
FINAL TRANSCRIPT

Tubes

by
Sarah Thompson

Narration dialogue edits by
Chuck Fry

SGT Inc., NASA Ames Research Center,
MS269-3, Moffett Field, CA 95014
Email: sarah.thompson@nasa.gov

TITLE SEQUENCE

Scene opens with a star field.

SUPER: NASA, ARC and SGT logos, then the caption, “RSE
Tech Area, Code TI”

Camera POV descends through clouds, ending within the
PROGRAMMER’s cube.

CUT TO:

INT. CUBE FARM - DAY

A PROGRAMMER is at work. In TIMELAPSE, we see the
programmer become increasingly frustrated.

NARRATOR (V.O.)
Programming is hard. Programmers
are the heros of our time, toiling
long hours at the code face to
construct the products we all rely
upon in our daily lives. The job
of a programmer is to write code.
Code is expressed in a programming
language, commonly C, C++ or Java.
When the problem in hand fits the
capabilities of the language, this
is often straightforward. But,
when the problem doesn’t fit the
language, things get less
pleasant. Such code tends to be
much more long-winded, difficult
to understand and often buggy.

INT. MACHINE SHOP - DAY

We see a CNC MILLING MACHINE perform a repetitive task.

NARRATOR (V.O.)
Nearly all commonly used languages
are procedural. This makes them
really good at expressing
processes where everything happens
in a very specific, well
understood order.

(MORE)

(CONTINUED)

Unfortunately, however, this
paradigm tends to break down when
code has to deal with the need to
do more than one thing at a time.

CUT TO:

INT. MOORE’S LAW SEQUENCE

Multiple copies of the programmer move across the screen
increasingly quickly.

SFX: Clock ticks faster and faster

NARRATOR (V.O.)
Moore’s law has given us faster
and faster processors capable of
running procedural code ever
quicker with each new generation.

CUT TO:

EXT. DESERT ROAD - DAY

The Programmer is apparently driving a car, wearing a
helmet as if in a race.

Montage: Speed limit sign, 65 MPH. No aircraft, no space
rockets signs accompany it.

NARRATOR (V.O.)
Unfortunately, however, physics is
getting in the way of making
individual processor cores faster.

CUT TO road sign, “50 MPH, Warning! Speed limit enforced
by laws of physics, SLOW”

BACK TO the programmer driving the car. The CAMERA pulls
back and up, revealing them to really be driving 25 cars
bolted together in a 5 by 5 grid.

NARRATOR (V.O.)
Consequently, the only practical
way to move forward is to run
multiple processor cores in
parallel.

2.
CONTINUED:

NARRATOR (V.O.) (CONT'D)

(CONTINUED)

NARRATOR (V.O.)
We now live in a world where even
our cellphones have multiple
processor cores.

CUT to helicopter flyby of cars driving down the desert
road.

NARRATOR (V.O.)
Today’s most commonly used
programming languages simply
weren’t designed to deal with such
parallelism. All too often,
programmers must manage today’s
highly concurrent workloads with
languages designed for serial
applications.

CUT TO:

INT. CUBE FARM - DAY

The programmer sits at a table with a pile of plumbing
parts. They are trying to build something, but none of
the parts fit properly -- they throw the rejects over
their shoulder without looking, but they faithfully hit
the waste bin every time.

NARRATOR (V.O.)
Programmers face a second
difficulty. It has long been a
purported advantage of modern
programming languages that code
reuse is possible -- that is, it
should be possible to create
software components that can be
slotted together later to make new
applications without having to
rewrite everything from scratch.
Unfortunately, however, in
practice this rarely works well,
with a lot of messy glue code
being necessary to join everything
together.

The programmer grabs a lump of clay and slaps it on top
of some parts, then sticks some more tubes into it.

3.
CONTINUED:

SCREEN SHOT: EMAIL CLIENT

We see a photo as an inclusion in an email to their boss,
with a subject line of, “There, I fixed it!”

In stop motion, we see the clay grow menacing tentacles.

NARRATOR (V.O.)
Glue code tends to be difficult
and often boring to write.
Consequentially, it can be quite
bug prone.

SCREEN SHOT: NOKIA/TROLL TECH WEB SITE FOR QT

We zoom into a code example showing signals & slots.

NARRATOR (V.O.)
In the 1990s, a small Norwegian
company, Troll Tech, invented an
extension to the C++ language that
introduced the concept of signals
and slots.

CUT TO Qt demo application with an LED numeric readout, a
large DIAL and a RESET BUTTON. The number changes as the
dial is rotated with the mouse. Clicking the reset button
snaps the dial to 0 (hard left/anticlockwise). The code
fragments responsible for routing the relevant signals
appear as the controls are used.

NARRATOR (V.O.)
Their product, Qt, was a graphical
user interface library, now owned
by Nokia, that built on their
signals and slots technology to
greatly simplify the difficulty of
implementing user interfaces in
C++.

