mixed constraints. If they are satisfiable,
solutions are generated for the string and numeric variables and symbolic execution can then
proceed to the next instruction. Otherwise, new numeric constraints are generated based on
the unsatisfiable constraints and we return to phase I. The algorithm is outlined in Figure 13.

22 Corina S. Păsăreanu et al.

6.2 The Bitvector-based Approach

After the completion of phase I, candidate lengths for all of the string variables are known. This
makes a straightforward translation to bitvectors possible, where each character is represented
by 8 (in the case of ASCII) or 16–32 (in the case of Unicode) bits. Verbosity is still a problem:
a constraint such as s1.contains(s2) and the candidate integer solutions n1 = 5 and n2 = 2,
produce the following bitvector constraints:

s1[0]=s2[0] ∧ s1[1]=s2[1]
∨ s1[1]=s2[0] ∧ s1[2]=s2[1]
∨ s1[2]=s2[0] ∧ s1[3]=s2[1]
∨ s1[3]=s2[0] ∧ s1[4]=s2[1]

We use Z3 [42] for satisfiability checking, but it is a simple step to adjust the translation
for other SMT solvers that are capable of deciding bitvector constraints.

6.3 The Automata-based Approach

In the automata approach, we leverage the automata package of the Java String Analyzer
(JSA) [14]. Each string variable is represented by a separate finite state automaton, which
initially accepts the universal language (the regular expression “·∗”). Once again, iteration is
used: each of the string and mixed constraints is taken in turn, and the automata are adjusted
to comply with the constraint. For instance, if M1 = (·∗) and M2 = (·∗) are the automata for
string variables s1 and s2, respectively, the constraint s1.startsWith("abc") will effect the
change M1 = (abc·∗), and the constraint s2.endsWith(s1) will effect the change M2 = (·∗abc·∗).
After one pass over the constraints is completed, each automaton accepts the same language
or a smaller language. This guarantees that, after a finite number of such passes, the automata
converge to a fixed value. At this point, all of the automata satisfy all of the constraints, and
unless one or more automata are empty, the automata describe the solutions to the set of
constraints.

There is one important caveat to this seemingly simple approach: it is impossible to en-
code inequalities such as !s1.equals(s2) in this way. They are therefore postponed until the
automata have converged, when they are handled by a special post-processing phase, that op-
erates much like a SAT solver. More details about this can be found in Gideon Redelinghuys’s
thesis [49].

6.4 Implementation and Evaluation

We extended SPF to accommodate string operations as part of path conditions, added code to
manipulate string graphs, added translations from string constraints to Z3, and implemented
our automata-based solver, which is based on Java String Analyzer (JSA) [14]. Although
this represents a significant amount of work, the new code fits smoothly into the existing
architecture of SPF, and the new functionality is transparently available to users.

The largest example we analyzed with the system is a piece of industrial code from the
mobile communications domain which actually caused a system with millions of users to go
down for hours. The problem occurs when sanitizing input strings in HTML format. Essen-
tially, a very unlikely sequence of characters forces the program to go into an infinite loop that
allocates new objects on every iteration, thus exhausting available memory and crashing the
JVM. In the field this error crashed one server after another as a user issued the same service

Symbolic PathFinder 23

request to the system, over and over. We took the code “as-is” without any modifications and
just inserted a check for when the infinite loop was entered. In a matter of seconds the tool
found an input sequence that causes the error. The code we analyzed was 311 lines and it
required 109 iterations between integer and string solving (using bitvectors) to find the error.

We also did an extensive analysis on using both back-ends, and interestingly found that
although there are differences, in the end other factors play a much bigger role than the
back-end engine. For example, better pre-processing or more precise constraints being derived
during string analysis to narrow the search in the integer space, have a bigger influence than
the back-end system being used (again see [49] for more details).

7 Extensions and Applications

As a testament to the usability and extensibility of SPF we describe here several recent inter-
esting analyses that have been integrated with SPF. Other approaches that build upon SPF,
such as parallel symbolic execution [65], load testing [78], memoised symbolic execution [74]
and concolic testing [31] are described elsewhere (see references).

7.1 Extensions

7.1.1 CORAL: Meta-heuristic Solving for Complex Mathematical Constraints

As we already described, the application of symbolic execution to automatic test generation
involves two steps: first, generating the constraints on the input variables that must hold for
particular paths to be executed (the path conditions); second, solving the constraints to give
particular test vectors involving concrete values for the input variables.

For constraints on integer and boolean variables there are many implementations of ca-
pable constraint solvers. But in some domains the path constraints often include floating
point variables and complex mathematical functions (for example, trigonometric and other
transcendental functions). These types of constraints are especially common in cyber-physical
systems, such as those that arise in aerospace, automotive, and medical systems. The choices
for solvers (especially solvers still under active development) are generally more limited and
the solvers themselves are unable to solve many of the more complex constraints that occur
in the domains’ software.

