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This paper investigates the effects of nonlinear large deflection bending on the aerody-
namic performance and aeroelasticity of a high aspect ratio flexible wing. A nonlinear large
deflection theory is developed for aeroelasticity to account for large deflection bending. An
analysis is conducted to compare the nonlinear bending theory with the linear bending
theory. The results show that the nonlinear bending theory is length-preserving whereas
the linear bending theory causes a non-physical effect of lengthening of the wing structure
under the no axial load condition. A modified lifting line theory is developed to compute
the lift and drag coefficients of a wing structure undergoing a large bending deflection.
The lift and and drag coefficients are more accurately estimated by the nonlinear bending
theory due to its length-preserving property. The nonlinear bending theory yields a lower
lift and higher induced drag than the linear bending theory. The nonlinear large deflection
bending also can affect the structural dynamics of a high aspect ratio wing significantly.
Limit cycle oscillations are a nonlinear phenomenon which arises from geometric nonlin-
earity and other sources of nonlinearities. Large deflection can manifest itself in limit cycle
oscillations whereby linear flutter behaviors can result in an increase in the bending de-
flection up to a point where the geometric nonlinearity due to the large deflection begins
to set in that results in limit cycle oscillations.

I. Introduction

Modern aircraft are increasingly designed to be highly aerodynamically efficient in order to reduce the fuel
consumption, hence operating cost of modern airlines. To achieve this goal, the aircraft industry has been
adopting a high aspect ratio wing design with the composite construction in modern aircraft. Aircraft design
concepts that take advantage of wing flexibility to increase aerodynamic performance and maneuverability
have been investigated. By twisting a wing structure, an aerodynamic moment can be generated to enable an
aircraft to execute a maneuver in place of the use of traditional flight control surfaces. For example, a rolling
moment can be induced by twisting the left and right wings in the opposite direction. Similarly, a pitching
moment can be generated by twisting both wings in the same direction. Wing twisting or warping for flight
control is not a new concept and was used in the Wright Flyer in the 1903. The U.S. Air Force conducted
the Active Flexible Wing program in the 1980’s and 1990’s to explore the potential use of leading edge slats
and trailing edge flaps to increase the control effectiveness of F-16 aircraft for high speed maneuvers.1 In the
2000’s, the Active Aeroelastic Wing research program also investigated a similar technology to induce wing
twist in order to improve roll maneuverability of a modified F/A-18 aircraft.2 Wing shaping control concepts
for drag reduction are being studied by NASA to leverage wing flexibility for aerodynamic performance.3,4
By re-twisting a flexible wing and using variable camber aerodynamic flight control surfaces, aircraft wings
can have the mission-adaptive capability to optimize L/D throughout a flight envelope.5 In recognition of
the role of aeroelasticity on aircraft performance and dynamics, NASA Advanced Air Transport Technology
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(AATT) project is conducting research in the area of Performance Adaptive Aeroelastic Wing (PAAW). This
research develops concepts such as the variable camber continuous trailing edge flap (VCCTEF) to enable
wing shaping control for aerodynamic performance and dynamics.3,6

Nonlinear large deflections of lifting surfaces can interact with aerodynamic forces to create aeroelastic
coupling that can affect aircraft performance and dynamic stability. Understanding these effects can improve
the prediction of aircraft performance and provide an insight into how to design an aerodynamically efficient
high aspect ratio flexible wing. Limit cycle oscillations (LCO) are a nonlinear phenomenon which arises from
geometric nonlinearity and other sources of nonlinearities. Large deflection can manifest itself in limit cycle
oscillations whereby linear flutter behaviors can result in an increase in the bending deflection up to a point
where the geometric nonlinearity due to the large deflection begins to set in that could lead to LCO.

This paper develops large deflection theory and modified aeroelastic lifting line theory to examine the
effects of large deflection on aerodynamics. In addition, the paper will examine the dynamic response of a
flexible high aspect ratio wing to investigate the existence of LCO due to large deflection.

II. Nonlinear Large Bending Deflection Strain Analysis

To analyze the nonlinear large bending deflection effect, we perform a strain analysis. Toward that end,
consider an airfoil section on the left wing as shown in Fig. 1 undergoing a combined axial, bending, and
torsional displacement field. Let (x, y, z) be the undeformed coordinates of point Q on a wing airfoil section
in the reference frame D defined by unit vectors (d1,d2,d3). Let p0 = xd1 be a position vector along the
elastic axis. Then, point Q is defined by a position vector p = p0 + q where q = yd2 + zd3 defines point Q
in the y − z plane from the elastic axis. Then, the undeformed local airfoil coordinates of point Q are[

y

z

]
=

[
cos γ − sin γ

sin γ cos γ

][
η

ξ

]
(1)

where η and ξ are local airfoil coordinates, and γ is the wing section pre-twist angle, positive nose-down.11,12
Differentiating y and z with respect to x gives[

yx

zx

]
= γ

′

[
− sin γ − cos γ

cos γ − sin γ

][
η

ξ

]
=

[
−zγ′

yγ
′

]
(2)

Figure 1. Left Wing Reference Frame of Wing in Combined Bending-Torsion

Let Θ be a torsional twist angle about the x-axis, positive nose-down. Let W and V be flapwise and
chordwise bending deflections of point Q, respectively, and W is allowed to be large relative to V . Let U be
the axial displacement of point Q. Then, the displacement and rotation vectors due to the elastic deformation
can be expressed as

r = Ud1 + V d2 +Wd3 (3)

φ = Θd1 − sin−1Wsd2 + Vxd3 (4)
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where the subscripts x and s denote the partial derivatives ofW and V with respect to x and the arc length s.
Note that the term sin−1Ws represents the rotation angle due to the large flapwise bending with respect to
the arc length. If Ws is small, then the usual approximation sin−1Ws ≈Wx applies. Otherwise, Wx = Wssx
applies where

sx =
ds

dx
=
√

1 + y2
x + z2

x =

√
1 + (y2 + z2) (γ′)

2 (5)

Let (x1, y1, z1) be the deformed coordinates of point Q on the airfoil in the reference frame D and
p1 = x1d1 + y1d2 + z1d3 be its position vector. Then the coordinates (x1, y1, z1) are computed as

p1 = p + r + φ× q (6)

where  x1

y1

z1

 =

 x+ U − yVx − z sin−1Ws

y + V − zΘ
z +W + yΘ

 (7)

Differentiating x1, y1, and z1 with respect to x yields x1,x

y1,x

z1,x

 =


1 + Ux − yVxx + zγ

′
Vx − z Wsssx√

1−W 2
s

− yγ′
sin−1Wx

−zγ′
+ Vx − zΘx − yγ

′
Θ

yγ
′
+ sin−1Wx + yΘx − zγ

′
Θ

 (8)