CUT TO:

INT. CUBE FARM - DAY

We see the programmer attempting the same problem that
they attempted with the clay. This time, however, they
have some tubes that they are using to connect the badly
fitting parts. As the tubes click into place, they GLOW
in different primary colours, underscored by SFX.

4.

(CONTINUED)

NARRATOR (V.O.)
Signals and slots made it possible
to connect objects together that
weren’t designed to work together.
Because a signal/slot connection
only needs to match types on the
connection itself, not on the
whole object, very little glue
code is needed. Unfortunately for
our programmer, though signals and
slots make huge inroads to the
problem of code reuse, they don’t
help with concurrency.

MONTAGE: CIRCUIT BOARDS

We see a series of macro shots of circuit boards. (Images
courtesy cgtextures.com)

NARRATOR (V.O.)
There is already a well-known
paradigm that works well for
concurrency. Electronic circuits
are by their nature concurrent --
all their parts typically are all
working at once, not one at a
time. The digital electronics
paradigm is centred on data flow,
rather than control flow. In
practice, doing control flow with
digital electronics tends to be
difficult, often requiring tricky
work-arounds.

TITLE CARD: TUBES

We see a whiteboard stop motion animation that serves as
the title card for Tubes. One of the frames of this
sequence is shown on the whiteboard behind the Programmer
on the wall of their cube, and was also used as the basis
of the CNC program being executed by the milling machine
in an earlier scene.

NARRATOR (V.O.)
Signals and slots make it much
easier to express data flow in
C++, but Qt concentrated mainly on
single-threaded code.

5.
CONTINUED:

(MORE)

(CONTINUED)

Tubes are a generalization of
signals and slots that extends the
concept to encompass concurrency.

CUT TO:

MOTION GRAPHICS SEQUENCE

We see the outline of the squarer class.

NARRATOR (V.O.)
Tubes extend the C++ concept of
classes to include inputs and
outputs, analogous to the pins on
a chip. Adding inputs is easy --
declare the class as an
endpoint...

Overlay includes ‘: public async_endpoint’

NARRATOR (V.O.)
Inputs are just ordinary member
functions.

INPUT arrow appears to the left of the class, pointing at
the ‘void input(int x)’ line.

NARRATOR (V.O.)
You can have as many of them as
you like. If you name one
‘input’...

‘input’ HIGHLIGHTS.

NARRATOR (V.O.)
... it becomes the default input
for the class. Outputs are
declared by adding tubes.

Overlay includes ‘tube1<int> output;’. OUTPUT arrow
appears on the right hand side of the class.

NARRATOR (V.O.)
As with inputs, you can have as
many outputs as you like, but the
default output is always called
output.

‘output’ HIGHLIGHTS.

6.
CONTINUED:

NARRATOR (V.O.) (CONT'D)

(CONTINUED)

Code zooms into the distance. A main class moves in on
the left: a tube is declared as ‘tube1<int> numbers’, and
a loop sends a series of numbers to it.

NARRATOR (V.O.)
So how do we use our squarer
class? It’s actually pretty
simple. First we’re going to want
to see what’s coming out of it:

A class appears that implements printing moves in from
the right.

NARRATOR (V.O.)
All we need to do now is wire
everything up.

The single line of code ‘numbers >> squarer >> printer;’
appears. The classes snap together, outputs connected to
inputs. We see the program’s output scroll by as an
OVERLAY.

FADE TO STL based code example, stripping the loop that
generates numbers out and replacing it with an STL
collection. Relevant parts of the code HIGHLIGHT as
necessary.

NARRATOR (V.O.)
Tubes are compatible with the
Standard Template Library -- they
are function objects that work
with many of the STL algorithms.
Here, we’ve replaced the loop with
some code that puts some numbers
into an STL set. Sending those
numbers down a tube just takes one
line of code.

HIGHLIGHT the line ‘for_each(tosend.start(),
tosend.end(), numbers);’

NARRATOR (V.O.)
We’re able to use the existing STL
for_each function. And that’s it,
it’s really that simple! It is
fair to mention that some of what
we’ve seen so far could have been
done with signals and slots,
though our syntax may arguably be
a bit nicer.

PAN TO squarer class.

7.
CONTINUED:

(CONTINUED)

NARRATOR (V.O.)
Signals and slots are actually a
special case with respect to
Tubes. Tubes handle the single-
threaded case just fine...

Class rotates in 3D, then is duplicated several times in
parallel.

NARRATOR (V.O.)
... but extend this to also
support the most common kinds of
concurrency. Let’s say our
processing task is a bit tougher
than squaring a number. Something
like calculating a Mandelbrot set.

We now see the Mandelbrot generator class from the tubes
example code.

NARRATOR (V.O.)
Generating images of the
Mandelbrot set is computationally
expensive, and also tricky to tune
for performance well because
execution time varies widely and
unpredictably.