For these reasons SPF has recently been integrated with the CORAL meta-heuristic
solver [63]. CORAL is a “meta” constraint solver – it sits on top of one or more traditional
constraint solvers and applies search heuristics in order to solve more complex constraints than
the underlying constraint solvers can solve by themselves. In its current version, CORAL uses
particle swarm optimization to guide the underlying constraint solvers in generating successive
families of solution candidates. Experience has shown that these candidates will often converge
to constraint solutions even when the underlying solvers have difficulty. See [63] and [7] for
more details on CORAL’s operation.

CORAL has been integrated with SPF through SPF’s generic decision procedure interface.
SPF has been designed to make this a relatively simple operation – it only requires the creation
of wrapper classes that translate between SPF’s constraint and solution representations and
CORAL’s. SPF then allows CORAL to be specified as the desired constraint solver through
a run-time configuration file.

24 Corina S. Păsăreanu et al.

7.2 Architecture For Reuse

Calls to a decision procedure or constraint solver are expensive, and it makes sense to avoid
them whenever possible. One obvious solution is to reuse previously calculated results, and
this is commonly done within one run of a symbolic analysis [10]. But this basic idea can be
generalized to great effect. Reuse can occur between different analysis of the same program,
different analysis of different programs, different runs of different systems, and between differ-
ent users. For this idea to work effectively, it is important that queries and their results are
standardized. Moreover, reuse occurs at two levels: not only are previous operations stored
and reused, but the sometimes complicated code to manipulate the queries is centralized to
be shared by systems.

At the core of this approach is the Green tool [72]. It is independent of JPF/SPF to make
it available for integration in many different systems. It allows clients to register components,
such as decision procedures, constraint solvers, and model counters. After this configuration,
clients construct problem instances by building expressions akin to SPF’s path conditions.
Internally, Green tool slices the expressions to remove redundant information, canonizes the
expressions to obtain a normal form (when possible), and manages a database that caches the
result of queries. The components that transform the expressions and communicate with the
database are also configurable.

At the moment Green provides a default slicer and canonizer that are targeted to linear
integer arithmetic constraints. A default store is provided for caching results in a network
of Redis servers [50, 53], and there is support for CVC3 [5] and Choco [66] as both decision
procedures and constraint solvers, and for LattE [24, 40, 37] as a model counter. Work is un-
derway to support a wider range of decision procedures and to extend the slicer and canonizer
for more general constraints. It is easy to see how this framework can be extended to support
mixed constraints (as described in Section 5), string constraints (Section 6), and even features
such as concurrent distributed constraint solving.

If a system does not need a feature, the component can be omitted. For symbolic execution
using CVC3 for example, only the translator from SPF path conditions to Green expressions
needed to be custom written. Modifying SPF to use Green instead of its traditional decision
procedure infrastructure, took 16 hours of work. Similarly, to integrate it into a Dynamic
Symbolic Execution system took 1.5 hours. In both cases the integration was done by people
other than the main developers of the respective tools. We believe this illustrates that the
integration is quite manageable and for tool developers it might be even easier.

7.3 Applications

7.3.1 Directed Incremental Symbolic Execution

The goal of Directed Incremental Symbolic Execution (DiSE) is to leverage symbolic execution
and static analyses in synergy to enable more efficient symbolic execution of programs as they
evolve [46]. The path conditions computed by DiSE characterize the differences in program
behaviors between two related program versions. The program instructions whose execution
may lead to the generation of affected path conditions are termed as “affected locations” or
“affected instructions”. Standard static analysis techniques using control and data dependen-
cies are used to identify program instructions in the source code that define program variables
relevant to changes in the program. These instructions are marked as affected. Conditional
branch instructions that use those variables, or are themselves affected by the changes, are

Symbolic PathFinder 25

also identified as affected. The information generated by the static analysis is used to direct

symbolic execution to explore only the parts of the programs affected by the changes, poten-
tially avoiding a large number of unaffected execution paths. DiSE generates, as output, path
conditions only on conditional branch instructions that use variables affected by the change
or are otherwise affected by the changes.

DiSE is implemented on top of SPF. For the examples used in our case-study, DiSE consis-
tently explores fewer states and takes less time to generate fewer path conditions compared to
standard symbolic execution when the changes affect only a subset of the program execution
paths. This demonstrates the effectiveness of DiSE in terms of reducing the cost of symbolic
execution of evolving software. Furthermore, we apply the results of DiSE to test case selection
and augmentation to demonstrate the utility of such an analysis. The DiSE extension is avail-
able through a mercurial repository: http://babelfish.arc.nasa.gov/hg/jpf/jpf-regression

7.3.2 JPF Continuity

JPF Continuity [9] is another application of SPF to cyber-physical systems. In this extension,
SPF is applied to the problem of analyzing continuity and robustness properties of floating
point software. This is an area which has begun to receive more attention as high-reliability
cyber-physical systems become more common and their software becomes more complex.

The question addressed here is, “how smoothly does the software’s behavior change when
its inputs vary?” Many of these cyber-physical systems either require their behavior to be
smooth or to have their discontinuities be well understood. The JPF Continuity extension to
SPF seeks to identify those regions of the input space which are discontinuous because of the
software’s control structure.

JPF Continuity builds on SPF by analyzing both pairs of path conditions (instead of single
path conditions) and their associated pairs of computations (called “path functions”). It first
identifies so-called “boundary constraints” on the inputs which cause the software to switch
from one execution path to another. It then analyzes the functions computed along each path
to determine which boundary inputs give rise to discontinuous or non-robust behavior.

7.3.3 Probabilistic Symbolic Execution

Symbolic execution typically only uses the fact that a path is either feasible or infeasible.
However, one can also consider that a path condition will be satisfied with a certain probability,
i.e. add meaning to the values between 0 (infeasible) and 1 (all probability values besides 0
indicate feasible behavior). The probabilistic symbolic execution (probsym) extension to SPF
allows the calculation of path probabilities [24]. The approach involves counting the number of
solutions to a path condition using LattE [37] under the assumption that the input values are
uniformly distributed in given finite input domains. The extension is implemented as a Listener
that is triggered whenever a branch is found to be feasible during symbolic execution. When
triggered it conceptually calculates the probability by dividing the number of solutions to the
current path condition over the size of the input domain of all variables. In practice however
the complete path condition can be very large and thus one first slices the path condition to
only obtain the part that is used to determine if the current condition is feasible. However,
that then also means one can only calculate conditional probabilities that just state what the
odds are of taking the current branch (without considering the previous branches). One must
calculate the complete path probability by multiplying all conditional probabilities along the
path. Slicing the path condition also reduces the cost of symbolic execution (since it means

26 Corina S. Păsăreanu et al.

a smaller path condition needs to be checked for feasibility) and therefore is also part of the
Solver architecture discussed in Section 7.2.

In [24] the probabilities are used to show how errors can be found by using the notion of
the least likely paths through the code, how the chances of obtaining coverage can sometimes
decrease and sometimes increase when input ranges are varied and lastly, how one can use the
probabilities for fault localization.

We are currently investigating a related approach that performs reliability analysis for a
Java program [23], based on a usage profile which specifies a probability distribution on the
program inputs. The approach handles both concurrency and input data structures and it
further reports a confidence measure for the results. Furthermore, while the approach in [24]
computes probabilities “on-the-fly”, the reliability analysis is decoupled from the symbolic
execution.

8 Related Work

Our work is related to the large body of work on white-box test-case generation and static
analysis, but we focus here on the more closely related works. Symbolic execution was intro-
duced in the 70s [15, 36] and it has since been explored in many ways [8, 16, 20, 21, 22, 33,
54, 44, 62, 68, 71, 73, 61, 55, 38] in the context of test case generation and software error
detection.

The Extended Static Checker (ESC) [22] uses a static analysis to verify partial correctness
of Java classes. Although our focus here was on test case generation and error detection, we
can also use SPF to check light-weight properties in a way similar to ESC.

Symstra [73] uses a specialized symbolic execution over numeric data to generate test
sequences for (sequential) Java containers. We have provided here a general framework for the
symbolic execution of arbitrary Java bytecode. Symclat is an experimental implementation of
symbolic execution in JPF that was developed in the context of an empirical case study [18].
Similar to SPF, Symclat overrode the bytecode interpretation in JPF, but it does not use
attributes or the instruction factory, and is limited to handling integer symbolic inputs. Our
previous tool, JPF–SE [1] performed symbolic execution by program instrumentation, which
incurred significant interpretation over-head and was not fully automated. Bogor/Kiasan [19,
21] is similar to JPF–SE [1], and proposes a more efficient “lazier” approach to handling
symbolic data structures (with respect to null objects). A formal treatment of lazy initialization
is also provided in [21].

Dynamic symbolic execution or concolic testing [11, 25, 57] is an analysis technique that
performs a concrete execution on random inputs and collects the path constraints along the
executed path. These path constraints are then used to compute new inputs that drive the
program along alternative paths. Unlike SPF, the approaches described in [11, 25, 57] use code
instrumentation and don’t use model checking, which we use for analyzing multithreading
systematically. We remark that one could implement concolic execution in our framework by
performing the concrete operations along with the symbolic ones; in fact some JPF extension
projects already do that, e.g., [31].

We have already mentioned the close relationship between our work on mixed concrete-
symbolic solving and dynamic symbolic execution as implemented in e.g. DART [25] or EXE
[11] and many other tools that implement the DART algorithm, such as CUTE [57, 58],
PEX [67], and SAGE [26]. All these tools have the ability to fall back on concrete run-time
values when “classical” symbolic execution would fail, i.e. when the decision procedure can
not handle the complex mathematical constraints that are generated or when analyzing code

Symbolic PathFinder 27

that uses native or external libraries. In [45] we provide a direct comparison between SPF
with mixed concrete-symbolic execution approach and DART and EXE tools on the example
in Figure 9. It turns out that DART and SPF cover all the program statements while EXE
does not; the example also shows that DART and EXE do not cover all the paths through the
code, while SPF does.

Using the example in Figure 9, DART starts execution by generating random values for
inputs. If the concrete value v of x satisfies X>0, then DART can easily generate a value for y

that is equal to hash(v) (known at run-time). If v does not satisfy X>0, then DART performs
an extra iteration where it first solves X>0 and sets the value of x to the solution. DART then
re-executes the program and finds a value for y that is equal to the run-time value of hash(x).
By first picking randomly and then fixing the value of x, DART can drive the execution of
test through different program paths.

EXE takes a much simpler approach. To check PC: X>0 & Y=hash(X), EXE first generates
a solution for the “simple”, solvable part of the PC, X>0, and uses the solution to compute
hash(1)=10. From that point on, the value of input “x” is fixed to be 1, and it will not change
for the rest of the execution. The final PC generated is X>0 & Y=10 which is satisfiable. While
this approach may work very well in practice, it fixes some symbolic inputs to concrete values,
which may be overly restrictive. EXE therefore may miss covering some large parts of the code
under analysis. DART solves this problem by re-execution. Note however that some paths (e.g.,
“S0, S4”) remain uncovered, due to divergence [25].

In contrast, SPF with mixed concrete-symbolic solving uses uninterpreted functions to rep-
resent calls to unknown or complex functions during symbolic execution. Whenever symbolic
execution needs to decide feasibility of alternate paths, we first solve the simple part of the
PC, then use those values to concretize hash, and we finally solve again the path condition
that was thus simplified. Note that unlike DART, SPF does not use the run-time values of
program variables but instead it uses the solutions of the collected constraints. As a result
SPF may use different concrete values along the same symbolic path; this would correspond
to multiple concrete paths in DART. Note however that the two techniques are incomparable
in power [45]. Let us remark that while the rather detailed discussion here shows some of
the benefits of our technique, it is not intended to serve as a thorough comparison between
different approaches. Rather it illustrates the limitations of existing techniques and indicates
the need for future heuristics that can better deal with the challenges of handling external
calls or complex mathematical computations.

The KLEE [10] symbolic execution engine is the follow-on tool to EXE; it no longer uses
concrete values when invoking external libraries, but instead it uses models of external (un-
known or unanalyzable) functions. This allows the analysis to stay completely symbolic, rather
than concretizing inputs for functions that cannot be analyzed. Note that such a modeling
approach is standard practice in software model checking. The approach however requires
considerable manual effort.

Extensibility is a key difference between KLEE and our approach. The JPF framework pro-
vides different extensibility mechanisms through listeners, instruction factories, search strate-
gies, etc. Using these extensibility mechanisms, SPF can be easily extended to support new
algorithms. KLEE in its current form is not engineered to support extensibility in an unobtru-
sive manner. Furthermore, adding new constraint solvers is fairly straightforward in the SPF
framework, while in KLEE there is no well-defined interface through which new constraint
solvers or decision procedures can be added. Other tools that build on top of KLEE tend to
take a snapshot of KLEE and make changes as needed. Examples are KLOVER [38], which
provides support for symbolically analyzing C++ code and KLEE-FP [17] which reasons about
equivalence between floating point operations in different C programs.

28 Corina S. Păsăreanu et al.

Symbolic string analysis is an active area of research. There are three main axes of compar-
ison with related work: a graph-like representation of constraints, interaction between integer,
string, and mixed constraints, and the use of automata or bitvectors. Several tools make use
of some form of graph representation, but in most cases it is only peripheral. The approach
of Hooimeijer and Weimer is closest to ours, but it does not include integer variables in the
graph representation [27, 28]. Most other tools offer no (or very limited) support for the in-
teraction between integer and string or mixed constraints; one exception is Kudzu [56] (for
JavaScript) which uses an iterative strategy somewhat similar to our own. Lastly, the field is
quite evenly divided between tools that use automata [14, 27, 28, 59, 60, 76, 77] and those
that use bitvectors [34, 35, 56, 6, 67, 69]. As far as we know, we are unique in using both.

9 Conclusions

We have described Symbolic PathFinder, a tool that combines symbolic execution with model
checking and constraint solving for the automated error detection and test case generation
for Java bytecode programs. We have highlighted some of the techniques that are built into
SPF to handle complex mathematical constraints, external library calls and symbolic string
analysis. To demonstrate SPF’s usability and extensibility, we further described a diversity
of applications that have been recently integrated in SPF. The tool is open-source and it is
being used and extended in many projects in industry and academia. SPF is under active
development and plans for the near future include: extending support for input arrays with
unspecified size and with non-primitive data, more scalable analysis of concurrent programs
via partial evaluation and compositional techniques, and more sophisticated handling of loops.
We are also working on leveraging SPF for automated testing of Android applications [41] and
for security [47] and reliability [23] software analysis.

References

1. Anand S, Păsăreanu CS, Visser W (2007) JPF–SE: A symbolic execution extension to
Java PathFinder. In: Proc 13th Intl Conf on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), LNCS 4424, pp 134-138

2. Anand S, Păsăreanu CS, Visser W (2009) Symbolic execution with abstraction. Interna-
tional Journal on Software Tools for Technology Transfer STTT 11(1):53–67

3. Balasubramanian D, Păsăreanu CS, Whalen MW, Karsai G, Lowry MR (2011) Polyglot:
Modeling and analysis for multiple statechart formalisms. In: Proc 2011 International
Symposium on Software Testing and Analysis (ISSTA), pp 45–55

4. Balasubramanian D, Păsăreanu CS, Biatek J, Pressburger T, Karsai G, Lowry MR, and
Whalen MW (2012) Integrating Statechart Components in Polyglot. In: Proc NASA For-
mal Methods 2012: 267-272

5. Barrett C, Tinelli C (2007) CVC3. In: Proc 19th Intl Conf on Computer Aided Verification
(CAV), Springer, LNCS, vol 4590, pp 298–302

6. Bjørner N, Tillmann N, Voronkov A (2009) Path feasibility analysis for string-
manipulating programs. In: Proc 15th Intl Conf on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), Springer, LNCS, vol 5505, pp 307–321

7. Borges M, D’Amorim M, Anand S, Bushnell D, Păsăreanu CS (2012) Symbolic execution
with interval solving and meta-heuristic search. In: Proc 2012 IEEE Fifth International
Conference on Software Testing, Verification and Validation (ICST), pp 111-120

Symbolic PathFinder 29

8. Bush W, Pincus J, Sielaff D (2000) A Static Analyzer for Finding Dynamic Programming
Errors. Software: Practice and Experience 30(7):775–802

9. Bushnell D (2011) Continuity analysis for floating point software. In: Numerical Software
Verification Workshop, NSV-2011

10. Cadar C, Dunbar D, Engler D (2008) KLEE: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In: Proceedings of the 8th USENIX Confer-
ence on Operating Systems Design and Implementation, USENIX Association, Berkeley,
CA, USA, OSDI’08, pp 209–224

11. Cadar C, Ganesh V, Pawlowski P, Dill D, Engler D (2008) EXE: Automatically Generating
Inputs of Death. ACM Transactions on Information and System Security 12(2):1–38

12. Cadar C, Godefroid P, Khurshid S, Păsăreanu CS, Sen K, Tillmann N, and Visser W
(2011) Symbolic execution for software testing in practice: preliminary assessment. In:
Proc 33rd International Conference on Software Engineering (ICSE): 1066-1071

13. CERT/CC (2001) Cert Advisory: Multiple vulnerabilities in WU-FTPD. Tech. Rep. CA–
2001–33

14. Christensen AS, Møller A, Schwartzbach MI (2003) Precise analysis of string expressions.
In: Proc 10th Intl Symposium on Static Analysis (SAS), Springer, LNCS, vol 2694, pp
1–18

15. Clarke LA (1976) A system to generate test data and symbolically execute programs.
IEEE Trans Softw Eng 2:215–222, DOI 10.1109/TSE.1976.233817, URL http://dl.acm.

org/citation.cfm?id=1313320.1313532

16. Coen-Porisini A, Denaro G, Ghezzi C, Pezzé M (2001) Using Symbolic Execution for
Verifying Safety-Critical Systems. In: Proc ESEC/SIGSOFT FSE, ACM, p 151

17. Collingbourne P, Cadar C, Kelly PH (2011) Symbolic crosschecking of floating-point and
simd code. In: Proc of the 6th Conference on Computer systems, ACM, New York, NY,
USA, EuroSys ’11, pp 315–328, DOI 10.1145/1966445.1966475, URL http://doi.acm.org/

10.1145/1966445.1966475

18. d’Amorim M, Pacheco C, Xie T, Marinov D, Ernst MD (2006) An empirical comparison
of automated generation and classification techniques for object-oriented unit testing.
In: Proc 21st IEEE/ACM Intl Conf on Automated Software Engineering (ASE), IEEE
Computer Society, Washington, DC, USA, pp 59–68

19. Deng X, Lee J, Robby (2006) Bogor/Kiasan: A k-bounded symbolic execution for checking
strong heap properties of open systems. In: Proc 21st IEEE/ACM Intl Conf on Automated
Software Engineering (ASE), IEEE Computer Society, Washington, DC, USA, pp 157–166

20. Deng X, Robby, Hatcliff J (2007) Kiasan/KUnit: Automatic test case generation and
analysis feedback for open object-oriented systems. In: TAIC PART– Mutation Analysis,
3rd International Workshop, pp 3–12

21. Deng X, Lee J, Robby (2012) Efficient and formal generalized symbolic execu-
tion. Automated Software Engineering 19:233–301, URL http://dx.doi.org/10.1007/

s10515-011-0089-9, 10.1007/s10515-011-0089-9
22. Detlefs DL, Leino KRM, Nelson G, Saxe JB (1998) Extended static checking. In: SRC

Research Report 159, COMPAQ Systems Research Center
23. Filieri A, Păsăreanu CS, and Visser W (2013) Reliability Analysis in Symbolic PathFinder.

In: Proc 35th International Conference on Software Engineering (ICSE), 2013.
24. Geldenhuys J, Dwyer MB, Visser W (2012) Probabilistic Symbolic Execution. In: Proc

International Symposium on Software Testing and Analysis (ISSTA), pp 166–176
25. Godefroid P, Klarlund N, Sen K (2005) Dart: Directed automated random testing. In:

Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), ACM, New York, NY, USA, pp 213–223

http://dl.acm.org/citation.cfm?id=1313320.1313532
http://dl.acm.org/citation.cfm?id=1313320.1313532
http://doi.acm.org/10.1145/1966445.1966475
http://doi.acm.org/10.1145/1966445.1966475
http://dx.doi.org/10.1007/s10515-011-0089-9
http://dx.doi.org/10.1007/s10515-011-0089-9

30 Corina S. Păsăreanu et al.

26. Godefroid P, de Halleux P, Nori A, Rajamani S, Schulte W, Tillmann N, Levin M (2008)
Automating Software Testing using Program Analysis. Software, IEEE 25(5):30–37

27. Hooimeijer P, Weimer W (2009) A decision procedure for subset constraints over regular
languages. In: Proc 2009 ACM SIGPLAN Conf on Programming Language Design and
Implementation (PLDI), ACM, pp 188–198

28. Hooimeijer P, Weimer W (2010) Solving string constraints lazily. In: Pecheur C, Andrews
J, Nitto ED (eds) Proc 25th IEEE/ACM Intl Conf on Automated Software Engineering
(ASE), ACM, pp 377–386

29. Hooimeijer P, Molnar D, Saxena P, Veanes M (2010) Modeling imperative string operations
with transducers. Tech. Rep. MSR–TR–2010–96, Microsoft

30. IASolver (2010) IASolver page. http://www.cs.brandeis.edu/~tim/Applets/IAsolver.

html

31. Jayaraman K, Harvison D, Ganesh V, Kiezun A (2009) jFuzz: A concolic whitebox fuzzer
for Java. In: NASA Formal Methods Symposium, NASA Technical Memorandum

32. JPF (2012) JPF project. http://babelfish.arc.nasa.gov/trac/jpf
33. Khurshid S, Păsăreanu CS, Visser W (2003) Generalized symbolic execution for model

checking and testing. In: Proc 9th Intl Conf on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), pp 553–568

34. Kieżun A (2009) Effective software testing with a string-constraint solver. PhD thesis,
Massachusetts Institute of Technology, USA

35. Kieżun A, Ganesh V, Guo PJ, Hooimeijer P, Ernst MD (2009) HAMPI: A solver for
string constraints. In: Rothermel G, Dillon LK (eds) Proc 2009 International Symposium
on Software Testing and Analysis (ISSTA), ACM, pp 105–116

36. King JC (1976) Symbolic execution and program testing. Commun ACM 19:385–
394, DOI http://doi.acm.org/10.1145/360248.360252, URL http://doi.acm.org/10.1145/

360248.360252

37. LattE (2012) LattE Integrale. URL http://www.math.ucdavis.edu/~latte, UC Davis,
Mathematics

38. Li G, Ghosh I, Rajan SP (2011) Klover: a symbolic execution and automatic test gen-
eration tool for C++ programs. In: Proceedings of the 23rd International Conference on
Computer aided verification, Springer-Verlag, Berlin, Heidelberg, CAV’11, pp 609–615,
URL http://dl.acm.org/citation.cfm?id=2032305.2032354

39. Li X, Shannon D, Ghosh I, Ogawa M, Rajan S, Khurshid S (2008) Context-sensitive
relevancy analysis for efficient symbolic execution. In: Asian Symposium on Programming
Languages and Systems (APLAS)

40. Loera JAD, Dutra B, Köppe M, Moreinis S, Pinto G, Wu J (2011) Software for exact
integration of polynomials over polyhedra, arXiv:1108.0117v2[math.MG]

41. Mirzaei N, Malek S, Păsăreanu C, Esfahani N, Mahmood R (2012) Testing Android apps
through symbolic execution. In: JPF Workshop

42. de Moura L, Bjørner N (2008) Z3: An efficient SMT solver. In: Proc 14th Intl Conf on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS), Springer,
LNCS, vol 4963, pp 337–340

43. Păsăreanu CS, Visser W (2004) Verification of Java programs using symbolic execution
and invariant generation. In: Proc of 11th International SPIN Workshop (SPIN), LNCS
2989 Springer pp 164–181

44. Păsăreanu CS, Mehlitz PC, Bushnell DH, Gundy-Burlet K, Lowry M, Person S, Pape M
(2008) Combining unit-level symbolic execution and system-level concrete execution for
testing nasa software. In: Proc 2008 International Symposium on Software Testing and
Analysis (ISSTA), pp 15–26

http://www.cs.brandeis.edu/~tim/Applets/IAsolver.html
http://www.cs.brandeis.edu/~tim/Applets/IAsolver.html
http://babelfish.arc.nasa.gov/trac/jpf
http://doi.acm.org/10.1145/360248.360252
http://doi.acm.org/10.1145/360248.360252
http://www.math.ucdavis.edu/~latte
http://dl.acm.org/citation.cfm?id=2032305.2032354
arXiv:1108.0117v2 [math.MG]

Symbolic PathFinder 31

45. Păsăreanu CS, Rungta N, Visser W (2011) Symbolic execution with mixed concrete-
symbolic solving. In: Proceedings of the 2011 International Symposium on Software Test-
ing and Analysis (ISSTA), ACM, New York, NY, USA, pp 34–44, DOI 10.1145/2001420.
2001425

46. Person S, Yang G, Rungta N, Khurshid S (2011) Directed incremental symbolic execution.
In: Proc 2011 ACM SIGPLAN Conf on Programming Language Design and Implementa-
tion (PLDI), pp 504–515

47. Phan Q-S, Malacaria P, Tkachuk O, and Păsăreanu CS (2012) Symbolic quantitative
information flow. In: ACM SIGSOFT Software Engineering Notes 37(6): 1-5 (2012)

48. Rajan S, Tkachuk O, Prasad M, Ghosh I, Goel N, Uehara T (2009) WEAVE: WEb
Applications Validation Environment. In: Proc 31st International Conference on Software
Engineering (ICSE Companion)

49. Redelinghuys G (2012) Symbolic string execution. Master’s thesis, Stellenbosch University
50. Redis (2012) Redis NoSQL database. URL http://redis.io

51. Rossi F, van Beek P, Walsh T (2006) Handbook of Constraint Programming. Elsevier
52. Rungta N, Mercer EG, Visser W (2009) Efficient testing of concurrent programs with

abstraction-guided symbolic execution. In: Proc of 16th International SPIN Workshop
(SPIN) pp 174-191

53. Sanfilippo S, Noordhuis P (2012) Redis: The Definitive Guide. O’Reilly Media
54. Santelices R, Harrold MJ (2010) Exploiting program dependencies for scalable multiple-

path symbolic execution. In: Proc 2010 International Symposium on Software Testing and
Analysis (ISSTA), pp 195–206

55. Sasnauskas R, Dustmann OS, Kaminski BL, Wehrle K, Weise C, Kowalewski S (2011)
Scalable symbolic execution of distributed systems. In: Proceedings of the 2011 31st
International Conference on Distributed Computing Systems, IEEE Computer Society,
Washington, DC, USA, ICDCS ’11, pp 333–342, DOI 10.1109/ICDCS.2011.28, URL
http://dx.doi.org/10.1109/ICDCS.2011.28

56. Saxena P, Akhawe D, Hanna S, Mao F, McCamant S, Song D (2010) A symbolic execution
framework for JavaScript. In: Proc 31st IEEE Symposium on Security and Privacy, IEEE
Computer Society, pp 513–528

57. Sen K, Agha G (2006) CUTE and jCUTE : Concolic unit testing and explicit path model-
checking tools. In: Proc. 18th International Conference on Computer Aided Verification
(CAV), pp 419–423

58. Sen K, Agha G (2007) A race-detection and flipping algorithm for automated testing of
multithreaded programs. In: Proc. Haifa Verification Conference (HVC), Springer, LNCS,
vol 4383, pp 166–182

59. Shannon D, Hajra S, Lee A, Zhan D, Khurshid S (2007) Abstracting symbolic execu-
tion with string analysis. In: Proc Testing: Academic and Industrial Conf, Practice and
Research Techniques, IEEE Computer Society, pp 13–22

60. Shannon D, Ghosh I, Rajan SP, Khurshid S (2009) Efficient symbolic execution of strings
for validating web applications. In: Proc 2nd Intl Workshop on Defects in Large Software
Systems, ACM, pp 22–26

61. Siegel S, Zirkel T (2011) Tass: The toolkit for accurate scientific software. Mathemat-
ics in Computer Science 5:395–426, URL http://dx.doi.org/10.1007/s11786-011-0100-7,
10.1007/s11786-011-0100-7

62. Siegel S, Mironova A, Avrunin G, Clarke L (2006) Using Model Checking with Symbolic
Execution to Verify Parallel Numerical Programs. In: Proc 2006 International Symposium
on Software Testing and Analysis (ISSTA), ACM, pp 157–168

http://redis.io
http://dx.doi.org/10.1109/ICDCS.2011.28
http://dx.doi.org/10.1007/s11786-011-0100-7

32 Corina S. Păsăreanu et al.

63. Souza M, Borges M, d’Amorim M, Păsăreanu CS (2011) CORAL: Solving complex con-
straints for Symbolic PathFinder. In: NASA Formal Methods, pp 359–374

64. SPF (2012) Symbolic Pathfinder (jpf-symbc). http://babelfish.arc.nasa.gov/trac/jpf
65. Staats M, Păsăreanu C (2010) Parallel symbolic execution for structural test generation.

In: Proc 2010 International Symposium on Software Testing and Analysis (ISSTA), ACM,
New York, NY, USA, pp 183–194, DOI 10.1145/1831708.1831732

66. choco: (2012) Java constraint solver. URL http://choco.emn.fr

67. Tillmann N, de Halleux J (2008) Pex–white box test generation for .NET. In: Beckert B,
Hähnle R (eds) Proc 2nd Intl Conf on Tests and Proofs, Springer, LNCS, vol 4966, pp
134–153

68. Tomb A, Brat G, Visser W (2007) Variably interprocedural program analysis for run-time
error detection. In: Proc 2007 International Symposium on Software Testing and Analysis
(ISSTA), ACM Press, New York, NY, USA, pp 97–107

69. Veanes M, de Halleux P, Tillmann N (2010) Rex: Symbolic regular expression explorer.
In: Proc 3rd Intl Conf on Software Testing, Verification and Validation, IEEE Computer
Society, pp 498–507

70. Visser W, Havelund K, Brat GP, Park S, Lerda F (2003) Model checking programs. Au-
tomated Software Engineering 10(2):203–232

71. Visser W, Păsăreanu CS, Pelánek R (2006) Test input generation for Java containers using
state matching. In: Proc 2006 International Symposium on Software Testing and Analysis
(ISSTA), pp 37–48

72. Visser W, Geldenhuys J, Dwyer MB (2012) Green: Reducing, Reusing and Recycling
Constraints in Program Analysis. In: International Symposium on the Foundations of
Software Engineering (FSE), Cary, North Carolina, USA

73. Xie T, Marinov D, Schulte W, Notkin D (2005) Symstra: A framework for generating
object-oriented unit tests using symbolic execution. In: Proceedings of the 11th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), Springer-Verlag, Berlin, Heidelberg, pp 365–381

74. Yang G, Păsăreanu CS, and Khurshid S (2012) Memoized symbolic execution. In: Proc
International Symposium on Software Testing and Analysis (ISSTA), pp 144–154

75. Yices (2012) Yices SMT Solver. URL http://yices.csl.sri.com/

76. Yu F, Bultan T, Cova M, Ibarra OH (2008) Symbolic string verification: An automata-
based approach. In: Proc 15th Intl SPIN Workshop on Model Checking Software, Springer,
LNCS, vol 5156, pp 306–324

77. Yu F, Alkhalaf M, Bultan T (2010) Stranger: An automata-based string analysis tool for
PHP. In: Proc 16th Intl Conf on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), Springer, LNCS, vol 6015, pp 154–157

78. Zhang P, Elbaum SG, Dwyer MB (2011) Automatic generation of load tests. In: Alexan-
der P, Păsăreanu CS, Hosking JG (eds) Proc 26th IEEE/ACM Intl Conf on Automated
Software Engineering, IEEE, pp 43–52

http://babelfish.arc.nasa.gov/trac/jpf
http://choco.emn.fr
http://yices.csl.sri.com/

	Introduction
	Symbolic Execution
	Java PathFinder
	Symbolic PathFinder
	Mixed Concrete-Symbolic Solving
	Symbolic String Analysis
	Extensions and Applications
	Related Work
	Conclusions