Note that the term Wss√
1−W 2

s

represents the physical curvature of the nonlinear bending with a large

deflection. This term is consistent with the nonlinear bending curvature formula by Hodges.16 Other
authors14,15 have used the curvature formula Wss

(1+W 2
s )

3
2
based on the elementary calculus which is sometimes

mistaken as the physical curvature of a beam as stated by Hodges.16 The curvature formula Wss√
1−W 2

s

can be

used in the undeformed coordinates whereas the curvature formula Wss

(1+W 2
s )

3
2
must be used in the deformed

coordinates which are impractical for implementation.
Neglecting the transverse shear effect, the longitudinal strain is computed as12

ε =
ds1 − ds

ds
=
s1,x

sx
− 1 (9)

where

s1,x =
√
x2

1,x + y2
1,x + z2

1,x

=

√
s2
x + 2Ux − 2yVxx − 2z

Wsssx√
1−W 2

s

+ 2 (y2 + z2) γ′Θx + (x1,x − 1)
2

+ (y1,x + zγ′)
2

+ (z1,x − yγ′)
2 (10)

s1,x is approximated by a Taylor series as

s1,x ≈ sx+Ux−yVxx−z
Wsssx√
1−W 2

s

+
(
y2 + z2

)
γ

′
Θx+

(x1,x − 1)
2

+
(
y1,x + zγ

′
)2

+
(
z1,x − yγ

′
)2

2
+· · · (11)

The slope of the twist angle γ
′
can play a significant role in structures with large twists such as turboma-

chinery blades. For aircraft wings, this effect is negligible and therefore can be neglected. Thus, for a small
wing twist angle slope, γ

′ ≈ 0 and sx ≈ 1. Then Ws ≈ Wx and Wss ≈ Wxx. Neglecting all the nonlinear
terms associated with the chordwise bending, the longitudinal strain is then obtained as

ε = Ux − yVxx − z (1 + Ux)
Wxx√
1−W 2

x

+
1

2
U2
x +

1

2

(
sin−1Wx

)2
+

1

2

(
y2 + z2

)
Θ2
x +

1

2
z2 W 2

xx

1−W 2
x

+ y sin−1WxΘx (12)
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Assuming that the neutral axis of a wing section passes through the elastic axis, then the axial force and
moments acting on a wing are evaluated as7

Px =

∫
EεdA = EAUx +

1

2
EA

[
U2
x +

(
sin−1Wx

)2]
+

1

2
EIxxΘ2

x +
1

2
EIyy

W 2
xx

1−W 2
x

(13)

Mx = GJΘx +

∫
Eε
(
y2 + z2

)
ΘxdA =

{
GJ + EIxxUx − (1 + Ux)EB2

Wxx√
1−W 2

x

+
1

2
EIxx

[
U2
x +

(
sin−1Wx

)2]
+

1

2
EB1Θ2

x +
1

2
EB5

W 2
xx

1−W 2
x

+ EB3 sin−1WxΘx

}
Θx (14)

My = −
∫
EεzdA = (1 + Ux)EIyy

Wxx√
1−W 2

x

− 1

2
EB2Θ2

x −
1

2
EB8

W 2
xx

1−W 2
x

(15)

Mz = −
∫
EεydA = EIzzVxx −

1

2
EB3Θ2

x −
1

2
EB9

W 2
xx

1−W 2
x

− EIzz sin−1WxΘx (16)

where E is the Young’s modulus, G is the shear modulus, A is the tensile area, J is the torsional constant,
and Bi, i = 1, 2, . . . , 10 are defined as

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10



=

∫



(
y2 + z2

)2
z
(
y2 + z2

)
y
(
y2 + z2

)
y2
(
y2 + z2

)
z2
(
y2 + z2

)
yz
(
y2 + z2

)
y2z

z3

yz2

y3



dA (17)

For a rectangular wing box structure with the neutral axis in coincidence with the elastic axis, the
constants B1, B4, and B5 are generally much larger than the other constants Bi, i 6= 1, 4, 5 and can be
approximated as  B1

B4

B5

 ≈ 1

A

 I2
xx

IxxIzz

IxxIyy

 (18)

Assuming that the nonlinear contributions of the chordwise bending deflection are small and neglecting
the cross-product inertia Iyz and the small constants Bi, i 6= 1, 4, 5, then the following simplification can be
made:

Mx =
(
GJ + Pxr

2
k

)
Θx (19)

My = (1 + Ux)EIyy
Wxx√
1−W 2

x

(20)

Mz = EIzzVxx − EIzz sin−1WxΘx (21)

where rk =
√

Ixx
A is the radius of gyration.

Note that the signs of the moments are defined in the positive deflection sense such that

M = Mxd1 −Myd2 +Mzd3 (22)

The resulting equilibrium equations are given by7

∂

∂x

 Px

Py

Pz

 = −

 fx

fy

fz

 (23)
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∂

∂x

 Mx

My

Mz

 =

 PyWx − PzVx −mx

PxWx − Pz +my

PxVx − Py −mz

 (24)

These equations become

∂Mx

∂x
+

(
∂Mz

∂x
− PxVx +mz

)
︸ ︷︷ ︸

0

Wx −
(
∂My

∂x
− PxWx −my

)
︸ ︷︷ ︸

0

Vx +mx = 0 (25)

∂2My

∂x2
− ∂ (PxWx)

∂x
− ∂my

∂x
− fz = 0 (26)

∂2Mz

∂x2
− ∂ (PxVx)

∂x
+
∂mz

∂x
− fy = 0 (27)

The resulting nonlinear equations are obtained as

∂

∂x

{
EAUx +

1

2
EA

[
U2
x +

(
sin−1Wx

)2]
+

1

2
EIxxΘ2

x +
1

2
EIyy

W 2
xx

1−W 2
x

}
= −fx (28)

∂

∂x

[(
GJ + Pxr

2
k

)
Θx

]
= −mx (29)

∂2

∂x2

[
(1 + Ux)EIyy

Wxx√
1−W 2

x

]
− ∂ (PxWx)

∂x
= fz +

∂my

∂x
(30)

∂2

∂x2

(
EIzzVxx − EIzz sin−1WxΘx

)
− ∂ (PxVx)

∂x
= fy −

∂mz

∂x
(31)

III. Inertial Force Analysis

The relative velocity of the air approaching a wing section includes the contribution from the wing elastic
deflection that results in changes in the local angle of attack. Since aerodynamic forces and moments are
dependent on the local angle of attack, the wing aeroelastic deflections will generate additional elastic forces
and moments. The local angle of attack depends on the relative approaching air velocity as well as the
rotation angle φ from Eq. (4). The relative air velocity in turn also depends on the deflection-induced
velocity. The velocity at point Q due to the aircraft velocity and angular velocity in the reference frame D
is computed as

vQ = v̄ + ω × r = (ub1 + vb2 + wb3) + (pb1 + qb2 + rb3)× (−xab1 − yab2 − zab3)

= (u+ rya − qza)b1 + (v − rxa + pza)b2 + (w + qxa − pya)b3

= xtd1 + ytd2 + ztd3 (32)

where (u, v, w) are the aircraft velocity components, (p, q, r) are aircraft angular velocity components in the
roll, pitch, and yaw axes, and (xa, ya, za) is the coordinate of point Q in the aircraft body-fixed reference
frame B relative to the aircraft CG (center of gravity) such that xa is positive when point Q is aft of the
aircraft CG, ya is positive when point Q is toward the left wing from the aircraft CG, and za is positive
when point Q is above the aircraft CG.

The coordinate transformation between the reference frame B defined by the unit vectors (b1,b2,b3)
and D is given by  b1

b2

b3

 =

 − sin Λ cos Γ − cos Λ sin Λ sin Γ

− cos Λ cos Γ sin Λ cos Λ sin Γ

− sin Γ 0 − cos Γ


 d1

d2

d3

 (33)

where Γ is the wing dihedral angle.
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Consider a trim problem when β = 0, p = q = r = 0 for steady-state aerodynamics. For simplicity, we
assume Γ = 0. Then,  xt

yt

zt

 =

 −u sin Λ

−u cos Λ

−w

 (34)

The local velocity at point Q due to the aeroelastic deflections is obtained as x1,t

y1,t

z1,t

 =


xt + Ut − yVxt − z Wxt√

1−W 2
x

yt + Vt − zΘt

zt +Wt + yΘt

 (35)

When the aircraft is trimmed, u̇ = ẇ = 0. Then, the acceleration of point Q due to the aeroelastic
deflections is computed as  x1,tt

y1,tt

z1,tt

 ≈

Utt − yVxtt − z Wxtt√

1−W 2
x

Vtt − zΘtt

Wtt + yΘtt

 (36)

The inertial force is evaluated as f ix
f iy
f iz

 = −
∫  x1,tt

y1,tt

z1,tt

 ρdA = −ρA

 Utt − ecgVxtt
Vtt

Wtt + ecgΘtt

 (37)

where ecg is the offset of the center of mass from the elastic axis (positive with the center of mass aft of the
elastic axis).

The inertial moment is evaluated as mi
x

mi
y

mi
z

 = −
∫  yz1,tt − zy1,tt

zx1,tt

−yx1,tt

 ρdA = −


ρAecgWtt + ρIxxΘtt

−ρIyy Wxtt√
1−W 2

x

−ρAecgUtt + ρIzzVxtt

 (38)

The structural dynamic equations are now expressed as

∂

∂x

{
EAUx +

1

2
EA

[
U2
x +

(
sin−1Wx

)2]
+

1

2
EIxxΘ2

x +
1

2
EIyy

W 2
xx

1−W 2
x

}
= ρA (Utt − ecgVxtt)− fax (39)

∂

∂x

[(
GJ + Pxr

2
k

)
Θx

]
= ρAecgWtt + ρIxxΘtt −ma

x (40)

∂2

∂x2

[
(1 + Ux)EIyyWxx√

1−W 2
x

]
− ∂ (PxWx)

∂x
= −ρA (Wtt + ecgΘtt) +

∂

∂x

(
ρIyy

Wxtt√
1−W 2

x

)
+ faz +

∂ma
y

∂x
(41)

∂2

∂x2

(
EIzzVxx − EIzz sin−1WxΘx

)
− ∂ (PxVx)

∂x
= −ρAVtt +

∂

∂x
(−ρAecgUtt + ρIzzVxtt) + fay −

∂ma
z

∂x
(42)

IV. Aeroelastic Analysis

The forces and moments on the right hand side of Eqs. (28) - (31) also include aerodynamic and gravity
forces and moments. In order to compute the aerodynamic forces and moments of a flexible wing structure,
static aeroelasticity must be considered.

Neglecting the rotation due to the chordwise bending and making the small angle assumption for Θ, the
velocity of point Q is transformed from the reference frame D to the airfoil local coordinate reference frame
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defined by (µ, η, ξ) as follows: vµ

vη

vξ

 =

 1 0 0

0 1 Θ

0 −Θ 1



√

1−W 2
x 0 Wx

0 1 0

−Wx 0
√

1−W 2
x


 x1,t

y1,t

z1,t


=

 x1,t

√
1−W 2

x + z1,tWx

−x1,tΘWx + y1,t + z1,tΘ
√

1−W 2
x

−x1,tWx − y1,tΘ + z1,t

√
1−W 2

x

 (43)

For a small angle of attack, the usual assumption of α = w
u is valid, but if the rotation angle due to

the flapwise bending is large, then some accuracy in the small angle of attack assumption may be suffered.
Therefore, the exact angle of attack definition α = tan−1 w

u is used. Then, the local aeroelastic angle of
attack on the airfoil section due to the velocity components vη and vξ defined with respect to the elastic axis
is computed as

αc = tan−1 vξ
vη
≈ tan−1 v̄ξ

v̄η
+

∆vξ
v̄η
− v̄ξ∆vη

v̄2η

1 +
(
v̄ξ
v̄η

)2 (44)

where
v̄ξ = −w (45)

∆vξ = − (−u sin Λ + Ut − yVxt)Wx − (−u cos Λ + Vt) Θ + (−w +Wt + yΘt)
√

1−W 2
x + w (46)

v̄η = −u cos Λ (47)

∆vη = − (−u sin Λ + Ut − yVxt) ΘWx + Vt + (−w +Wt + yΘt) Θ
√

1−W 2
x (48)

Then,

αc = tan−1
( w

u cos Λ

)
+

1

1 + w2

u2 cos2 Λ

− (−u sin Λ + Ut − yVxt)Wx − (−u cos Λ + Vt) Θ + (−w +Wt + yΘt)
√

1−W 2
x + w

−u cos Λ

− 1

1 + w2

u2 cos2 Λ

−w
[
− (−u sin Λ + Ut − yVxt) ΘWx + Vt + (−w +Wt + yΘt) Θ

√
1−W 2

x

]
u2 cos2 Λ

(49)

Using the Taylor series approximation of
√

1−W 2
x ≈ 1− W 2

x

2 and tan−1
(

tanα
cos Λ

)
≈ tanα

cos Λ

(
1− tan2 α

6 cos2 Λ

)
≈

α
cos Λ

(
1 + α2

6

)[
1− α2

6 cos2 Λ

(
1 + α2

6

)2
]
≈ α

cos Λ

(
1− α2

6 tan2 Λ
)
, the local angle of attack can be expressed as

αc = αr + αe (50)

where

αr =
α

cos Λ

(
1− α2 tan2 Λ

6

)
(51)

is the rigid angle of attack due to the aircraft velocity and

αe (y) =
cos Λ− tanαΘ

cos2 Λ + tan2 α

− sin ΛWx −
tanαW 2

x

2
−
y
(

1− W 2
x

2

)
Θt

V∞
+
WxUt
V∞

− yWxVxt
V∞

−Θ

− cos Λ

cos2 Λ + tan2 α

(
1− W 2

x

2

)
Wt

V∞
+

cos ΛΘ + tanα

cos2 Λ + tan2 α

Vt
V∞

(52)

is the elastic angle of attack due to the aeroelastic deflections. Note that the rigid angle of attack is defined
with respect to the elastic axis, hence the term cos Λ in the denominator. For a sweptback wing, the
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contribution of Wx is negative, thus effectively reduces the total aeroelastic angle of attack. The bending
deflection thus creates an effective wash-out twist to reduce the local angle of attack for sweptback wings.
Consequently, the trim angle of attack must be increased in order to compensate for the wash-out twist.
Equation (52) for nonlinear large bending deflection should be contrasted with the following equation for
linear bending deflection.

αe (y) = − tan ΛWx −Θ− yΘt

V∞ cos Λ
− Wt

V∞ cos Λ
(53)

The aerodynamic and body forces and moments are given by

fax
fay
faz
ma
x

ma
y

ma
z


=



cDq∞c sin Λ cos Λ

cDq∞c cos2 Λ

cLq∞c cos Λ− ρAg
−cmq∞c2 cos2 Λ + ρAgecg

cmq∞c
2 sin Λ cos Λ

0


(54)

where q∞ is the dynamic pressure, c is the chord length, and g is the gravity acceleration.
The circulatory lift and pitching moment coefficients in the streamwise direction are computed from

cLc = [cL0
+ cLααr + C (k) cLααe (ec cos Λ)] cos Λ (55)

cmc = cmac +
e

c
[cLααr + C (k) cLααe (ec cos Λ)] cos Λ (56)

where C (k) is the Theodorsen’s function, k = ωc
2V∞

is the reduced frequency, cL0
and cD0

are the lift and
drag coefficients at zero angle of attack, cLα is the lift curve slope, k is the drag polar parameter, cmac is
the pitching moment coefficient at the aerodynamic center, e is the offset of the aerodynamic center from
the elastic axis (positive with the aerodynamic center forward of the elastic axis), and ec is the offset of the
three-quarter chord point from the elastic axis.

The non-circulatory lift and pitching moment coefficients in the streamwise direction are given by7

cLnc =
πc cos Λ

2V∞

∂αe (em cos Λ)

∂t
(57)

cmnc = −2π cos Λ

[
c

16

∂αe
∂ȳ

+
c2

128V∞

∂2αe
∂ȳ∂t

+
em

4V∞

∂αe (em cos Λ)

∂t

]
(58)

where ȳ = y
cos Λ is the airfoil coordinate in the streamwise direction, and em is the offset of the mid-chord

point from the elastic axis.
The drag coefficient can be approximated by a quadratic relationship as follows:

cDc = cD0
+ k (cLc + cLnc)

2 (59)

V. Effect of Large Deflection on Aerodynamics

Consider the case of static aeroelasticity of unswept wings for which fx = 0. The aeroelastic angle of
attack is reduced to

αc = α− 1− tanαΘ

1 + tan2 α

tanαW 2
x

2
−Θ (60)

For linear structures, the wing bending deflection has no effect on the wash-out twist for unswept wings.
In contrast, for nonlinear structures, the contribution of the wing bending to the wash-out twist is non-zero
due to the term W 2

x , although this term is small. Nonetheless, this results in a bending-torsion aeroelastic
coupling even though the wings are unswept.

Since there is no applied axial force at the end of the cantilever wing, the axial displacement equation is
equal to zero

Px = EAUx +
1

2
EA

[
U2
x +

(
sin−1Wx

)2]
+

1

2
EIxxΘ2

x +
1

2
EIyy

W 2
xx

1−W 2
x

= 0 (61)
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Solving for Ux from Eq. (61) yields

1 + Ux =

√
1−

(
sin−1Wx

)2 − Ixx
A

Θ2
x −

Iyy
A

W 2
xx

1−W 2
x

(62)

Then, the nonlinear static aeroelastic equations become

∂

∂x
(GJΘx) + cLαq∞ec

(
1− tanαΘ

1 + tan2 α

tanαW 2
x

2
+ Θ

)
= cmrq∞c

2 −mgecg (63)

∂2

∂x2

EIyyWxx

√√√√1−
(
sin−1Wx

)2 − r2
kΘ2

x −
Iyy
A

W 2
xx

1−W 2
x

1−W 2
x

+ cLαq∞c

(
1− tanαΘ

1 + tan2 α

tanαW 2
x

2
+ Θ

)
= cLrq∞c−mg (64)

∂2

∂x2

(
EIzzVxx − EIzz sin−1WxΘx

)
+
(
cDα + 2cD2

α
α
)
q∞c

(
1− tanαΘ

1 + tan2 α

tanαW 2
x

2
+ Θ

)
− cD2

α
q∞c

(
1− tanαΘ

1 + tan2 α

tanαW 2
x

2
−Θ

)2

= cDrq∞c (65)

where cLr = cL0 + cLαα is the rigid lift coefficient, cDr = cD0 + cDαα+ cDα2α
2 is the rigid drag coefficient,

and cmr = cmac + cLr
e
c is the rigid pitching moment coefficient about the elastic axis.

If the torsional twist is small relative to the flapwise bending slope, then the nonlinear static aeroelastic
equation for bending is expressed as

∂2

∂x2

EIyyWxx

√√√√1−
(
sin−1Wx

)2 − Iyy
A

W 2
xx

1−W 2
x

1−W 2
x

+ cLαq∞c
tanαW 2

x

2
(
1 + tan2 α

) = cLrq∞c−mg (66)

A. Aeroelastic Lifting Line Theory

For the large deflection bending of the wing structure, a modified lifting line theory is used.16 The velocity
distribution induced by a trailing vortex at x = x0 is given by the Biot-Savart law according to17

dvi
dx

= −
∫

Γxdl× r

4πr3
(67)

where Γx = dΓ
dx is the lift circulation distribution, r = (x0 − x+ U0 − U)d1 − (y)d2 + (W0 −W )d3, and

dl = dyd2. This yields the following expression:

dvi
dx

= −
∫ ∞

0

Γx [− (x0 − x+ U0 − U) dyd3 +Wdyd1]

4πr3
(68)

Due to the axial displacement and bending effects, in addition to the induced downwash distribution, there
also exists an induced sidewash distribution. However, the total induced sidewash for the entire trailing edge
vortex sheet is zero due to the symmetry of the wing bending. Therefore, the remaining induced downwash
distribution is evaluated as

dwi
dx

=

∫ ∞
0

Γx (x0 − x+ U0 − U) dy

4π
[
(x0 − x+ U0 − U)

2
+ y2 + (W0 −W )

2
] 3

2

= − Γx (x0 − x+ U0 − U)

4π
[
(x0 − x+ U0 − U)

2
+ (W0 −W )

2
] (69)

where U0 and W0 is the wing axial displacement and bending deflection at x = x0.
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The total induced downwash at x = x0 is the integral of the induced downwash distribution which is
expressed as

wi (x0) = −
∫ b

2

− b2

Γx (x0 − x+ U0 − U) dx

4π
[
(x0 − x+ U0 − U)

2
+ (W0 −W )

2
] (70)

The general lift circulation distribution is expressed as

Γ = Γr + Γe (71)

where Γr and Γe are the rigid and elastic components of the lift circulation distribution which are given by

Γr =
1

2
V∞ccLr (72)

Γe =
1

2
V∞ccLα

(
−1− tanαΘ

1 + tan2 α

tanαW 2
x

2
−Θ

)
(73)

Therefore, the final expression for the total induced downwash is obtained as

wi (x0) = −
∫ b

2

− b2

(Γr,x + Γe,x) (x0 − x+ U0 − U) dx

4π
[
(x0 − x+ U0 − U)

2
+ (W0 −W )

2
] (74)

Thus, the induced angle of attack is not only a function of the lift distribution but also is a function of
the axial displacement, bending deflection, and torsional twist.

Consider a special case of the ideal elliptical lift distribution for which Γr = Γ0

√
1−

(
2x′

b+2Ut

)2

where

x
′

= x+U is the coordinate of the elastic axis for the deformed wing and Ut = U
(
b
2

)
. We use the coordinate

of the deformed wing to specify lift distribution to ensure that the solution is physical. Otherwise, the lift
circulation at x

′
= ± b

2 does not exist since x
′ ∈
[
− b

2 − Ut,
b
2 + Ut

]
. Then, the downwash expression becomes

wi (x0) = −
∫ b

2

− b2

− 4Γ0x
′
(1 + Ux)

b2

√
1−

(
2x′

b+2Ut

)2
+ Γe,x

 (x0 − x+ U0 − U) dx

4π
[
(x0 − x+ U0 − U)

2
+ (W0 −W )

2
] (75)

For a rigid wing, the ideal elliptical lift distribution produces a uniform induced downwash and the
minimum induced drag. The effect of the wing bending is to alter this uniform downwash for the ideal
elliptical lift distribution. As a result, the ideal elliptical lift distribution may not yield the minimum
induced drag due to the nonlinear large bending deflection.

B. Example

As an example, consider a constant-section high aspect ratio wing with 1-ft chord and 30-ft span. The
cross section is a NACA 0012 with a wall thickness of 0.25 inches and a modulus of elasticity of 10 × 106

psi for aluminum. The cross sectional area and the flapwise area moment of inertia are computed to be
A = 2kActw and I = 4

15kIc
3tw

(
t
c

)2 where kA = 1.02032 and kI = 1.03716. The lift distribution is given

by l = 100

√
1−

(
2x
b

)2 lb/ft where l = ρ∞V∞Γ for ρ∞ = 2.37756 × 10−3 slug/ft3 and V∞ = 300 ft/sec
corresponding to M∞ = 0.2687. The lift curve slope is estimated from the formula CLα = 2π√

1−M2
∞+ 2

πAR

where AR = 30 is the aspect ratio. This yields α = 6.89◦. Figure 2 shows the linear and nonlinear deflections
of the wing computed by applying the Galerkin method with 15 mode shapes to Eq. (66). Both the wing
tip bending deflections as predicted by the linear and nonlinear bending theories are in close agreement
The nonlinear bending theory yields a wing tip deflection of 3.0808 ft or 20.54% of the wing semi-span.
In comparison, the linear bending theory predicts a wing tip deflection of 3.230 ft or 21.5% of the wing
semi-span. Thus, the nonlinear bending theory predicts a smaller bending deflection than the linear bending
theory. This difference is due primarily to the aeroelastic contribution of the last term in the left hand
side of Eq. (66). The significant difference between the linear and nonlinear bending theories is the axial
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displacement. For the linear bending theory, the axial displacement is exactly zero since there is no applied
axial force. On the other hand, the nonlinear bending theory predicts an axial displacement of -0.3620 ft
or -2.41% of the wing semi-span. As a result, the linear theory actually predicts an increase in the wing
length by 2.6% of the wing semi-span, whereas the nonlinear theory preserves the length of the wing. This
length-preserving property of the nonlinear bending theory in effect causes a reduction in the wing aspect
ratio, which leads to an increase in the induced drag and decrease in lift as compared to the linear bending
theory.

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

x+U, ft

W

 

 

Linear Deflection

Nonlinear Deflection

Figure 2. Linear and Nonlinear Bending Deflections

The length-preserving property of the nonlinear bending theory can be shown by examining Eq. (62)
and ignoring the terms Θ2

x and W 2
xx. This leads to

Ux =

√
1−

(
sin−1Wx

)2 − 1 ≈ −1

2

(
sin−1Wx

)2 ≈ −1

2
W 2
x (76)

The change in length due to the nonlinear bending deflection is computed as

ds

dx
=

√
(1 + Ux)

2
+W 2

x =

√
1 +

W 4
x

4
≈ 1 (77)

which shows the length-preserving property of the nonlinear bending theory.
For the linear bending theory, the increase in length is computed as

∆L =

∫ L

0

(√
1 +W 2

x − 1
)
dx ≈ 1

2

∫ L

0

W 2
xdx (78)

Therefore, the linear bending theory yields a non-physical solution.
Also ignoring the term W 2

xx in Eq. (66), the nonlinear static aeroelastic equation for bending can be
approximated by the Taylor series of sin−1Wx ≈ Wx

(
1 +

W 2
x

6

)
. Then, the resulting equation is expressed

as
∂2

∂x2

[
EIyyWxx

(
1 +

W 4
x

6

)]
+ cLαq∞c

tanαW 2
x

2
(
1 + tan2 α

) = cLrq∞c−mg (79)
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Recognizing that W 4
x ≈ 0, then Eq. (79) becomes

∂2

∂x2
(EIyyWxx) + cLαq∞c

tanαW 2
x

2
(
1 + tan2 α

) = cLrq∞c−mg (80)

Thus, the difference in the bending deflection between the linear and nonlinear bending theories is due
to mostly the aeroelastic term in the left hand side which contributes positively to the wing stiffness. For
sweptback wings, truss-braced wings,18 and rotary wings, the effect of the axial tension Px can be a dominant
factor. Then, the significance of the nonlinear bending deflection can be much more pronounced.

Figure 3 is the plot of the induced angle of attack αi = wi
V∞

due to the induced downwash over the wing
as computed by Eq. (75) which, for the constant chord and negligible torsional twist, is expressed as

wi (x0) =

∫ b
2

− b2

 4Γ0x
′
(1 + Ux)

b2

√
1−

(
2x′

b+2Ut

)2
+

1

2
V∞ccLα

tanαWxWxx

1 + tan2 α

 (x0 − x+ U0 − U) dx

4π
[
(x0 − x+ U0 − U)

2
+ (W0 −W )

2
]
(81)

Note that for the linear bending deflection, Γe,x = 0 and U = 0. So, the induced downwash is computed
from the following equation:

wi (x0) =

∫ b
2

− b2

Γ0x (x0 − x) dx

πb2
√

1−
(

2x
b

)2 [
(x0 − x)

2
+ (W0 −W )

2
] (82)
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Figure 3. Induced Angles of Attack due to Bending Deflections

The rigid wing has a constant induced angle of attack for the ideal elliptical lift distribution whereas the
bending deflection causes the induced angle of attack to become non-uniform with the maximum value at the
mid-wing span. The linear deflection results in a lower induced angle of attack than the nonlinear deflection.
This is due to the difference in the wing span where for the nonlinear deflection there is a reduction in the
wing span which causes an increase in the induced downwash, hence induced angle of attack. The induced
angle of attack at the center of the wing is the greatest with the nonlinear deflection. The results illustrate
the significance of the effect of the nonlinear bending theory on the induced drag of a wing structure.
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The lift coefficient is evaluated by taking into account of the wing bending deflection slope and the
shortening of the wing span due to the axial displacement according to

CL =
1

q∞S

∫ b
2

− b2
l
(
x

′
)

cos
(
sin−1Wx

)
(1 + Ux) dx =

1

q∞S

∫ b
2

− b2
l
(
x

′
)√

1−W 2
x (1 + Ux) dx (83)

where l
(
x

′
)

== 100

√
1−

(
2x′

b+2Ut

)2

.

The induced drag coefficient is evaluated from the following equation:

CDi =
1

q∞S

∫ b
2

− b2
l
(
x

′
)
αi (1 + Ux) dx (84)

Table 1 shows the lift and induced drag coefficients and the span efficiency factors ε based on the aspect
ratio of the rigid wing for the linear deflection, nonlinear deflection, and rigid wing. The lift and drag
coefficients are evaluated with the reduced wing span by 2U for the nonlinear bending deflection. It can be
seen that the effect of the nonlinear bending deflection is to reduce the lift coefficient and increase the drag
coefficient which results in a decrease in the span efficiency due to the change in the wing span. It is noted
that the span efficiency factor can be greater than unity for non-planar wings as in the case with the linear
bending deflection.

CL CDi ε

Linear Deflection 0.7166 0.005447 1.3958
Nonlinear Deflection 0.6846 0.005412 1.3422

Nonlinear Deflection with Re-Twist 0.6978 0.005450 1.3587
Rigid Wing 0.7338 0.005716 1

Table 1. Lift and Drag Coefficients and Span Efficiency Factors

C. Nonlinear Static Aeroelastic Analysis of a Flexible Swept Wing

A coupled aerodynamic-nonlinear finite element model is constructed for a sub-scale wind tunnel model of
the Common Research Model (CRM)19 to be tested in 2017 in the University of Washington Aeronautical
Laboratory (UWAL) to validate a real-time adaptive drag optimization control strategy. This CRM model
is designed to have about 10% wing tip deflection to represent the current state of the art high aspect ratio
wings in modern transport aircraft such as the Boeing 777. The model is 85 inches in length with an elastic
axis sweep angle of 31.5◦ and includes six active two-segment VCCTEF control surfaces as shown in Fig.
4. These surfaces are driven by actuators for the real-time drag minimization control strategy. The flow
condition is at Mach 0.1162 and a dynamic pressure of 20 psf. The aerodynamic model is a wind tunnel
sub-scale model of a CRM wing to be tested in the UWAL in 2018 to demonstrate an active real-time drag
optimization control strategy.

The model is developed within a multidisciplinary coupled aerodynamic-nonlinear finite element analysis
framework as shown in Fig. 5. The framework consists of four computational modules: 1) NASA vortex-
lattice code VORLAX20 developed by Louis Miranda et al. with a pre-processor VORVIEW for providing a
graphical user interface (GUI) for model geometry handling, 2) 2D Euler CFD code MSES with an integral
boundary layer method developed by Mark Drela,21 3) an in-house computational geometry code that manip-
ulates the model geometry deformation, and 4) an in-house nonlinear 3D beam finite-element analysis (FEA)
code with structural dynamics and aeroelasticity capabilities. The framework can compute the solution for
a specified lift coefficient input or angle of attack input. For each solution for lift matching, VORLAX itera-
tively computes the angle of attack to match the specified lift coefficient. Then, the solution is corrected for
the viscous and, if necessary, transonic flow effect with MSES which computes the lift and drag coefficients
for each wing station in the VORLAX model. This transonic and viscous correction method requires an
iteration loop between MSES and VORLAX. Once the corrections are made, VORLAX determines the new
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angle of attack iteratively to match the specified lift coefficient. At this point, the aerodynamic forces and
moments are computed and then passed to the FEA code. The FEA code computes the wing deflections and
then passes this deflection information to the computational geometry module which computes the geometry
of the model deformation. This updated geometry is then passed to VORVIEW for geometry processing.
The solution process is then repeated until the angle of attack converges to within a specified tolerance.

Figure 4. Common Research Model Sub-Scale Wind Tunnel Model in UWAL

Figure 5. Coupled Aerodynamic-Nonlinear Finite Element Analysis Framework

The displacement matrix equation is nonlinear and can be solved for the static aeroelastic deflections by
any nonlinear root search methods. One iterative method is proposed as follows:

• For i = 0, initialize Ui (x) = 0, Vi (x) = 0, Wi (x) = 0, and Θi (x) = 0. Evaluate Ki. Then, compute

xi = K−1
i F (85)
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• For i = 1, 2, . . . , n, evaluate Ui (x), Vi (x), Wi (x), and Θi (x). Update Ki. Then, iterate

xi = mxi−1 + (1−m)K−1
i F (86)

with 0 ≤ m < 1 until xi converges. Note that this algorithm will ensure numerical stability and
converge to the ’exact’ solution of Eq. (85) in the limit as n→∞. Equation (86) essentially imposes
the stability condition on the unit circle. Otherwise, if Eq. (85) is used instead which corresponds to
m = 0, numerical stability issues sometimes may be encountered. A suitable value for m is usually in
the range between 1

3 and 1
2 .

Figure 6 shows the convergence of the iterative nonlinear solution according to Eq. (86) for three values
of m = 0, 1

3 ,
1
2 . The wing tip deflection Wt at the angle of attack of 7.616◦ is plotted as a function of

the iteration number. The results show that the solution converges the fastest with m = 0 after only two
iterations. As m increases, the convergence is slower. It is noted that in other situations where the nonlinear
effects are much more dominant, experiences support the use of a positive value for m between 1

3 and 1
2 .
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Figure 6. CRM Sub-Scale Model Solution Convergence at α = 7.616◦

Figure 7 shows the linear and nonlinear bending deflections of the CRM sub-scale model along the aircraft
pitch axis y computed for the angle of attack of 9.538◦. The linear deflection at the wing tip is 10.17 inches
versus the nonlinear deflection of 10.11 inches. The wing length measured along the elastic axis is 99.69
inches. So the wing tip deflection is 10% of the wing length. The nonlinear deflection is only slightly smaller
than but essentially the same as the linear deflection.

Figure 8 shows the linear and nonlinear axial displacements of the CRM sub-scale model along the aircraft
pitch axis y. The linear theory predicts an axial displacement of 0.01456 inches at the wing tip whereas
the nonlinear theory predicts an axial displacement of -0.7124 inches. The axial extension with the linear
theory is due to the drag force component along the swept elastic axis. As expected, the axial displacement
computed by the linear theory is non-physical since it predicts a larger elongation of the wing than is possible.
The linear theory predicts an elongation of 0.8396 inches as compared to the nonlinear theory which predicts
an elongation of only 0.1136 inches due to the drag component along the elastic axis.
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Figure 7. CRM Sub-Scale Model Flapwise Bending Deflection at α = 9.538◦
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Figure 8. CRM Sub-Scale Model Axial Displacement at α = 9.538◦

Figure 9 shows the linear and nonlinear chordwise bending deflections of the CRM sub-scale model along
the aircraft pitch axis y. As expected, the chordwise bending deflections are very small due to the much
larger chordwise bending stiffness and the small drag force component acting normal to the elastic axis.
Nonetheless, the difference between the linear and nonlinear bending theories is revealing. The nonlinear
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bending theory predicts a larger chordwise bending deflection but in the opposite direction than the linear
bending theory. This is due to the contribution of the nonlinear term sin−1WxΘx in Eq. (31) which causes
a negative contribution to the chordwise bending deflection.
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Figure 9. CRM Sub-Scale Model Chordwise Bending Deflection at α = 9.538◦
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Figure 10. CRM Sub-Scale Model Torsional Twist at α = 9.538◦
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Figure 10 shows the linear and nonlinear torsional twists of the CRM sub-scale model along the aircraft
pitch axis y. Both the linear and nonlinear torsional twists are virtually the same. The nonlinear theory
predicts a smaller torsional twist than the linear theory due to the presence of the small axial tension caused
by the drag component along the elastic axis which acts to increase the torsional stiffness. This is observed
in the results which show that the nonlinear torsional twist at the wing tip of −0.5502◦ is slightly smaller
than the linear torsional twist of −0.5510◦.
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Figure 11. CRM Sub-Scale Model Flapwise Bending Deflection vs. Bending Stiffness

Figure 11 shows the effect of the flapwise bending stiffness on the linear and nonlinear bending deflections
at the wing tip. The nonlinear bending deflection is generally smaller than the linear bending deflection,
but as the stiffness is reduced by 50%, the trend is reverse. As the stiffness increases, the nonlinear and
linear bending deflections appear to converge. This is expected because as the stiffness increases the bending
deflection decreases until it is small enough that the linear bending theory holds.

Figure 12 shows the lift curves of the CRM sub-scale model. The rigid wing produces more lift at a given
angle of attack than the flexible wing as expected. Both the linear and nonlinear bending deflections give
almost the same lift curves. On a closer look, the lift curve for the linear bending deflection is slightly higher
than that for the nonlinear bending deflection. This becomes more apparent in Fig. 13. As the wing becomes
stiffer, the difference in the lift coefficient between the nonlinear and linear bending deflection decreases.

Figure 14 shows the drag polar of the CRM sub-scale model. For the wind tunnel test, a jig shape
twist optimization has been conducted to determine the optimal jig-shape twist that minimizes the induced
drag for the CRM sub-scale model in its deflected state in the wind tunnel. As a result, at a fixed value of
the lift coefficient, the rigid wing produces a higher drag than the flexible wing. The linear and nonlinear
bending deflections both produce nearly identical drag coefficients. On a closer look, the drag coefficient for
the nonlinear bending deflection appears to be slightly smaller than that for the linear bending deflection
but not by much. At the angle of attack of 8◦, the drag coefficients for the linear and nonlinear deflections
are 0.020560 and 0.020557, respectively. Figure 15 which shows that the drag coefficient for the nonlinear
bending deflection is lower than that for the linear bending deflection as the wing bending stiffness varies.
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VI. Nonlinear Effect of Limit Cycle Oscillations

Consider the case of static aeroelasticity of unswept wings for which fx = 0. Neglecting the axial
displacement and chordwise bending contributions and making the assumption that tanαΘ ≈ 0 and tan2 α ≈
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0, the aeroelastic angle of attack is expressed as

αe (y) = − tanαW 2
x

2
−
y
(

1− W 2
x

2

)
Θt

V∞
−Θ−

(
1− W 2

x

2

)
Wt

V∞
(87)

The non-circulatory lift and pitching moment coefficients are then obtained as
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The dynamics of the axial displacement are usually associated with higher frequencies than the dynamics
of the bending and torsion. Instead, Ux is given by Eq. (76) and note that 1+Ux√

1−W 2
x

≈ 1. The dynamic

aeroelastic equations are then obtained as
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A. Weak-Form Aeroelastic Equations

The nonlinear partial differential equations are usually referred to as a strong form. A numerical solution
can be performed by converting the strong-form partial differential equations into weak-form differential
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equations by letting U (x, t) = Nu (x)u (t), W (x, t) = Nw (x)w (t), and Θ (x, t) = Nθ (x)θ (t). For the
Galerkin method, Nu (x), Nv (x), Nw (x), andNθ (x) are the vectors of the mode shapes over the domain of
the solution x ∈ [0, L], whereas for the finite element method they are the vectors of interpolation functions
over the domain of the solution for an element x ∈ [0, l]. The vectors u (t), w (t), and θ (t) represent the
generalized coordinates in the Galerkin method, or the nodal displacements including the bending slopes in
the finite element method.

We use the Taylor series expansion of 1√
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x

≈ 1 +
W 2
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 dx (92)
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The problem is cast as
M (Wx) ẍ + C (Wx) ẋ + K (Wx)x = F (94)

where x =
[
w> θ>

]>
; M, C, and K are the nonlinear mass, damping, and stiffness matrices, respec-

tively; and F is the force vector. The nonlinear global stiffness matrix and force vector are assembled from
the following elemental stiffness matrix and force vector:

m =

[
mww mwθ

mθw kθθ

]
(95)

c =

[
cww cwθ

cθw kθθ

]
(96)

k =

[
kww kwθ

kθw kθθ

]
(97)

f =

∫ [
N>w (lr − ρAg)

−N>θ (mr − ρAgecg)

]
dx (98)
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Equation (94) is a complex-valued equation due to the Theodorsen’s complex-valued function C (k). It
can be expressed as follows:

Mẍ + [C0 + C1C (k)] ẋ + [K0 + K1C (k)]x = F (111)

The Theodorsen’s function can be approximated by the R. T. Jones’ approximation method as follows:

C (k)x ≈ Ĉ (s̄)x =
0.5s̄2 + a1s̄+ a2

s̄2 + a3s̄+ a2
x = 0.5x +

a4s̄+ 0.5a2

s̄2 + a3s̄+ a2
x (112)
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where s̄ = sc
2V∞

, a1 = 0.2808, a2 = 0.01365, a3 = 0.3455, and

a4 = a1 − 0.5a3 (114)
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Equation (94) becomes

Mẍ + (C0 + 0.5C1) ẋ +
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The combined system of equations is now defined as
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Fa =

 F

0

0

 (126)

B. Example

For the example in Section 5, the wing has the following properties: EIyy = 1.2665 × 104 lb-ft2, GJ =
1.5880× 104 lb-ft2, ρA = 0.2313 lb-sec2/ft2, ρIxx = 0.0203 lb-sec2, e = 0.2435c, ec = 0.2565c, em = 0.0065,
and ecg = 0. A 1% structural damping is assumed. A linear flutter analysis is performed for the cantilever
boundary condition. The solution is approximated by the Galerkin method using the first four modes of a
cantilever beam in bending and torsion. Figures16 and 17 show the frequency and damping of the wing as a
function of the equivalent airspeed. The wing flutters at an equivalent airspeed of 296 ft/sec due to the first
torsion (1T) mode at a frequency of 43.30 rad/sec exchanging energy with the first bending (1B) mode.
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A time simulation of the linear structural dynamic response analysis is then conducted at an equivalent
airspeed of 300 ft/sec. The forcing function is a step change in the angle of attack by 0.1◦. The linear
structural dynamic responses of the bending deflection and torsional twist at the wing tip grow exponentially
as shown in Figs. 18 and 19, respectively. Without accounting for structural failures due to the stress
exceedance of the strength of the material, the responses grow exponentially due to instability.
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Figure 18. Response of Wing Tip Bending Deflection with Linear Theory
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Figure 19. Response of Wing Tip Torsional Twist with Linear Theory

A nonlinear simulation due to the large deflection is performed next. Figures 20 and 21 show the nonlinear
structural dynamic responses of the bending deflection and torsional twist at the wing tip. The responses
shows a limit cycle oscillation (LCO) behavior after t = 9 sec which limits the exponential growth of the
wing structural displacements. The The growth in the amplitudes of the bending deflection and torsional
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twist is no longer present. The LCOs occur at a slightly lower frequency of about 40.80 rad/sec which is
probably due to the increase in the nonlinear rotary inertia term ρIyy

(
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W 2
x
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)
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apparent mass term
q∞πc2
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1−W

2
x

2

)
2V 2

∞
in the bending mass. The solution is non-physical, however, because the

bending deflection and torsional twist exceed reasonable deflection limits. This indicates a structural failure
would occur before LCOs would set in.
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Figure 20. Response of Wing Tip Bending Deflection with Nonlinear Theory for α = 0.1◦
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Figure 21. Response of Wing Tip Torsional Twist with Nonlinear Theory for α = 0.1◦
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Figure 22. Response of Wing Tip Torsional Twist with Nonlinear Theory for α = 0.2◦
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Figure 23. Response of Wing Tip Torsional Twist with Nonlinear Theory for α = 0.2◦

Because of the nonlinear nature of the structural dynamics, the amplitude of the excitation can change
the LCO behavior drastically. To illustrate this, the forcing function is changed to a step input of 0.2◦ in
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the angle of attack. Figures 22 and 23 shows the LCO behaviors of the structural dynamic response of the
wing. The wing bending and torsion no longer exhibit a strong LCO behavior. The wing bending deflection
exhibits initial transient oscillations and then reaches a steady state response. The wing torsion also exhibits
a similar response with initial transient oscillations followed by a zero steady state response. The reduction
in the LCO amplitude could probably be due to the nonlinear aerodynamic damping.

VII. Conclusions

This paper presents a theory on nonlinear large deflection aeroelasticity. The nonlinear bending theory
properly accounts for the length preservation when the structure is not subject to axial loading. While
the linear bending theory predicts a similar bending deflection characteristic, it does not account correctly
for the axial displacement. As a result, the linear bending theory is not length-preserving. At smaller
bending deflections, the length-preserving property may not be significant, but when the bending deflection is
sufficiently large, the nonlinear bending theory predicts a reduction in the wing span whereas the linear theory
would fail to predict this effect. As a result, this could cause a significant effect on the wing aerodynamic
performance. A modified lifting line theory is developed to take into account the full deflection states of the
wing deformation. An analysis is conducted via an example of a high aspect ratio unswept wing to illustrate
the effect of nonlinear large deflection bending on aerodynamics based on the lifting line theory. The results
show that the nonlinear bending deflection causes a reduction in lift and span efficiency factor. The induced
downwash for the ideal elliptical lift distribution cannot remain uniform across the wing span due to the
bending deflection.

The nonlinear large deflection effect on dynamic aeroelasticity is also examined. Flutter is a linear
structural phenomenon which is due to the energy exchange between bending and torsion modes. As a
structure approaches a flutter, the amplitudes of bending and torsion increase rapidly until the large deflection
effect begins to set in to limit the amplitudes of the structural responses, thereby resulting in limit cycle
oscillations. One possible mechanism of LCOs among many is due to the effect of the wing bending slope
on the mass and damping of the structural dynamic modes.
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