Show a Mandelbrot set being calculated (and displayed) in
4 threads, without special care being taken to load
balance the threads. A large countdown appears in the
upper right making the number of running threads clear --
it becomes obvious that the approach is not efficiently
using all processor cores.

NARRATOR (V.O.)
A common approach is to split the
image up and allocate each part to
separate threads. When execution
time is unpredictable, it can be
difficult to load balance multiple
threads of execution, which makes
it harder to exploit all available
processor power.

FADE TO code fragment looping across 2048 scan lines
sending them in sequence down a tube (declared
‘tube1<work> output’).

NARRATOR (V.O.)
Normally, writing the code for
this kind of thing can be pretty
tricky.

8.
CONTINUED: (2)

(MORE)

(CONTINUED)

Tubes has some tools that make
this much easier. We’ve already
seen tubes used for single-
threaded code.

HIGHLIGHT the tube declaration and the ‘output(todo);’
lines.

NARRATOR (V.O.)
This will work fine...

Show a Mandelbrot being calculated in linear order left
to right -- it runs visibly slowly.

NARRATOR (V.O.)
...but it will only use one
processor core. If we change one
line of code...

The ‘tubes1<int>’ becomes ‘spawn1<int>’ and HIGHLIGHTS
briefly.

NARRATOR (V.O.)
The spawn tube, rather than
sending messages in the current
thread, spawns a new thread for
each message. The destination then
receives those messages in
parallel.

Show the Mandelbrot calculating in parallel.

NARRATOR (V.O.)
So with a single-line change, we
have gone from a single-threaded
implementation to a multi-threaded
alternative. This works well, but
most operating systems don’t
respond well to having code spawn
thousands of concurrent threads.
Tubes has a second option that
covers this case.

We see the ‘spawn1<int>’ change to ‘queue1<int>’, which
HIGHLIGHTS.

NARRATOR (V.O.)
A queue is so-called because it
behaves like a queue -- messages
can be sent to it immediately,
without blocking. They are queued,
and a pool of threads send them on
in the background.

9.
CONTINUED: (3)

NARRATOR (V.O.) (CONT'D)

(MORE)

(CONTINUED)

By default, a queue tube creates a
thread pool with the same number
of threads as the machine has
cores.

Show the Mandelbrot set being evaluated rapidly left to
right.

NARRATOR (V.O.)
Thread pools typically provide the
best performance for most
parallelizable problems because
they avoid swamping the operating
system with too many threads, but
still allow all cores to be fully
utilized.

CUT TO:

WHITEBOARD STOP MOTION ANIMATION

Show a hand-drawn on whiteboard performance graph that
compares spawned threads with the thread pool approach.

NARRATOR (V.O.)
Traditionally, implementing thread
pools has been very tricky to get
right, but as this example shows,
Tubes makes this near trivial.

A whiteboard eraser wipes the screen clear.

BACK TO:

MOTION GRAPHICS SEQUENCE

Show the Mandelbrot generator class

NARRATOR (V.O.)
Another common issue in concurrent
programs is synchronizing access
to resources that are being used
concurrently by many threads at
once. Tubes makes this very easy.
Let’s say that we wanted our
Mandelbrot generator class to log
progress information as it
proceeds.

HIGHLIGHT the ‘tube1<string> logmessage;’ and
‘logmessage(”Starting processing”);’ lines.

10.
CONTINUED: (4)

NARRATOR (V.O.) (CONT'D)

(CONTINUED)

PAN TO logger class.

NARRATOR (V.O.)
Let’s implement a class that logs
output to the console, whilst
enforcing strict synchronization.
That is, only one log message may
be sent at a time, even though
many threads may attempt to do so
at once. By specifying that the
class is a synchronous endpoint...

HIGHLIGHT ‘: public sync_endpoint’

NARRATOR (V.O.)
...Tubes automatically
synchronizes all incoming messages
with a mutex. So we just wire it
up...

SHOW OVERLAY ‘mandelbrot mb; logger lgr; mb >> lgr;’.

Mandelbrot class MOVES IN and CONNECTS to the logger
class.

NARRATOR (V.O.)
...and we’re done.

OVERLAY of program running showing all the start/end
messages flying past.

CUT TO:

INT. CUBE FARM - DAY

Programmer looks satisfied.

OVERLAY: Bullet points appear over the image. The
programmer looks up as they appear.

NARRATOR (V.O.)
So, to sum up, Tubes builds on the
code reuse advantages of signals
and slots, whilst also providing
very powerful concurrency
constructs that are easy to use
and fully Standard Template
Library compliant. The prototype
implementation supports all major
operating systems.

11.
CONTINUED:

(CONTINUED)

The programmer reaches over and grabs one of the bullet
points, looks at it briefly then tosses it over their
shoulder into the trash can, which causes the CUBE WALL
to CRASH to the ground, revealing an outdoor horizon.

FADE OUT.

12.
CONTINUED:

